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We introduce an intramolecular energy decomposition scheme for analyzing non-
covalent interactions within molecules in the spirit of symmetry-adapted perturbation
theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical
Hamiltonian of Mayer [Int. J. Quant. Chem. 23, 341 (1983)] and the recently
introduced zeroth-order wavefunction [J. Chem. Phys. 140(15), 154107 (2014)]. The
scheme decomposes the interaction energy between weakly-bound fragments located
within the same molecule into physically meaningful components, i.e., electrostatic-
exchange, induction and dispersion. Here we discuss the key steps of the approach and
demonstrate that a single-determinant wavefunction can already deliver a detailed
and insightful description of a wide range of intramolecular non-covalent phenomena
such as hydrogen bonds, dihydrogen contacts, m—m stacking interactions. Intra-SAPT

is also used to shed the light on competing intra- and intermolecular interactions.
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I. INTRODUCTION

Aside from the strong covalent and ionic bonding, there exists a plethora of powerful in-
teractions occurring between atoms and molecules. These non-covalent interactions include
hydrogen! and halogen? bonds, dipole-dipole interactions, charge transfer, = — 7 stack-

4 as well as cation-7® and anion-7% interactions and

ing, dative bonds,® agostic interactions,
many more.” Even if those interactions are more frequently associated with intermolecular

complexes, their role within molecules is equally crucial, as illustrated by their impact on

8 9,10 1

catalytic processes,® reaction barrier heights,®!® molecular geometries'! or protein tertiary

structures,'? to name a few.

These interactions can be probed based on experiments'*'” but computational techniques
have played an increasingly important role over the last two decades. Those are essentially
divided into two categories: the approaches that are primarily qualitative and reveal the
presence of an interaction through the visualization of electron density-based functions; and
methods, which provide a quantitative description of the nature of the interaction. The
former category includes, for instance, the Noncovalent Interaction Index (NCI)'® or the
recent Density Regions Overlap Indicator (DORI).! A unique approach, combining both
quantitative and qualitative features, is Bader’s Quantum Theory of Atoms in Molecules
(QTAIM),?® which employs topological analysis of the electron density to reveal the ex-
istence and gain some insight into the nature of non-covalent interactions. Alternatively,
various quantitative approaches have been developed to decompose the total interaction
energy between molecules into physically meaningful components. Among these "energy
decomposition analysis" (EDA) schemes, the most prominent are: the Kitaura-Morokuma
scheme,?' the local Moller-Plesset perturbation theory (LMP2)?? and other linear-scaling
fragment approaches.?72% The interaction energy terms can also be extracted through relax-
ing the strictly localized molecular orbitals in a field of other molecules (e.g. BLW-EDA?%,
ALMO?"). Symmetry Adapted Perturbation Theory (SAPT)? is a highly popular alterna-
tive, in which the interaction between monomers is introduced as a perturbation and the
components of this perturbation are interpreted as electrostatics, exchange, induction and
dispersion contributions. There exist different variants and implementations of SAPT in-
cluding the highly accurate and computationally efficient version in PSI4,2%3% enabling the

treatment of fairly large systems, such as host-guest complexes involving DNA3! or carbon
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nanotubes.?? A clear advantage of SAPT is the easy interpretation of the results and its firm
theoretical ground.?® Recently, Parrish and Sherrill developed a more fine-grained approach
to partition the energy components into pairwise contributions from atoms or functional

groups (ASAPT/FSAPT) and to visualize the results.?3*

Unfortunately, none of the above approaches are ideally suited for analyzing the more
subtle non-covalent intramolecular interactions, although the existence of such a method
would be highly valuable. The preliminary efforts to fill this gap and to expand the field
of applicability of EDA schemes to a single molecule was recently accomplished by two

% a necessary first step towards

of us with the derivation of a zeroth-order wavefunction,?
intramolecular SAPT (as seen later, it is this wavefunction that is exploited in the present
implementation). A very practical alternative, closer to standard intermolecular SAPT
methods, has recently been introduced by Parrish et al.,*®. This ISAPT method is built upon
the functional-group SAPT?* and adapts ideas from density matrix embedding to select the
interactions and to build a zeroth-order wavefunction. The latter is then used directly in the
conventional intermolecular SAPT expression. As will be seen, the method introduced here
is a genuine intramolecular version of SAPT based on a novel set of expressions that makes
use of the previously introduced zeroth-order expression.®® This preliminary work has also
motivated the combination of fragmentations schemes with a generalized Kohn-Sham based
EDA3" scheme that enable the analysis of intramolecular interactions, OH-7, and cation-
m bonding. With the growing realization that non-covalent interactions play a significant

38,39

role, even in medium-sized molecules,’® there is little doubt that an expanded arsenal of

methods and strategies to analyze them will continue to emerge.

