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Machine learning (ML) algorithms have undergone an explosive development impacting every aspect of computational
chemistry. To obtain reliable predictions, one needs to maintain the proper balance between the black-box nature of
ML frameworks and the physics of the target properties. One of the most appealing quantum-chemical properties for
regression models is the electron density, and some of us recently proposed a transferable and scalable model based
on the decomposition of the density onto an atom-centered basis set. The decomposition, as well as the training of the
model, is at its core a minimization of some loss function, which can be arbitrarily chosen and may lead to results of
different quality. Well-studied in the context of density fitting (DF), the impact of the metric on the performance of ML
models has not been analyzed yet. In this work, we compare predictions obtained using the overlap and the Coulomb-
repulsion metrics for both decomposition and training. As expected, the Coulomb metric used as both the DF and ML
loss functions leads to the best results for the electrostatic potential and dipole moments. The origin of this difference
lies in the fact that the model is not constrained to predict densities that integrate to the exact number of electrons
N. Since an a posteriori correction for the number of electrons decreases the errors, we proposed a modification of
the model where N is included directly into the kernel function, which allowed to lower the errors on the test and

out-of-sample sets.

I. INTRODUCTION

The molecular electron density p(r) is one of the corner-
stones of modern quantum chemistry and chemical physics.
Unlike the many-body wavefunction, the electron density, be-
ing a much simpler real-space scalar function, is an observ-
able and can be measured by X-ray diffraction! or transmis-
sion electron microscopy.? At the same time, as shown by the
first Hohenberg—Kohn theorem, p(r) embodies the same in-
formation as the wavefunction, and thus gives access to all
molecular properties either directly or from its deformations
in the presence of external fields. Because of its fundamen-
tal role in electronic structure theory, the electron density is
a highly appealing target for machine learning (ML) models,
which is demonstrated by the growing number of works on the
non-linear regression of p(r). These models can be divided in
two categories: those treating the field as a set of values on a
real-space grid*' and those built on a decomposition onto a
basis set.8

In this second category, we have recently develope
and demonstrated the wide-scope applicability!"! and the
generalityl? of a transferable model of the electron density.
The model is based on symmetry-adapted Gaussian process
regression (SA-GPR)!3!4 and on a local decomposition of the
electron density field into an atom-centered spherical Gaus-
sian basis. The decomposition, as any density-fitting (DF) ap-
proximation, consists of two critical parts: the selection'? or
construction'? of a suitable basis set and the determination of
the basis set expansion coefficients. The coefficients are de-
termined by minimizing a loss function between the fitted and
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the ab initio densities. The set of density-decomposition co-
efficients represent the target of the machine learning model.
During the training phase, the regression weights are found by
minimizing a second loss function, which reflects the differ-
ence between the decomposed density and the predicted one.

In principle, any function of a set of real-space variables,
such as the electron density, can be exactly expanded onto a
complete set of basis functions in a unique way. In practice,
the auxiliary basis sets are incomplete and the use of differ-
ent loss functions leads to different expansions of the electron
density.

The simplest way to fit the approximate density to the orig-
inal p(r) is to apply the least-squares technique!>"! and find
the decomposition coefficients {cP¥} that minimize the error

fitting error = / ’p(r) —ZC?F¢i(r)‘2d3r. ()

This intuitive form of the fitting (decomposition) loss function
can be re-stated (usually under the constraint for the number
of electrons) in a more general quadratic functional of the den-
sity residue Ap(r) = p(r) — ¥;cPFey(r),

ﬁttmgerror—/ Ap(ry) (l‘],l‘z)Ap(rz) &EridPra, @)

where O r1 ) is a two-electron operator. Eq. E] is a special
case of Eq.[2 Where O is the overlap operator S = §(ry7).

