What about the spin preferences of diradicals?

What are the electronic structure factors that control spin states in diradical organic molecules? (i.e., systems that have two weakly interacting electrons).

Singlet or triplet?

Chapter 4

General results: Weakly interacting radicals will produce a weak preference for the singlet state. However, when the nodal properties of the system are “co-extensive” in space significant exchange interactions results and this can produce the triplet ground state (Hund’s rule).

Disjoint (=non co-extensive) alternate hydrocarbons will have small singlet-triplet energy gaps, with the singlet likely to be the ground state. Non-disjoint (co-extensive) alternate hydrocarbons will have large singlet-triplet gaps, with a triplet ground state.

The pair of half-occupied near degenerate nonbonding MOs have their lobes coinciding significantly (co-extensive, the exchange integral is large).

The lobes coincide to very small extent (disjoint MOs), the spin coupling is small (S=1 and S=0) are almost degenerated.

Chapter 4
What about the spin preferences of diradicals?

The Trick of Borden and Davidson: to decide if the two nonbonding molecular orbitals are disjoint or not for alternate hydrocarbons by “starring” alternate carbons. If the difference between the number of starred (n^*) and unstarred (n) carbons is zero, then the molecule will have disjoint NBOs.

$$n^* - n = 0$$

$$n^* - n = 2$$

Representative alternate hydrocarbons with starred and unstarred carbon atoms.

Chapter 4
Tetramethyleneethane (TME) and Trimethylenemethane (TMM)

TME is a singlet but the triplet state is very close in energy.

TMM has a triplet ground state

Chapter 4

Tetramethyleneethane (TME)

1970 (Dowd, ESR): TME was assigned a triplet ground state.

…..computations in disagreement with this result.

1998 Clifford, gas-phase negative ion photoelectron spectroscopy: the electron loss gives two different states of TME. Based on the population distribution, they found the singlet state to be about 2 kcal mol⁻¹ below the triplet state.

Chapter 4
Tetramethylenethane (TME)

The triplet state 3B_1 can be described by a single configuration. The singlet 1A_1 state require at least two configurations. Any computations that does not account for the multiconfigurational nature of the singlet will run into difficulties.

Most computations at multireference levels predict:

\[
\begin{array}{c|c}
\text{state} & \text{configuration} \\
\hline
^3B_1 & (\pi^3, \sigma^3) \\
^1A_1 & (\pi^1, \sigma^1) \\

\end{array}
\]

- For all conformations, the singlet is lower than the triplet but those states are very close in energy. The smallest singlet-triplet gap, 1.3 kcal mol$^{-1}$ is obtained at an angle of 45° (with multireference coupled cluster methods)

- The gas phase PES experiment agrees with the computations. The ground state of TME is a singlet but metastable triplet could be trapped explaining the ESR results of Dowd.

Trimethylenemethane (TMM)

Is TMM a ground state singlet or triplet?

\[
\begin{array}{c|c|c|c|c|c|c}
^3A_2 & ^1A_1 & ^1B_2 & ^3B_1 & ^1B_1 & MCP \\
\hline
\text{method} & ^3A_2 & ^1A_1 & ^1B_2 & ^3B_1 & ^1B_1 & MCP \\
\hline
\text{MCSCF}(2,2)/cc-pVDZ & 0.0 & 10.5 & 16.7 & 13.9 & 15.1 & -29.5 \\
\text{MCSCF}(4,4)/cc-pVDZ & 0.0 & 19.5 & 19.9 & 13.4 & 14.7 & -21.5 \\
\text{MCSCF}(10,10)/cc-pVDZ & 0.0 & 19.2 & 19.5 & 13.8 & 15.9 & -18.9 \\
\text{MCSCF}(10,10)/cc-pVTZ & 0.0 & 18.9 & 19.3 & 13.8 & 15.8 & -19.8 \\
\text{CASPT2N}(2,2)/cc-pVDZ & 0.0 & 23.0 & 19.7 & 15.1 & 16.9 & -17.8 \\
\text{CASPT2N}(4,4)/cc-pVDZ & 0.0 & 20.1 & 19.8 & 14.1 & 15.8 & -20.7 \\
\text{CASPT2N}(10,10)/cc-pVTZ & 0.0 & 19.1 & 19.1 & 13.9 & 15.7 & -20.9 \\
\text{zero-point energiesa} & 0.0 & -1.6 & -2.9 & -1.3 & -1.2 & 2.4 \\
\end{array}
\]

a Relative energies in kcal/mol. b MCSCF geometries were fully

\[\text{Chapter 4}\]
Chapter 4

Trimethylenemethane (TMM)