The paper is organized as follows: in Sec. II, we invoke the zeroth-order wavefunction of
Gonthier and Corminboeuf*® and construct a perturbation theory for intramolecular inter-
actions for a single Slater determinant case (SD). In Sec. III, we describe the computational
procedure and apply the new method to a set of illustrative molecular examples and validate
its performance on intramolecular dihydrogen contacts, hydrogen bonds, m — 7 interactions
and a positively charged host-guest complex. In Sec. IV, we discuss the abilities and limi-

tations of the proposed method as well as the perspectives for future improvement.
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II. THEORY
A. The zeroth-order energy

The idea behind intramolecular SAPT (intra-SAPT) is analogous to the one of its inter-
molecular counterpart. First, the system is divided into fragments, the interaction between
the fragments is then removed and subsequently brought back as a perturbation of the
Hamiltonian. In comparison with the intermolecular scheme, the main difficulty here lies in
the fact that the interacting fragments in question are not distinct monomers but selected
regions within the same molecule. In quantum chemistry frameworks, all the electrons form-
ing a molecule are described by a single wavefunction and therefore the electrons cannot be
attributed to a particular atom. The electronic and nuclear partitioning is provided by
Mayer’s Chemical Hamiltonian approach (CHA).** The CHA makes use of atom-centered
basis sets, and interprets the products of the interaction operators and the one- and two-
electron integral kets as the physical interactions, while the bras’ role is projecting those
interactions onto the basis set.

The Chemical Hamiltonian approach has been originally devised to correct for the basis
set superposition error (BSSE) when computing intermolecular interactions.*?™** In Ref. 35,
we showed that the same approach can be employed to probe intramolecular interactions.

As a first step toward devising a SAPT-based intramolecular energy decomposition
scheme, a system (i.e., a molecule or a complex) is partitioned into three fragments (note
that the current implementation is limited to a three-fragment partitioning, see Fig. 1),
where the interaction of interest occurs between fragments A and B, with C acting as a
linker. Fragment C is generally covalently bound to both A and B but non-covalently
bound fragments can be considered as well. While the nuclear partitioning associated with
fragments A, B and C is straightforward, the trickier electronic partitioning is carried out
through localizing subsets of electrons within each fragments using strictly localized orbitals
(SLO)* (also known under different terminology, see Refs. 27,46-50), which by definition
have non-zero coefficients only on a small number of basis functions. In practice, our

implementation proceeds as follows:
1. A Hartree-Fock (HF) computation is performed on the entire system.
2. The canonical HF orbitals are projected on fragments A, B or C and then Lowdin-

4
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orthogonalized to obtain an appropriate set of guess orbitals.

3. The guess is used to build the Fock matrix Fy where interactions between A and B

are eliminated according to following rules:

(a) The integrals where the product of the ket and the operator directly represents

an interaction between A and B are deleted.

(b) For integrals representing interactions within fragment A (or fragment B), the
bra basis functions on fragment B (or respectively, fragment A) are projected

out.

4. To ensure that orbital locality is maintained, the Fock matrix is projected on fragment

X (X = A, B or C) using Stoll’s algorithm® to get F% %

5. The eigenequation F”SCy = ¢xSCy is solved self-consistently for the orbitals Cy

with overlap matrix S.

The eigenequation for the orbitals Cx is solved under the constraint of strict orbital
localization by employing Stoll’s algorithm,*® as described in more detail in Ref. 35. At
convergence, one obtains occupied and virtual orbitals strictly localized on one fragment
and their associated energies.

As shown in Appendix A, the zeroth-order wavefunction obtained through the above

equations is in fact the right eigenvector of the zeroth-order Hamiltonian f[o:
Ao [08”) = B [u”) (1)

}AIO is a non-Hermitian operator that can be written in closed form in second quantization
(see Appendix A). As a consequence, it possesses a left eigenvector 171(()0) used to rewrite the
above equation:

By = (08" B [0”) 0
The minimization of Ej subject to the constraint of orbital localization yields the orbital
optimization equations introduced above. Thus, our method is readily amenable to pertur-
bation theory by examining the difference between the full Hamiltonian and ﬁo, which we
do in the next section. The obtained perturbation theory formulae are expressed in terms

of the occupied and virtual orbitals Cx and their energies.
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B. Energy Decomposition

Since both the zeroth-order Hamiltonian and the perturbation are non-hermitian opera-
tors, the intramolecular perturbation theory is more easily formulated within a biorthogonal
framework. 421

Then, the unperturbed Hamiltonian ﬁo corresponding to the 0-th order energy E)
has different right and left eigenvectors. The right eigenvectors of f[o, {’wgo)>}, are not

orthonormal to each other, but are orthogonal to the left eigenvectors, {<1/~J§?)‘} i.e.,

(B = o (3)

The perturbation in the biorthogonal formulation (and second quantization notation) is
expressed as a sum

ﬁ_ﬁ(o):WAB+ﬁBE ) (4)

where the first component on the right takes the following form
/WAB = ZZ <I~€ ‘VB‘ Z> kti— -+ ZZ <];’ ‘VA‘ Z> kti~
€Ak i€B k
+I NS Gl TR (5)

keA leB 1ij

where VA, Vp are the electrostatic potentials of the nuclei of fragments A and B, respectively,

and the biorthogonal spinorbitals <5‘ are defined by the relation

(ilg) = 65 (6)
while k*, i~ are, respectively, the non-hermitian covariant creation and contravariant an-
nihilation operators.’? Please note that in the above and the following equations where no
other indication is given, the indices run over the entire set of orbitals.

The remaining component of the perturbation, H BE, is associated with basis set effects
and does not contribute to the physical part of the AB interaction (see Appendix B). It can
thus be neglected.