The overlap fitting yields approximate densities that of-
ten lack accuracy?*?2 For this reason, nowadays the stan-
dard procedure for density-fitting applications is the electro-
static repulsion fitting?"28 with O being the Coulomb oper-
ator J = |r12|~!, which gives an approximate density whose
electric field is the closest to the original one.
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The generality of Eq. [2] promotes other ways to find
the decomposition coefficients. For example, the anti-
Coulomb metric? O = —|r12|, although not widely used,
gives an approximate density with the closest electro-
static potential to the reference. For extended systems,
in order to avoid the slow decay of the Coulomb opera-
tor, the complementary error-function Coulomb metric?43
O = erfc(w|rya|) - |r12| ! and the Gaussian-damped Coulomb
metric®® O = exp(—w|ri2|?) - [ri2| ' were also proposed.
Since both of them provide a smooth transition from the
Coulomb (@ — 0) to the scaled overlap (@ — o) metric, for
our purposes it is sufficient to consider only the two limiting
cases.

For the same reasons as the fitting of the ab initio elec-
tron density, the choice of the loss function to fix the regres-
sion weights is also not unique. In fact, a simple regression
model of the electron density can also be formulated as a
least-squares problem, where the task is to find the regression
weights {x;} that minimize a quadratic loss function

= ¥ [lpt-Eer o

training
set

’2d3r. 3)

Eq. 3] has the same structure as the overlap density-fitting
problem of Eq.[I]and can be generalized in the same fashion
as Eq.[2] The possibility to change the predicted expansion
coefficients simply by changing the metric both in the initial
density decomposition and in the regression loss function al-
lows, in principle, the tuning of the SA-GPR machinery for
each specific application of the predicted electron density.

In principle, it is possible to construct ML loss functions
using also other integrals targeted to DFT energies and en-
ergy densities, e.g. containing Ap*/3 or reduced density gra-
dients. However, such loss functions cannot be written as
quadratic functions of the regression weights, and the learn-
ing step would require an iterative solution in a self-consistent
manner.

Our previous works targeting the electron density with SA-
GPR coincidentally exploited two different metrics (§212 and
J19 for the decomposition but only the overlap metric in the
machine learning loss function. Given the known effects of
the metric choice in the density-fitting literature!®"22 and the
lack of a corresponding systematic analysis for machine learn-
ing applications, many questions remain unanswered. For in-
stance, is the density decomposed with one metric more diffi-
cult to learn than another? Do the associated predicted densi-
ties differ significantly? Which combinations of loss functions
are the most efficient for which application? More generally,
these questions also address a perhaps more fundamental topic
that is how do ML models interact with deductive reasoning?

In the present work, we apply the four possible combi-
nations of S and J metrics on the same set of biologically-
relevant molecules and compare the quality of the predicted
electron density to reproduce different electronic properties,
ranging from the number of electrons to the dipole moments,
electrostatic potentials (ESP), and the characterization of the
intra- and intermolecular electronic fingerprints with the den-
sity overlap region indicator (DORI) ! As a result of this sys-

tematic analysis, we also introduce several different schemes
to restore the correct number of electrons in the predicted elec-
tron densities.

1. COMPUTATIONAL DETAILS

This work uses the side-chain—side-chain interaction sub-
set of the BioFragment database®* (BFDb). From the origi-
nal set, we excluded molecules containing sulfur atoms and/or
more than 25 atoms, as well as several structures with unphys-
ical atomic distances. The final dataset contains 2287 dimers
and 35 of the most representative monomer structures. Out of
the total set, 2000 structures (1975 dimers and 25 monomers)
were randomly selected for the training set and 322 structures
for the test set.

All quantum-chemical computations, except for three- and
four-center overlap integrals, were made with a locally mod-
ified version of PySCF=34 The reference density matrices
were computed at the ®@B97X-D>/cc-pVQZ* level with the
RI-JK approximation. For density decomposition, the cc-
pVQZ/IKFIT3Z basis was used.

For sampling electrostatic potentials, we computed molec-
ular surfaces®® p(r) = po with

= //.s(r —r1)p1(ry,r)s(r— r2)d3r1 d3r2, (@)

where p;(ry,ry) is the ab initio one-particle density matrix,
s(r) =exp(—alr|?),a=1/16,and py = 1/16,1/4,1,4, or 32.
The error in the predicted electrostatic potential U, (r) with
respect to the ab initio one U (r) is defined as

—Unm(r))%dS

Jfs(U
EEsp — \/ S ffs as )

and the surfaces are discretized with the spherical quadrature
rules 2240

The density overlap region indicator*!' was computed an-
alytically on a cubic grid with a spacing of 0.1 Bohr. The
comparison between two DORI fields in real space was done
using the Walker—Mezey similarity measure*!' L(a,a’) with
(a,a’) = (0.1,0.7), (0.7,0.95), and (0.95,1).