Thermal rearrangement of methylenecyclopropane derivatives

Proposal: biradical TMM is produced

Resonance stabilization

Preparation of TMM and selected reactions

Chapter 4

Trimethylenemethane (TMM)

Thermal rearrangement of methylenecyclopropane derivatives

Berson’s trick to avoid rapid ring closure

Demonstration of the different natures of singlet and triplet biradicals

Chapter 4
The world of Benzyne

The Bergman cyclization

The unusual chemical structural feature of potent antibiotics: an enediyne fragment within the ring

What is the mechanism underlying the biological activity?

Chapter 4

The world of Benzyne

The Bergman cyclization

The diradical abstract hydrogen atoms from the DNA molecule leading to its scission.

How to convert 12 into 13?

Chapter 4
The world of Benzyne

The Bergman cyclization

The original experiment (1972)

Reactions typical of a free radical behavior suggesting the formation of 41.

Experimental reaction and activation enthalpies (ΔH^{\ddagger} in kcal mol$^{-1}$):
- $39 \rightarrow 41$: 28.2 (470 K)
- $42 \rightarrow 43$: 27.4
- $43 \rightarrow 42$: 16.0
- $43 \rightarrow 44$: 10.0

The cyclization has a large activation barrier and depend on the cd distance

The world of Benzyne

Theoretical Considerations

The inherent multiconfigurational nature of 41 and 40 was early recognized: CASPT2, large CI or DFT appears as the most promising options but without potential difficulties.

<table>
<thead>
<tr>
<th>Method</th>
<th>TS</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASSCF(12,12)/TZ2P</td>
<td>43.64</td>
<td>27.0</td>
</tr>
<tr>
<td>CASPT2//CASSCF(12,12)/ANO</td>
<td>23.87</td>
<td>3.84</td>
</tr>
<tr>
<td>CCSD(T)/6-31G9d,p with MP2 Frequencies</td>
<td>28.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Composite Approach</td>
<td>27.7</td>
<td>11.0</td>
</tr>
<tr>
<td>UB3LYP/6-311+H(3df, 3dp)</td>
<td>29.9</td>
<td>8.5</td>
</tr>
<tr>
<td>Expt.</td>
<td>28.2</td>
<td>8.5</td>
</tr>
</tbody>
</table>
The world of Benzyne

The cd Criteria and Cyclic Enediynes

<table>
<thead>
<tr>
<th>cd</th>
<th>ΔH</th>
<th>cd</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.52</td>
<td>27.07</td>
<td>2.152</td>
<td>NA</td>
</tr>
<tr>
<td>4.54</td>
<td>30.99</td>
<td>2.636</td>
<td>NA</td>
</tr>
</tbody>
</table>

values computed at the BPW91/6-311G** level.

The cyclization has a large activation barrier, which depend on the cd distance and on the strain in the resulting product.

Chapter 4

Benzynes

Benzynes are challenging for both experiment and theory. All three isomers are ground state singlets, but with a differing extent of diradical character.

<table>
<thead>
<tr>
<th></th>
<th>ΔE_{ST} (in kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>o-benzyne</td>
<td>-2.9 (Triplet ground state)</td>
</tr>
<tr>
<td>m-benzyne</td>
<td>33 (singlet ground state)</td>
</tr>
<tr>
<td>p-benzyne</td>
<td>5.8</td>
</tr>
</tbody>
</table>

diradical character: 11% 20% 65%

Chapter 4
Chemical Properties of p-Benzyne

The S-T gap control the reactivity of p-Benzyne

\[\Delta E_{ST} \text{ (in kcal mol}^{-1}\text{)} \]
\[
\text{CASPT2/cc-pVDZ } \begin{array}{c}
5.4 \\
17.2
\end{array}
\]

Efficiencies for H-transfer from tetrahydrofuran

\[
\begin{array}{c|c|c|c}
& \text{0.007%} & \text{none} & \text{8%} & \text{13%} \\
\end{array}
\]

The decrease radical reactivity result from the need to partially uncouple the biradical electrons in the transition state.