The first-order energy correction (including also the classical internuclear repulsion),
EW = <\i!(0) ‘/WAB‘ \IJ(O)> + %ZIGA’]GB ZR{—IZJJ then takes the form

R AL TS S AN 9 S 17 PR DU AT
icA i€B kEA IEB reagep 1

~
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The first order correction (7) corresponds to the sum of the Coulomb and exchange inter-
actions between the fragments, although the exchange component cannot be isolated in the
biorthogonal formulation.

The second-order correction takes the form

<¢I€IC
E@ — _ Z

exc

/WAB’ \II(O)> <\i](0) ’W\AB’ \Ilexc>
ES. - EY”

(8)

where ) denotes a summation over all the excited determinants, and EY). are the zeroth-

exc

order energies of the excited states. It can be expressed as a sum of three components (for

an extended description see Appendix C).

E(z) = E‘pol + Edeloc + Edisp ) (9)
where
occ wirt <<d’VB‘b>+ ?é%, <ELZHbl>> <<B‘VB‘CL> + log% <BZH(ZZ>>
EPOZ:_ZZ Ep — Eq

acA beA

) i ”z”f <<EL ’VA‘ b> + Z?éil <(~1Z~Hbl>> <<Z~) ‘VA‘ a> + Z?écA <l~)l~||al>> (10)

Ep — Ea

a€B beB

corresponds to the polarization energy,

a5 (7o) s o)) (G5 o) = 55 (Ol

a€A beB &b Ca
oce vt ((a|Vi|v) + 525, (alllot) ) (B[ Va| @) + 52525, (Bllat))
_ ;; o (11)

to the delocalization or charge-transfer energy and

occ occ wvirt virt &EHbd <bd” C> occ occ wvirt virt CLCHbd> <l~)JHQC>

T 5 B D 55 9) D) 9) PRk e IES

a€A ceB beA dGB a€A ceB beB dEA

to the London dispersion term. In Eqs. (10) - (12) {e;},_,,.q denote orbital energies
associated with the zeroth-order wavefunction.
The expressions for the intramolecular interaction components (7) and (10) - (12) re-

semble the ones obtained by Surjan et al.*? for intermolecular interactions (in fact they are

7
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identical in cases for which the linker is absent), but in the intra-SAPT formulas the pres-
ence of the middle fragment manifests itself through the orbitals and their energies. In the
single-determinant approximation, the three- and higher-body terms are equal to zero in the
first and second-order corrections. Note also that, in principle, it is possible to introduce
higher-order correction (although it is very cumbersome, see Ref. 53). Without these, the
convergence of the perturbation series is difficult to assess. However, we expect a similar
rate of convergence seen in other unrestricted perturbation theory variants, e.g., UMP2.
The convergence of unrestricted methods is generally poorer than in their restricted coun-
terparts, a fact that is generally attributed to spin contamination of the wave function.?*5?
Regardless, the energy components should be less sensitive to these features (see e.g. Ref.

56) than binding energies and reaction barriers, properties on which the convergence rate is

usually probed.

ITII. ILLUSTRATIVE EXAMPLES

The zeroth-order wavefunction and perturbative expressions introduced above leads to a
unique perturbation theory-based scheme specifically tailored for decomposing non-covalent
interactions within molecules.

Of course, the simplicity associated with approximating the wavefunction as a single
Slater determinant is appealing but it imposes certain limitations when using intra-SAPT.
A single SD wavefunction is, for instance, not suitable for systems with significant multi-
configuration character. Additionally, within the SD approximation, the partitioning of the
system into fragments induces a spin contamination of the zeroth-order wavefunction. The
contamination will be most problematic in situations where the linker is very small, leading
to fictitious interactions near the border of the fragment partitioning, such as a too attractive
first-order term or even a slightly positive induction contribution.

Another limitation inherent to any PT scheme is that the perturbation representing the
interaction should be small. In line with the issue associated with the spin-contamination,
this condition imposes that the interacting fragments should lie fairly far from each other
i.e., the covalently-bound linker fragment should correspond, to more than one heavy atom.

Finally, the choice of the basis set can be rather sensitive. On one hand, it is known® that

the SLO-based approaches lack a complete basis set limit (CBS) and that only moderate

8
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size basis sets should be used. On the other hand, the proper description of dispersion
interaction depends on the presence of sufficient number of virtual orbitals. Akin to other
EDA schemes exploiting atom-centered basis sets,”®?? double zeta (polarized) basis sets with
no diffuse functions are generally recommended.

In the following sections, we provide applications of intra-SAPT for a few illustrative

systems in which the previously mentioned limitations are minimal.

A. Computational details

In each of the proposed examples, the zeroth-order wavefunction was obtained as de-
scribed in Ref. 35, based on an unrestricted spin formalism. The formulas were implemented
in a developer version of the Molpro software package.®°

First, the method is validated on prototypical rare gas dimer systems (see Supporting
Information®'), showing that when no linker is present, the method reduces to an inter-
molecular method similar to that of Surjan et al.*?

Unless otherwise stated, all the computations were done with the 6-31G%2 basis set on
a MP2/6-31G* geometry. The limitation of the current, developer version of the code pre-
vented the use of larger basis sets for all of the investigated systems, but results for larger
basis sets are provided whenever it was possible (see Table I in Sec. III B as well as Tables
S3, S4 and Fig. S1 and S2 in Supplementary Material®'). For the sake of clarity, the terms
Egeioe and E,, were summed and labeled as an "induction" term, Ej,4, in most plots and
tables.