The error in the predicted dipole moment W, with respect
to the ab initio one Y is defined as

(&)

Edipole = | — K- (6)
For a density p’(r), we define the absolute
Eolp'lp] = (p'—p|Olp" —p) (7
and relative
eolp'lp] = Eolp’lp]/(p|Olp) ®)

errors with respect to p(r) to be consistent with density-fitting
and machine learning loss functions.

The tensorial A-SOAP kernels'*1# were computed with the
following parameters: environment cutoff rey, = 4 A, Gaus-
sian smearing ¢ = 0.3 A, angular cutoff /. = 6, radial cutoff
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neyt = 8, environmental kernel exponent § = 2. A subset of

= 1000 reference environments was taken to reduce the di-
mensionality of the regression problem, and the regularization
parameter 1] was set to 107°.

Il. THE QUANTUM-CHEMICAL METRICS
A. Model construction

Building a ML model for the electron density first consists
in fitting a linear combination of atom-centered basis func-

tions {¢;}
PoE(r ZcDF@ ©9)

to the molecular electron density pom(r), which can be writ-
ten in terms of the one-electron density matrix or computed on
a real-space grid etc. The fitting coefficients {cPF} are chosen
to minimize a density-fitting (DF) loss function

Apr(c”") = (ppr — pom| O |ppE — pom) — min,  (10)

where O is a two-electron operator (overlap S = §(|ry2|) or
Coulomb repulsion J = |rj»|~!) and the shorthand for two-
electron integrals is

(f10lg) / F(r)O(ry,r)g(ry) d*r; d’ry. (11)
The solution for Eq.[T0]is
PF — 07w, (12)

where O;; = (¢;]O|9;) are the matrix elements of the oper-
ator O and w; = (¢;|O|pom) are, in the case of O = S, the
projections of the target field pgm onto the decomposition
basis {¢;}. Different operators O yield different sets of co-
efficients {cPF}, each of which minimizes the loss function
associated with O.

In the same spirit, the ML loss function can be also written
as a sum over the structures of the training set (TrS)

AmL(x) = Y (v — poF| O'|pvL — poF) — min,  (13)

TrS

where each “predicted” density

PmL(r ZcML (14)

depends on the regression weights x via a kernel function
M (x) = Kx, (15)

and O’ is also a two-particle operator.

The DF metric O and the ML metric O’ are independent
and, in principle, can be chosen to be different. For example,
as we did in Ref. [10} it is perfectly possible to take O = J
so that the decomposed densities ppr are the closest to the

ab initio densities pom in the sense that the self- repulsion of
their residuals is the minimum, and then take O’ = § so that
the training-set predictions are (on average) the closest to ppr
in the sense that their overlap is the maximum.

However, the use of different metrics for O and O’ has a
formally unclear physical meaning. On the other hand, using
the same metric O at both DF and ML steps is analogous to
the minimization of a loss function

Z(PML—PQM|C)|PML—PQM), (16)
TrS

AppymL(X) =

making the predictions to be the closest to the original density
in the O-sense, as we did with the S-metric in Ref. 9.

B. Results

In this work, four sets of densities were predicted from the
four possible combinations of DF and ML metrics 00': JJ,
JS, SJ, and SS. Comparison of the electron density mean er-
rors Ep[p|pom] (i.e., with respect to pgm) for the two sets of
fitted densities and four sets of predictions can be found in
Fig.[Th and [Ip. Among the predictions, the lowest J-error is
observed (on average) for the JJ-scheme, where the J-metric
is used for both DF and ML steps; the SS-scheme, where the
J-metric is not used at all, gives the highest J-error. When
using S-errors, the ranking is opposite. It is not surprising,
because the goal of the framework is to yield the optimal pre-
dicted densities, and what is optimal is defined by the DF and
ML metrics.