Chapter 4

Chemical Properties of p-Benzyne

\[\Delta E_{ST} \text{ (in kcal mol}^{-1}\text{)} \]
\[
\text{CASPT2/cc-pVDZ } \begin{array}{c}
5.4 \\
17.2
\end{array}
\]

Efficiencies for H-transfer from tetrahydrofuran

\[
\begin{array}{c|c|c|c}
& \text{0.007%} & \text{none} & \text{8%} & \text{13%} \\
\end{array}
\]

The decrease radical reactivity result from the need to partially uncouple the biradical electrons in the transition state.

Chapter 4
Relative Energies of Benzynes

Relative energies (kcal mol\(^{-1}\))

<table>
<thead>
<tr>
<th>Method</th>
<th>otho</th>
<th>meta</th>
<th>para</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASPT2</td>
<td>0.0</td>
<td>10</td>
<td>21.9</td>
</tr>
<tr>
<td>B3LYP/cc-pVTZ</td>
<td>0.0</td>
<td>12.2</td>
<td>37.2</td>
</tr>
<tr>
<td>CCSD(T)/cc-pVTZ</td>
<td>0.0</td>
<td>14.9</td>
<td>26.4</td>
</tr>
<tr>
<td>Latest Expt.</td>
<td>0.0</td>
<td>16</td>
<td>31.9</td>
</tr>
</tbody>
</table>

Chapter 4

Structures of \(m\)-Benzyne

Does \(m\)-Benzyne exist as the monocyclic biradical or as bicyclic closed-shell species?

Or

Comparisons of Spectroscopic Data

<table>
<thead>
<tr>
<th>Expt</th>
<th>CCSD(T)</th>
<th>B3LYP/cc-pVTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\nu (\text{cm}^{-1}))</td>
<td>(\nu (\text{cm}^{-1}))</td>
</tr>
<tr>
<td></td>
<td>(\Gamma)</td>
<td>(\Gamma)</td>
</tr>
<tr>
<td>90</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>350</td>
<td>945</td>
<td>945</td>
</tr>
<tr>
<td>350</td>
<td>940</td>
<td>940</td>
</tr>
<tr>
<td>350</td>
<td>935</td>
<td>935</td>
</tr>
<tr>
<td>350</td>
<td>930</td>
<td>930</td>
</tr>
</tbody>
</table>

Chapter 4
Mini Quiz 5

1. Using what you have learned about the difference between the number of starred (n^*) and unstarred (n) carbons, give the spin state of the following molecule.

 ![Molecule Image]

2. What is the biggest challenge in the computation the electronic structure and reaction mechanisms of diradicals and carbenes?

3. Propose an intermediate for the formation of cyclopentenones from vinylallene oxides.

 ![Intermediate Image]

4. The ESR signal of 17 depends on the temperature. What does it mean?

 ![ESR Signals Image]

An interesting case: the phenalenyl radical

The phenalenyl radical is a prototypical open-shell graphene fragment, proposed for use in organic electronics. 9b-azaphenalene is a closed-shell analogue of phenalenyl radical.

![Radicals Image]

1. Which physical forces dominate the interactions of the 9b-azaphenalene dimer?
2. What about the phenalenyl-radical dimer(s)? Which dimer is bound more strongly?
3. Which X-ray structures do you expect for 2,3,8-Bu-phenalenyl-radical and the unsubstituted molecule?
4. Which computational level would you choose to compute the interaction energy profile of 9b-azaphenalene? Do you expect the same methods to be accurate for the phenalenyl dimers?
5. If you remove one electron from the phenalenyl-radical dimer (giving a doublet cationic dimer), do you expect the interaction energy to increase or decrease? How could you verify your prediction?