In all the investigated systems, the linker (see fragment C from Fig. 1) is bonded either
non-covalently or through single covalent bonds to the interacting fragments A and B. To
minimize spurious ionic interactions, the occupied spinorbitals were distributed in such a
way that each of the interacting fragments corresponds to an open-shell system (as opposed

to closed-shell ionic fragments).

B. Hairpin alkanes - stabilizing effect of dihydrogen contacts

63,64

Structurally simple and ubiquitous in nature unbranched alkanes are a perfect illus-

tration of the importance of London dispersion interactions within molecules. In particular,
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the question regarding at which carbon chain length the folded, "hairpin"-like, conformation
is favored over its linear counterpart, has been recently addressed by both experimentalists®®
and theoreticians.5¢57 According to the current consensus, the last globally stable extended
alkane is either C17Hsg or C1gHsgs. However, the reason for which the alkane molecules do fold,

68 and

has not yet received a direct answer. In analogy to dimers of n-alkanes, polyhedranes
spatially aligned [n|ladderanes,%® it is assumed that the cumulated dispersion interactions
arising from the parallel fragments of carbon chains are at the origin of this conformational
isomeric process. In this present context, intra-SAPT can directly reveal the nature of the
interactions between the carbon chains in the folded forms.

Here, we investigate carbon chains of lengths from N = 8 to N = 19. The geometries
taken from Ref. 67 show three well-defined fragments (see Fig. 1) with a middle C,Hg
fragment in each alkane, which naturally serves as the linker between the two interacting

hydrocarbon chains of either equal length (when N is an even number) or differing by one

CH, carbon atom (when N is odd).

Figure 1. Backbone structure of C;gHsg partitioned into three fragments. Geometries are taken

from Ref. 67.

We must distinguish (see Fig. 2) between the odd- and even- alkane chains, differing by
their number of carbon atoms and of hydrogen atom contacts, which potentially dictate the
nature of the interactions. Actually, the overall trends for the energy terms with respect to
the number of carbon atoms remain similar for both the odd and even cases. The induction
term is obviously very small as both fragments are neutral, symmetric or nearly symmetric
and spatially distinct. Fig.2 shows that up to N = 12 the fragments are short and far from

each other which results in a near-zero dispersion term. At medium chain lengths, up to

10



This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.
This article appeared in J. Chem. Phys. 143, 224107 (2015) and may be found at https://aip.scitation.org/doi/abs/10.1063/1.4936830 .

N = 16 the increase in attractive dispersion contribution is compensated by the growth of
the repulsive first-order term. This result is essentially in line with the latest theoretical

assessments®” that place CigHsy as the largest globally stable unfolded alkane.

As the energetic penalty associated with further distortion of the interfragment bond
angles decreases with increasing the chain length, the fragments get closer. Dispersion
interactions start to dominate from Cy6Hsy4, resulting in a slightly attractive total interaction.
The increase of the dispersion energy originating from the elongation of the carbon chains
(i.e., the increased number of interacting electron pairs) causes the side chains to approach

one another even more such as to maximize the non-covalent interactions.

Considering that all the investigated geometries (see Ref. 67) were optimized with
dispersion-corrected density functionals, it is clear that while for short chains the cova-
lent interfragment bonds play a decisive role in shaping the geometry, the non-covalent
interaction (originating from the interplay of Pauli repulsion, electrostatic interaction and
London dispersion) becomes increasingly determinant for longer and more flexible chains.
This realization is likely to be relevant for other hairpin-like structures, e.g. phospholipids

and hairpin peptides.

It is worthwhile noting that the total interactions arise from a balance of relatively small
energy contributions of opposite sign and that it is certainly more reasonable to analyze the

trends than an energy value for a specific alkane.

The dependence on the basis set is tested through computing the interaction energies
of the small hairpin alkanes (N = 8,...,14) with the 6-31G*™ basis set (see Fig. SI in
SI®Y). The first order term is less repulsive with 6-31G*, but the trends are identical. The
interaction energy components obtained for CgHig, with a wider selection of basis sets, are
presented in Table I. The tested basis sets of comparable size produce similar outcome. To
examine the sensitivity of intra-SAPT method to small geometry changes, supplementary
computations using the geometries presented in Ref. 66 (optimized at MP2/cc-pVTZ level)
were performed. The results turned out to be very similar to the ones presented in Fig.2 (less
than 0.4 kcal/mol of difference in a single component). Those additional tests demonstrate

the robustness of the qualitative intra-SAPT trends applied to the hairpin alkanes.

11
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Figure 2. Interaction energy components in hairpin alkanes between fragments A and B (see Fig. 1),
6-31G basis set (upper plot) and the distances of the closest C-C pair in the opposite chains (lower
plot, see Fig. 1) plotted against the number of carbons. The dashed lines are used for the odd-

numbered alkanes, the continuous ones for the even-numbered alkanes. Geometries are taken from

Ref. 67.

Basis set B Eing Egisp Eiot

6-31G ~ 1.29 —0.07 —0.28 0.94

6-31G*  0.98 —0.06 —0.30 0.62

6-311G ~ 2.49 0.02 —0.33 2.18

def2-SVP™ 2.06 0.03 —0.49 1.73

cc-pVDZ™ 1.34 0.07 —0.32 1.09

Table I. Components of the intramolecular interaction between CoHs groups in CgHig in kcal /mol.