However, while the differences within the S-errors are less
than 6%, the J-errors difference goes up to an order of mag-
nitude. It seems that the ML loss function with the S-metric
has a more shallow minimum, which can be already expected
from the analysis of errors in the fitted densities alone (see
also Table S4 in the Supplementary Material): it is clear that
the J-metric not only yields a smaller error in the number of
electrons than the S-metric, but is also more sensitive to small
density differences. It is interesting that the JS-scheme per-
forms worse than the SJ, regardless of the error metric. More
detailed analysis shows that the S- and J-errors are more sen-
sitive to the DF and ML metric respectively. This results in
the error for JS being larger than for SJ in both cases.

The learning curves (Fig. Sla of the Supplementary Ma-
terial), which are based on the relative prediction errors (us-
ing the corresponding ML metrics) with respect to their ref-
erence fitted densities, show that the predictions are almost
independent on the fitting metric (the curves for the JO-
and SO-schemes are nearly the same, for both O = § or J).
This trend essentially means that both the S- and J-fitting
coefficients, {cPF}, correlate with the atomic representa-
tion in a similar way. It is known®? that the contribution
Y (07195l O|xpxy) of an auxiliary function ¢, centered
on one atom, to the product of two basis functions ), and
Xq4> centered on another atom, decays much slower with in-
creasing distance between these two atoms for repulsion met-
ric than for the overlap one due to long-rangeness of the J op-
erator. Potentially it can make J-coefficients harder to learn,
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FIG. 1. Mean error measures computed on the test set for fitted (J and S) and predicted (JJ, JS, SJ, and SS) densities without any constraints
on the number of electrons: (a) S- and (b) J- metrics computed as (pmr, — PQM| O|pmL — PoMm); (c) errors in the electrostatic potential on
the isosurface pg = 4, corresponding to average density ({p)) = 2 x 10~bohr—3; (d) Walker—Mezey similarity indices for DORI in the non-
covalent region (between 0.1 and 0.75), error bars show the standard deviation; (e) absolute errors in the number of electrons. All errors are
computed with respect to corresponding pom. Note that for the S-metric, we here use the L? and not the L' norm as in Ref.[10] (see Fig. S6 for

comparison).

but in our set all the molecules were not big enough to make
the difference in decay noticeable.

On the other hand, the two sets of superimposed curves (OS
and OJ on Fig. Sla of the Supplementary Material) do differ.
The fact that for the OS-curves the improvement from 250
to 2000 training molecules is slightly less significant than for
the OJ-curves can be explained by the lower sensitivity of the
S-metric as discussed above. Even though the OS-curves are
lower than the OJ ones, it does not mean that the former pre-
dictions are in any way better: these are pure prediction errors
with respect to the corresponding fitted densities, moreover,
S-errors are shown for the OS-schemes and J-errors — for
the OJ-schemes. In any case, the full-training-set prediction
errors (the last points of the learning curves) are very close
(5 x 1072% for OS and 6 x 107% for OJ) and the difference
is not important.

To test these metric combinations on real-life applications,
we first chose two fundamentally different properties: the
electrostatic potential and the density overlap region indica-
tor computed on all the test set molecules. As shown in
Fig.[Tk and|[Tl, all four schemes lead to electrostatic potentials

with a very different quality with the J-metric consistently
decreasing the error. This result is not surprising consider-
ing that the J-metric yields an electron density whose elec-
tric field is the closest to the reference one: Because of
the slow decay of the Coulomb potential, the J-metric incor-
porates accurately long-range information into the expansion
coefficients and it is generally preferred in common quantum-

chemical applications.

Since the model is not constrained to produce densities that
integrate to the correct number of electrons N (see Sec.[[VA),
the errors |AN| are also shown on Fig. [Ik. The quality of the
electrostatic potential does correlate with the error in the num-
ber of electrons due to non-locality of both the properties. On
the other hand, DORI is much less sensitive to |ANI, because it
explicitly depends only on the local wave vector Vp(r)/p(r).
As a simple example, a uniform scaling of a reference density
by a factor of x leads to an error of (x —1)N in the number
of electrons and thus to an error in the electrostatic potential,
but with no influence on DORI. Hence, the advantage of the
J-metric observed above arises from the fact that it usually
yields a smaller error in the number of electrons.
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Even for the test set, which is made of structures similar
to those of the training set, the predicted |AN| can be as large
as 0.1, and even larger for out-of-sample molecules. The error
in the number of electrons leads to the impossibility of reliably
computing properties such as other multipole moments, elec-
trostatic potential, or exchange-correlation energy, and thus
prompts us to explore and compare different approaches to
correct for N both after prediction and during the learning
step.

IV. THE NUMBER OF ELECTRONS

In Sec. we first discuss different ways to correct for
the number of electrons given by the approximate density of
one molecule either at the decomposition or at the prediction
step. Next, in Sec. and Sec. we propose two mod-
ifications for the model to exploit the information about the
number of electrons at the learning step.

A. A posteriori correction of the predicted densities

By definition, the integral of the exact electron density
over all space is the number of electrons N. In our case,
when an approximate density is determined by a set of co-
efficients {c;}, it integrates to a value

Ne)= [pr)dr =Y cia an

where ¢; = [ ¢;(r)d’r is the charge bearing by the basis func-
tion ¢;. Even though the loss function of Eq. [I0] searches for
an approximate electron density being the closest to the refer-
ence, it does not contain any explicit constraints, and the fact
that we use an incomplete basis set leads to some inaccuracies
in the number of electrons as in all other properties. More-
over, the predicted coefficients in the form of Eq.|15| are not
constrained either and give a number of electrons close to N
only when the prediction errors are small enough.

The correct N(c) for the density fitting has been tradition-
ally achieved by adding a constraint*” on the number of elec-
trons in the DF loss function @]) Hence, we get another set
of decomposition coefficients

PPN = PF 1107, (18)

where ¢PF is determined by Eq. and the Lagrange mul-
tiplier A = (N — N(cP¥))/qTO~!q. Even though ¢; # 0 only
for spherically symmetric functions, all the basis functions are
coupled via the matrix O and thus participate in the correction
of the coefficients.

It is also possible to rewrite Eq. [I§| by introducing a non-
linear “operator” 153 that acts on any density in the form of
a sum of atom-centered contributions (Eq. [9] or [[4), giving a
new density, which is the closest in O-sense to the “old” one,
but integrates to exactly N electrons,

PQc=Bc+n 19)

with

0 '(aq") N

-1
2 n=-—"—"10q. (20
q0'q’ goiq 0 ¢ 0

B=1-

In this way it is possible to correct (to “refit”) the co-
efficients ¢Ml predicted by the original — uncorrected —
machine learning model and obtain the new coefficients
MLV — PO ML guitable for computing electrostatic potential,
multipole moments, and other extensive properties. Here it is
implied that the correction metric O is the same as the ML
metric, but this restriction is not compulsory.

For instance, to correct the coefficients predicted for large
molecules such as proteins, the straightforward computation
of the dot product O~'q (O = S or J) is nearly impossible,
even though it can be implemented with integral screening
and iterative matrix inversion methods. Since we, in principle,
can use different metrics for the decomposition, prediction,
and correction for the number of electrons, a way to avoid the
computational burden of inverting S or J is to simply use the
unit matrix instead, i.e. O = 1, and use an operator 1311\1. (This
operator only acts on the s-function coefficients.)

Alternatively, an even simpler way to correct the coeffi-
cients for the number of electrons is to scale them as

N ML

Py Ml = GO ¥ G (21)

This approach is somewhat arbitrary since all the coefficients,
even the ones that do not contribute to the number of electrons,
are scaled uniformly (one might as well scale only the coeffi-
cients for s-functions). In this work, we use refitting with the
unit matrix and scaling of the coefficients only to correct the
final predictions in order to compare them with a more solid

approach of Eq.

B. Constrained learning: from M, to My,

In Sec. [V Alwe described how to correct for the number of
electrons by a posteriori modification of the predictions ob-
tained from the original model My. These procedures are in-
dependent from the regression framework and the number of
electrons is never taken into account during the learning step.
However, such information could improve the final result. Be-
low, we consider two possibilities to explicitly include the par-
ticle number information into the machine learning model.