C. 7 — 7 stacking interactions

m-stacked aromatic chromophores is another appealing class of geometrical patterns that
leads to unique properties.” Their interaction is often analyzed using simpler model systems
such as benzene™ and substituted benzene dimers.”"® With intra-SAPT, however, it is pos-

sible to access information regarding the same interaction occurring within a molecule. This

12
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intramolecular framework opens the possibilities to study closer interchromophore distances
that go below van der Waals radii and, which would not be possible with distinct molecules.

Here, we present two examples featuring intramolecular © — 7 stacking: 3-phenyl-2(2-
phenylacetylamino)propionic acid (Phe-L-PHA) (see Fig. 3, left) and an analogous molecule
with the lower phenyl ring replaced by a perfluorophenyl ring (PFB-L-PHA, see Fig. 3, right).
The latter system is employed as a typical building block in supramolecular hydrogelators,”
triggered by the intramolecular interaction between the phenyl and the perfluorophenyl ring.
Both structures were optimized at the MP2/6-31G* level. The interacting fragments, A and
B in Phe-L-PHA and PFB-L-PHA are the two aromatic rings.

As illustrated in Table II, the interaction between the two phenyl rings in Phe-L-PHA
is slightly repulsive, with an attractive contribution arising from dispersion and, to a lesser
extent, from induction that is compensated by the repulsive first-order term. Note that the
phenyl rings in this optimized geometry are rather close - the distance between the ring
centers is R = 4.201 A (see Fig. 3), but the upper ring is tilted, which results in one of
the H-C distances being as close as Ryc = 2.932 A. This geometry is quite far from the
typical m — 7 stacking "sandwich" conformation (with the rings about 3.8 A apart) and does
not correspond to any minimum or saddle point of a benzene dimer.” This situation is
reminiscent from that of the medium-size hairpin alkanes and suggest that most medium-
size apolar molecules use the attractive dispersion forces to fight against the repulsive wall
and form more compact geometries in which the total attraction between fragments is fairly
small. The intra-SAPT trend is fully consistent with a SAPT(HF) computation performed
on a benzene dimer constrained in the geometry of the Phe-L-PHA phenyl rings using the
same basis set (6-31G). SAPT(HF) also reveals a slight repulsion (0.97 kcal/mol) with the
first-order term of 4.33 kcal/mol and the dispersion contribution of —3.36 kcal/mol.

The PFB-L-PHA conformation is closer to a parallel ring arrangement, which is char-
acterized by a larger dispersion energy term. In line with the benzene-hexafluorobenzene
complex, the first-order term is less repulsive than for Phe-L-PHA. This difference has of-
ten been attributed to the opposite sign of the quadrupole moments of the phenyl ring
and perfluorophenyl ring,™ respectively, but has more recently been explained in terms of
local dipole-dipole interactions between the substituents and the phenyl ring.” The two
aforementioned effects lead to a negligible total interaction between PFB and Phe rings,

which is again consistent with the SAPT(HF)/6-31G result for a phenyl-pentafluorophenyl

13
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complex in the same configuration (the first order energy component 4.88 kcal/mol is com-
pensated by the dispersion contribution —5.44 kcal/mol summing up to a total interaction
of —0.56 kcal/mol). The small induction and induction-exchange contributions lower the

interaction energy further to —0.49 kcal/mol.

The remarkable agreement of intra-SAPT and SAPT(HF) results in this case does not
only validate the intra-SAPT results, but also indicates that, in this case, the linker does
not significantly influence the m — 7 interactions. Nevertheless, the linker plays a decisive
role in placing the aromatic rings in an orientation that is dictated by the bond and angle
strain and not by the maximization of non-covalent interactions. In this respect, the two
systems presented here are similar to short hairpin alkanes, where the interaction between

the side chains is slightly repulsive.

Figure 3. Backbone structures of Phe-L-PHA (left) and PFB-L-PHA (right). Color code: O - red,
N - blue, F - green, C - grey, H - white. Geometries optimized at the MP2/6-31G* level. Distances
between ring centers: Phe-L-PHA - R = 4.201 A, PFB-L-PHA - R = 3.268 A, distances between
the closest C-H pair: Phe-L-PHA - Ryc = 2.932 A, PFB-L-PHA - Ryc = 3.268 A.

E(l) Eind Edisp Etot

Phe-L-PHA 5.04 —0.44 —2.07 1.97

PFB-L-PHA 3.88 —0.60 —3.10 0.18

Table II. Interaction energy components in kcal/mol between the phenyl rings (Phe-L-PHA) and

between the phenyl and pentafluorobenzyl ring (PFB-L-PHA). Computations at the 6-31G level.
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D. Intramolecular hydrogen bonds

In its simplest picture, the physical nature of intermolecular hydrogen bonds is essen-
tially discussed in terms of electrostatic interactions, which differs significantly from the
previous examples. While the consensus is that the electrostatic contribution accounts for
most of the interaction energy, EDA analysis have also highlighted the importance of con-
tributions such as charge transfer, exchange and dispersion.’®®? The intramolecular case is
even more controversial as there is no straightforward way to establish its attractive charac-
ter within a molecule (see e.g. Refs 83,84). The aminoalcohol series (i.e., 2-aminoethanol,
3-aminopropanol, 4-aminobutanol and 5-aminopentanol) is a good test case giving access
to different orientations and hydrogen bond distances between the hydroxyl and the amine

group. In fact, the H-bond within small aminoalcohols is believed to be one of the strongest.