In the original framework?!Y My, the coefficients for a
molecular system m depend on the regression weights x via
the kernel matrix K,,, (Eq. @, and the working equations fol-
lowing from Eq.|13|(without regularization) are

x= (Y KL0,K,)  (LKib,) =A"'u,  (22)

meTrS meTrS

where b,, = 0,,c>F comes from density-fitting coefficients.
(If the DF and ML metrics are the same, b = w.)

Using the Lagrange multipliers method, it is possible to
constrain the model to yield N, electrons for each structure
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in the training set (or, generally, in the “constraint set” CS),

Ay = Z (p;/n,ML — Pmpr|O [Py ML — Pim.DF)

meTrS
(23)
+2 ) Am(/p,’mMLd%—Nm).
meCS
The regression weights are
X =A""u— Y KlquAn (24)

meCS

and the Lagrange multipliers {A,,} are the solution of the lin-
ear system

Y (q]KnA'Klq)A, = q} KA 'u—N, VmeCS.
neCs
(25)
(We denote the constrained model My, to distinguish it from
the original My.)

By construction, the regression weights x’ lead to coeffi-
cients giving the exact number of electrons for any structure
in the training set. Yet, the predicted coefficients for an arbi-
trary molecule are not under any constraint and should thus
be corrected after prediction. A smaller error in the number of
electrons is however expected in comparison to the one from
the original model.

In principle, we are not restricted to put constraints on the
same structures as used for the minimization of A}, . The
sums in Eqs. 24]and [25] can be computed over e.g. only a part
of the training set, the training set and some additional struc-
tures, or a completely different set of structures. Despite hav-
ing a vague physical sense, this flexibility can be exploited for
better understanding the model (see Sec. II of the Supplemen-
tary Material), for example, by varying the training-set size
with constant constraint subset or vice versa.

C. Modification of kernels: from My, to Mg

With Mj,, the information about the number of electrons
is explicitly used in the model, but only for the training-set
molecules. Another more consistent possibility is to mod-
ify directly the kernel function to ensure the exact number of
electrons for any set of coefficients obtained through it. In
this way, the molecules in both the training and test sets are
treated on the same footing, while the training-set prediction
error (i.e. ML loss function) is minimized for the corrected
densities.

Combining Equations [I3] [I5] and [T9] we get a new model
Mk,

Ay = Z (PpmmL — Pm.DF| OlppmmL — PmpE),  (26)

memol
where the p;, \;; are determined by coefficients ¢,M",
ML 50 ML 50
¢, (x) =PY,cn(x) =Py, Kux. (27)

The working equations become

X' = (Y K,0,K,) ' (L K]by) (28)

méemol méemol

with O = BTOB and b = BTb (since BTn = 0). Equation
has the same form as Eq. 22] but the original quantum-
chemical data O and b are transformed by matrix B defined
by Eq.[20]

The final predictions are obtained by using the regression
weights x” in Eq. which is analogous to the prediction
according to Eq. [I3|followed by the correction.

However, because the matrix B is idempotent, the modified
metric matrix O = BTOB by construction has a zero eigen-
value and thus is singular, making the regression problem ill-
defined. To get rid of the singularity, we propose to modify the
loss function and minimize the prediction error for both the
corrected and uncorrected densities simultaneously, by adding
to Eq. 26]a small fraction & € (0;1) of Eq.

M=)

memol

+(1—a)- (P mr — PmDE| Ol opr r — pm,DF)) :
(29)

(06 - (PmML — Pm,DF| 0 |Pm ML — Pm.DF)

The working equations are still in the form of (28) with the
modified molecular data

O0=(1-a)-B'OB+a-O, (30)
b=(1—a)-Bb+a-b, 31)

we used o = 10~ to make the perturbation small but still have
an acceptable condition number of the O matrix.

V. METRICS, MODELS, AND CORRECTIONS:
INFLUENCE ON ESP AND DIPOLE MOMENT

In addition to My (Sec.[[IIB), we computed the predictions
for My, (model of Eq.[24) and Mk (model of Eq. 28). How-
ever, even though My, works as expected on a small set, the
linear system of Eq.[25|becomes ill-defined and the constraints
cannot be fulfilled on a large enough training set (number of
molecules ~ number of reference environments M, see Sec. 11
of the Supplementary Material for details). For this reason,
we have dropped M, from the discussion and focus only on
M, and Mg hereinafter.

Figure [2] (solid bars) shows the errors with respect to the
ab initio results for the electrostatic potentials and dipole
moments predicted with Mk and My corrected according to
Eq.[I9] In comparison with the ESP predicted with the orig-
inal My model (i.e., 0.8-2.3 kcal/mol in Fig. [Ic), the predic-
tion with an a posteriori correction leads to errors at least two
times smaller (about 0.4 kcal/mol). In contrast and as ex-
pected, the DORI similarity measures are not affected by the
correction (See Fig. S3 of the Supplementary Material). In-
cluding the information about the number of particles into the
kernel leads to lower errors in the ESP and dipole moments
than those with the a posteriori correction alone for both the
JJ and SS combinations.

We also explore the simpler ways to correct the final pre-
dictions, i.e., the refitting with the unit matrix and the uniform
scaling. Even though the kernel function of My is already
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FIG. 2. Comparison of four combinations of metrics (JJ, JS, SJ,

and SS) and two models (Mg and Mg): mean errors, computed on
the test set, in (fop) the electrostatic potential on the isosurface pg =4
and (bottom) dipole moments for predicted densities upon correction
for the number of electrons. Solid bars (O): correction according
to Eq. [I9] with metric corresponding to the ML metric; \-filled bars
(1): correction using a unit matrix according to Eq.[T9} /-filled bars
(sc): correction by scaling according to Eq. 21} Errors in the ESP
computed on other grids are provided in Table S6.

defined to always lead to the correct N, we also make, for
comparison, the final predictions with 1511\1 or f’{\] instead of f’(N’
in Eq.27] The errors in ESP and dipole moments are shown
on Fig. 2] pattern-filled bars. It is notable that correction with
the unit metric does not significantly deteriorate the results
obtained with the most sophisticated scheme and can thus be
used for larger molecules inadequate for lsg.

We note also that the effect of the metrics is more signifi-
cant for the learning stage: S-learning always gives larger er-
rors than J-learning. It is interesting that while JJ and SJ are
nearly the same for ESP, SJ works better for the dipole mo-
ments. Yet, the Mg model in combination with the JJ metric
provides the best overall results on the test set.

VI. EXTRAPOLATION

To validate the results of Sec.|[V]on larger systems, we pre-
dict the densities of the same eight oligopeptides taken from

the Protein Data Bank as used in our previous work! within
both the My model with an a posteriori correction and the
Mk model. Evaluating the performance of the corrected mod-
els on larger molecules is especially relevant because the pre-
dictions of the electrostatic potential or multipole moments
are not possible with the original My models. The latter in-
deed yield to large errors in the number of electrons for these
oligopeptides (up to two orders of magnitude larger than those
for the test set, see Table S9), which makes the computation
of any property from the predicted density meaningless.

The errors in the predicted ESP and dipole moments with
respect to the ab initio ones (normalized by mapping to the
[0, 1] interval) are shown on Fig. . To our surprise, the met-
rics JJ and SJ within My, which perform well on the test set,
are usually the worst for the oligopeptides. Moreover, the least
physically sound correction scheme — scaling — performs
generally better than the sophisticated PQ, suggesting an error
cancellation.

Within this context, it is important to stress that our orig-
inal training set is based only on the side-chain—side-chain
dimer subset of BFDb with no explicit representation of pep-
tide bonds. For this reason, the highest absolute errors in the
predicted densities were shown to be mostly localized on the
oligopeptide backbones' In order to distinguish the effect
of increasing the system size from the one originating from
the lack of peptide backbones in the training set, the pep-
tide bonds were “cut” and the amino and carboxyl groups
were replaced with hydrogen atoms. Already within the non-
corrected My model, the average errors in the number of elec-
trons for these “no-backbone” systems are an order of mag-
nitude smaller than those for the original structures (see Ta-
ble S9). For the corrected models, the normalized errors in
the predicted properties are shown on Fig. [Bp with the abso-
lute errors shown in Fig. S4b. On average, the absolute errors
are 3—6 times lower than those for the original oligopeptides,
which confirms the significant perturbation associated with
the peptide bonds, while comparing the different models and
corrections. This problem, which is not the topic of this work,
could be easily addressed by extending the training set. The
error spread (Fig. S4b) also decreases, e.g., the ESP errors for
30W0 lie between 1.5 and 6.6 kcal/mol, whereas for its no-
backbone version the interval is (0.6, 1.6) kcal/mol. Overall,
all the models and metrics perform very similarly and lead to
fairly impressive predictions. Akin to the test set, the Mk, JJ
combination with any correction scheme offers the best com-
promise as it leads to the most accurate predictions for most
oligopeptides. Similarly, the performance of the a posteriori
corrected My, JS models, which was slightly inferior for the
test set, is also less robust for the oligopeptide set (for addi-
tional comparisons on the oligopeptide set, refer to Figure S5
and Table S9 in the Supplementary Material).