The geometries were optimized at the MP2/6-31G* level. The studied interactions were
between the hydroxyl group, fragment A, and the NHs group, fragment B.

As illustrated in Fig. 4, the hydrogen bond is strongly attractive due to the electrostatic
interaction, with almost no contribution from the second-order terms. The total interaction
in the smallest 2-aminoethanol (N = 4), E;,; = —6.51 kcal/mol, is of similar strength as
the one in the ammonia-water complex (—6.36 kcal/mol).%>. The hydrogen bond distance
shortens from 2.165 A in 2-aminoethanol down to 1.851 A in 4-aminobutanol. The bond angle
is also dramatically affected going from the pseudo 4- to 6-membered ring as illustrated by the
collinearization the OHN angle (from 118° to 158°). However, the position and orientation
of the hydroxyl group with respect to NHs change very slightly between 4-aminobutanol
and 5-aminopentanol (N = 7) as evidenced by their similar interactions. Akin to the former
examples (Sec. IIIB) the maximization of the non-covalent interaction only occurs once
sufficient flexibility is achieved within a molecule. Still, the aminoalcohol series shows that
those interactions can even have a strong impact on the geometry of small systems. This is
a distinctive feature from the hairpin alkane case, which originates from the different nature
of the dominant non-covalent interactions. Aminoalcohols are essentially held together by
stronger, electrostatic contributions that do not depend on the number of interacting electron
pairs and are already efficient in small systems. In contrast, alkane chains must reach a

critical length to benefit from the stabilization arising from dispersion.

The more pronounced hydrogen bond interaction in 3-aminopropanol as compared to the
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Figure 4. Interaction contributions between the hydroxyl and the amine groups in aminoalcohols
(upper plot) and the H-N distances (lower plot) in the hydrogen bond, plotted against number of

the ring members, 6-31G basis set. Geometries optimized at the MP2/6-31G* level.

smaller aminoalcohol is consistent with the red shift frequency measured in the vibrational
gas phase spectra of the former compound.®5-#” The magnitude of the total interaction energy
for the last two compounds (Fi,; = —21.06kcal/mol and E;,; = —22.84kcal/mol for 4-
aminobutanol and 5-aminopentanol, respectively) is in the range of the strongest hydrogen
bonds®® but one cannot exclude an underestimation of the Pauli repulsion owing to the
fragment partitioning. The description of the interfragment bond could however be improved

by introducing a spin-coupling scheme,®® which is planned.

E. Host-guest complexes with a cationic guest

While intra-SAPT is essentially designed to decompose intramolecular interactions, it is
also highly valuable for probing the competing non-covalent interaction between two func-
tional groups belonging to the same molecule and a particular fragment such as another
molecule, ion, etc.

Two examples of such systems are provided in Fig. 5, where a cationic lithium atom

intercalated between two neutral functional groups generates complexes 1 and 2.
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For each complex two computations are performed: one to probe the interaction between
the cationic lithium and the sulfur-containing fragment (e.g., thioester or thionoester, see
Table IIT and Fig. 5) and another with Li* interacting with the ester functional group. In
both cases the the middle CH, fragment was taken as the linker.

It is apparent from the data in Table III that the competition between the guest and
the functional groups is larger in complex 1 than in 2. In 1, both the ester and thioester
fragments bound strongly to the lithium with a marginal advantage to the electron-richer
thioester. The decomposition via intra-SAPT indicates a large electronic redistribution
within the ester-type groups engendered by the presence of the cationic lithium causing
both their polarization (large E,, contributions) and a large delocalization (i.e., charge
transfer). The delocalization is significantly larger with the case of the richer thioester
group, which is more prone to donate. The electrostatic terms are in the same range as the
polarization contributions, whereas the binding contribution from dispersion is negligible in
both interactions.

Intra-SAPT also indicates that 2 featuring the thionoester group is somewhat trickier and
more frustrated chemically.?’ The guest can interact with both an oxygen or sulfur atom but
the interaction with the ester group is clearly stronger and very similar to the interactions
observed in complex 1. To interpret the much lower binding affinity with the thionoester
function and the behavior of the individual energy component, one first needs to analyze
what happens in the zeroth-order energy computations. When the guest and the sulfur-
containing functional group are taken as the interacting fragments A and B, respectively,
the relatively strong interaction between them is removed in the zeroth-order computation.
In the absence of interacting cationic lithium, the electrons within fragment B are pulled
away from sulfur to the more electronegative oxygen atom, creating a dipole with the sulfur
atom as the positive pole. Once the interaction is brought back by the perturbation, this
polarization engenders a repulsive first-order energy component that is largely compensated
by the delocalization term, associated with the ion pulling the electrons towards itself. The
polarization term also brings significant attractive contribution, like in all the interactions
for both complexes, but is slightly smaller.

The difference between these two complexes agrees with the distinct chemical properties
of the two sulfur functional groups.®® The presence of the charged lithium atom induces a

larger perturbation (and frustration) in the thionoester case, in which the sulfur atom is
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Figure 5. Backbone structures of the host-guest complexes. Color code: O - red, S - yellow,
Li - purple, C - grey, H - white. Geometries optimized at the MP2/6-31G* level. Distances
Ro1 = 1.849A, Roy = 1.845 A, Rps = 1.835 A, Rg = 2.388A.

System Fragment A Fragment B E® Eietoc  Epot  Eaisp  Eiot

O=C-5-Me
R ~8.00 —17.11 —10.44 —0.03 —35.58
1 O=C-O'Me
Lite R —11.80 —10.18 —12.90 —0.04 —34.92
S=C-O-Me
R 54.50 —47.28 —7.98 —0.11 —0.88
2 O=C-O-Me
R ~8.39 —18.61 —10.99 —0.03 —38.03

Table III. Interaction energy components between LiT and fragments of molecules A and B in
kcal/mol. R=C (Me),. Computations with the 6-31G basis set. *Within our scheme it is the whole

system positively charged rather than the single lithium atom.

positioned between the more electron-demanding oxygen atom and the cationic lithium. In
contrast, the thioester oxygen atom benefits from the close proximity and electron sharing
of the richer sulfur atom without compromise. In a sense, complex 2 may illustrate the limit
of the applicability of a perturbation-based method: the electrostatic interaction between
the the cationic lithium guest and the fragments is so large that it does affect the electron
density distribution. This results in an overestimation of the electrostatic repulsion, which
is then compensated by the delocalization term. While it is reasonable to interpret the total
interaction energies between the cationic lithium and the thienoester group as much weaker
than the other interactions, the interpretation of the individual energy terms is delicate in

this limiting case.
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IV. CONCLUSIONS

We introduced a unique intramolecular variant of SAPT capable of describing the na-
ture of non-covalent intramolecular interactions. The method is clearly different from other
existing methods and relies upon a new wavefunction and set of expressions specifically devel-
oped for the decomposition of non-covalent intramolecular interactions. This decomposition
scheme complements the recently introduced ISAPT method of Parrish et al.3® which makes

use of the the standard two-body SAPT methodology via Hartree-Fock embedding.

The approach was used to decompose the interaction energy of hydrogen bonds, m —
7 stacked rings, alkane chains within molecules. These illustrative examples along with
others involving the competing interaction between a cation and different functional groups
belonging to the same molecules demonstrate that intra-SAPT is able to treat both inter-

and intramolecular phenomena on an equal footing.

While the present implementation suffers from certain limitations associated with the use
of a wavefunction based on a single Slater determinant and the imperfect description of the
interfragment bonds, the issue could be overcome through the introduction of spin-coupling

5791 intra-

scheme.®® Akin to other EDA schemes that make use of strictly localized orbitals,
SAPT remains ill-defined in the CBS limit but this should not prevent its applications and

ability to uncover insightful information previously inaccessible.

In fact, the current implementation has already been able to identify how the role of
dispersion evolves with elongating the carbon chain in hairpin alkanes: from being negligible
in the short chains up to being the driving force for the formation of the hairpin pattern in
the long chains. Similar maximization of the non-covalent interactions was observed in the

aminoalcohol series.

Overall the afore-mentioned trends indicate that once a critical size is reached, an optimal
molecular conformation should coincide with a local (broadly understood) van der Waals

energy minimum. This phenomenon would certainly be worth further examination.

There is no doubt that both ISAPT and intra-SAPT have opened the door to a broad
range of new exciting applications. The forthcoming comparisons of these methods not only
will illustrate their usefulness and complementarity, but also will assist in the development

of future improvements.
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Appendix A: Equations for orbital optimization

Here we demonstrate the connection between .FAIO and the modified Fock matrix introduced

in Sec. ITA. We start by writing the zeroth-order Hamiltonian H, explicitly:

L e

€Ak i€B k i€C k
1

- Kl kil +

+§ZZ(UA z] ZZ’UBC Lt itk
kleA ij klEB 1,7
it A B Z12y
kl Ry;
¢{AB} 4.j IJgZAB

(A2)

where k,l ¢ {AB} means that the pair kl cannot be in AA, BB, AB or BA and VX =

nuc

% Zz jex ZRZJJ . In addition, we have introduced the following integral definitions:

(), = (8| () i+ 7)) o
(Poc) (Vo + Ve +T) i) (A4)

(bac)i; = <55 (PAC(l)PAC(2)> . kl> (A5)
(ome)tt = (7| (Prc() Pac(2)) 1 1) (46)

where 7' is the kinetic energy operator, VA, VB, VC are the electrostatic potentials of the
nuclei of fragments A, B and C and Puc and Pge are projection operators projecting on

pairs of fragments AC and BC, respectively:

Pac=Y" | (S“) (v (A7)

nrveAC
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and S is the overlap matrix of the basis functions on A and C. We also have the usual one-

electron potential integral ﬁkl = </;: ‘VA + VB + VC‘ z> and two-electron repulsion integral

okl = <%§ kl>.