VIl. CONCLUSIONS

The analysis of the interplay between deductive reasoning
based on quantum-chemical knowledge and the inductive na-
ture of statistical learning is a fundamental issue to further


https://aip.scitation.org/doi/10.1063/5.0055393

This article may be downloaded for personal use only. Any other use requires prior permission of the authors and AIP Publishing.

This article appeared in J. Chem. Phys. 155, 204111 (2021) and may be found at https://aip.scitation.org/doi/10.1063/5.0055393. 8
40LR 30wW9 3FOD 2D5W 3FG5 3WNE 1BC5 1BXX
O1sc O1sc O1sc O1sc O1sc O1sc O1sc O1 sc
M,, SS 1.00
o, w8 050
My, JJ '
Mg, SS 0.25
Mg, JJ 0.00
Mo, SS 1.00
(a) MS f*sf 0.75
dipole MO:JJ 0.50
Mg, SS 0.25
Mg, JJ 0.00
Mo, SS 1.00
0, ws oo
My, JJ '
Mk, SS 0.25
Mg, JJ 0.00
M,, SS 1.00
) mg 3‘; 0.75
dipole Mo:JJ 0.50
My, SS 0.25
Mg, JJ 0.00
FIG. 3. Comparison of the four combinations of metrics (JJ, JS, SJ, and SS), two models (M and Mg), and three ways to correct for

the number of electrons (O, 1, and sc) by prediction for eight oligopeptides (labeled by PDB ID). Each square represents an error in the
predicted electrostatic potential on the isosurface py = 0.125 or dipole moments of (a) oligopeptides and (b) “no-backbone” oligopeptides.
For the sake of clarity, the errors for each structure and property (i.e. within each 3 x 6 rectangle) are mapped to the [0, 1] interval, i.e.

val — (val — valyn ) /(valmax — valpyin)-

improve quantum machine learning models. In this work, we
analyze the effects of varying the quantum-chemical metrics
used for the decomposition and regression of the molecular
electron density. We find that the machine learning loss func-
tion is more affected by the choice of metric than the loss
function associated with decomposition but overall, the JJ-
scheme shows the best performance. Yet, the learning exercise
is equally difficult regardless of the metric used to decompose
the density.

Importantly, imposing the correct number of electrons ap-
pears crucial to accurately predict extensive properties such as
the ESP and multipole moments. Correcting the predictions
a posteriori for the number of electrons makes the accuracy
of the My model largely independent from the choice of the
quantum-chemical metric. This result is especially important
for periodic systems or for situations where the charge density
(or another density-like object) can be obtained only on a real-
space grid for which the Coulomb metric is ill-defined and the

overlap has to be used. As a step forward, we propose the Mg
model, in which the kernels explicitly include the information
about the number of electrons. While both a posteriori cor-
rection and kernel modification increase slightly the computa-
tional complexity on the prediction step, it is always possible
to apply other corrections (such as the unit-matrix correction)
when extrapolating on larger chemical systems.

Overall, this work demonstrates that choosing a proper
quantum-chemical metric to optimize ML models is impor-
tant and that this is especially true if the model is not built to
encode all the proper fundamental physical constraints 42

SUPPLEMENTARY MATERIAL

See the Supplementary Material for the learning curves,
discussion of the My, model, additional numerical data, and
statistical analysis.
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