The zeroth-order energy is written in terms of 1/)((]0) and easily evaluated since our cre-

1
12

ation k™ and annihilation i~ operators obey the usual commutation and anticommutation

relationships.
By = (94 | Ho| i) (A8)
) 5 5 1 N NN 1
=S ()t X (i), e h X (a0 k)
i€ A,occ ” i€ B,occ “ i€Clocc i,jE€A,occ
1 NN TR AN i i 1 Zi1Zy
+§ Z <(UBC)5§ - (UBC)%> + 5 Z (Uig - ?)%) + an?/,c + Vn]:;ic + 5 Z R
ijEB,occ kI¢{AB} ry¢Aap 1

We can now transform the above equation into the atomic orbital basis by introducing
the spin density matrix P7, = >, ngég, and the total density matrix D,, = Pj, + Pfy,
where C); is the coefficient of basis function pu for orbital ¢, and C’m is the coefficient of the

corresponding contravariant orbital.

~ 1 ~
Ey=Y (P2 +P) (ho)w +5 > (P +Pl) (JO)W (A9)
pv 2N
1 ~ « ~ B 1 A
_Z o B A B = 147
9 Z (P;U/ (KO) » + Pp,u (KO) Vlt> + Vnuc + Vnuc + 2 Z RIJ
2N 1,J¢AB

where we have introduced a shortened notation for the integrals, making use of the strict

orbital localization:
(
(ﬁo)w - (EBC) it peB (A10)
(

D)\o (@AC)Z;\ if H, AEA
(o) =1 Dav(one) it pre B (Al1)
v
Dyt it p ¢ {AB)
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Pg, (dac)) if p X € A
(K0), =3 P (ol it A e B (A12)
v
Lo i {AB)

Finally, we introduce the Fock matrix Fé’ = iLo + jo - Kg, and we retrieve the usual

formulation for the Hartree-Fock energy:

1 R R 1 ~ ~ 1 Z[Z]
Bo= 53 Po (ko) +(Fs) 45D PL((he) +(B) J+Videvirs '
0 92 Z uv < 0 » + 0 » +2 Z v 0 ” + 0 ” Vet nuc+2 Z Ry,
% 02 1,J¢AB
(A13)
From here, the reader is invited to follow the derivation presented for the zeroth-order

wavefunction®® or by Stoll*>. After differentiation of the energy including the orbital local-

ization constraints, the SCF equations for the zeroth-order wavefunction are obtained.

Appendix B: Remainder of the Hamiltonian

The remaining term in the Hamiltonian takes the form

Hyp = ZZ<’5)7%‘Z'> ki +Zz<ﬂﬁﬁji> K+ (B1)

€Ak
+ YO (ijloagl kit + Y0 (i logel kL) it TR
kl€A ij kleB ij

with one-electron operators

e (1 - PAO) (VA + Vo + T) (B2)
[ (1 . ﬁBC) (VB I /A T) (B3)

and the two-electron operators

=5 (1= Pac) 0 (1~ Pac) @)1 (B4)
55 = % (1 — PBC) (1) (1 — pBC) (2)7012 (BS)
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Components in (B2) correspond to the description of pairs of fragments A and C, and
B and C by the basis functions assigned to the orthogonal complement of those pairs of
fragments. Since in the zeroth-order wavefunction any links between fragments A and B
must be removed, there is no place for those terms in the zeroth-order Hamiltonian. On
the other hand, those components do not correspond to any physical interaction between A
and B, but are rather a basis set effect, similar to the "basis set extension error" term in
Mayer’s*' Chemical Hamiltonian. Following Mayer, we treat it as such and discard it from

the perturbation.

Appendix C: Components of the second-order energy corrections

To obtain the explicit form of the second-order energy correction (see Eq. 8), one

WAB‘ \IJ(O)> and <@(0) ‘WAB‘ \Ilem>. Since in a single-

needs to evaluate elements <\I'em
determinant approximation only singly and doubly excited determinants will contribute to

the second-order corrections, the only non-zero elements have the forms: <\I'(0) ‘WAB‘ \Ifg>,
<\ilg ‘WAB’ \IJ(O)>, <\ifgfl: ‘/WAB‘ \IJ(O)> and <\i!0 ‘WAB‘ \If’;‘i> The first element reads
y© ‘W ‘\I/Z> = /;Z)V ’ N (OO |t \I}Z 4 ];;‘f/ ‘ N (GO |t \I,Z
(99 [T ) = 537 (] (30 o 92) 55 ([ 0 )
£33N Gl <\i;<0> ‘i*j*[’l;:" \pg> (C1)

keAleB 1ij

Using the biorthogonality condition and the anticommutation rules, one obtains

(0 [Was] w2) = (@

Vo |b) ot + (a|Va| ) o

occ occ

+3 <ambz> Y <a1%ubk:> 5P (C2)
leB keA
where
1,be A
5pt = (C3)
0,b¢ A
Similarly,

(v

’WAB) \IJ(O)> _ <z§

VB‘ a> 65 + <I~) ’VA‘ a> 52

R
+;<bl||al> 5 +k;<bkllak> % (C4)
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The doubly excited elements read

(0O [Wap| Wity = (aclbd) 6707 -+ (acllva) 67’5 (C5)
and
<\ifgfg ”WAB( \11<0>> - <6d|\ac> SASE + <z§d||ac> JE§A (C6)

The component constisting of the products of doubly-excited elements is identified, fol-
lowing Surjan et al.*? as dispersion energy. The remainder, the induction energy in our
interpretation, built of singly-excited elements, consists of "single-fragment"” terms contain-
ing products 6.6, 6257 and cross terms §25F. The one-fragment terms are grouped into
a component called polarization energy and the cross terms are identified as delocalization

energy (also following Surjan et al.*?).
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