3 Monte Carlo Simulations and the Photon Gas

In this set of exercises, you will be briefly introduced to the concept of importance
sampling and detailed balance in Monte Carlo simulations. You shall then apply the
Metropolis Monte Carlo scheme to sample a photon gas and a Lennard-Jones system to
obtain their respective energies from proper phase-space averages.

3.1 Monte Carlo and the Importance of Importance Sampling

In the last exercise session, you applied the simplest Monte Carlo technique - a random
sampling technique - to find the value of 7. A generalisation of such a Monte Carlo scheme
is, however, less than straightforward. Imagine you are interested in a microcanonical
observable average:
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If such an integral were to be obtained from numerical quadrature procedures, with a
suitably fine mesh with M points along each degree of freedom, the calculation would
become completely untractable all too quickly, since the procedure scales as O(M3N).
Furthermore, such a scheme would be associated to a large statistical error; numerical
quadratures work reasonably fine for functions that are smooth on the scale of the mesh
- but the Boltzmann factor is a highly oscillatory quantity. The oscillatory nature of
e PEM) will furthermore result in many points of no importance being sampled, since
their Boltzmann factor will be vanishing. The idea behind importance sampling lies in an
extended sampling of regions where the Boltzmann factor is of considerable magnitude,
with fewer sampling moves elsewhere. Very simple importance sampling schemes can be
constructed, but they fail when used on multidimensional integrals, since they require
analytical expressions for the partition function. If that were possible, there would be
little interest in performing computer simulations - as discussed in statistical mechanics,
all thermodynamic quantities can directly be determined if an analytic expression for the
partition function is known.

3.2 The Concept of Detailed Balance

When calculating ensemble averages, one is often not interested in the configurational
part of the partition function, but in the average instead:
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where we have restricted the expression to a configurational average, integrating out over
all momenta. One is thus left with the configurational partition function, containing only
the potential energy in the exponent, rather than the potential and kinetic term. (You
can easily convince yourself that this is possible if the potential and kinetic term are not



coupled). Rewriting eq. 2 in terms of a probability density A (q) (¢f. the Boltzmann
distribution), one finds:
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Therefore, an ensemble average of an observable should be accessible by random sampling
if this sampling can be carried out according to the probability distribution defined in
N(q). In such a case, on average, the number of points generated in a volume element
dq must be equal to LN(q), where L denotes the total number of points which are
generated. One may therefore rewrite the above expression in an approximate form:
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The average over an observable will be given by the sum over all L points ¢ that have
been generated in the sampling, weighted each by the number of occurence n; of state
O(q;). Still, one is left with the problem that the points have to be generated with a
relative probability that corresponds to the Boltzmann distribution N

Consider a system that is in equilibrium and where all states are equally likely to occur.
In order for the system to remain in its equilibrium state, every move from an old state
o to a new state n must be compensated by an inverse move. If we denote the transition
probability by P, this implies:

P(o—n) =P(n — o). (6)

In a system where the probability distribution is not uniform, but given by some proba-
bility distribution N - such as the Boltzmann distribution - instead, one will equivalently
find:

N(o)P(o = n) = N(n)P(n — o). (7)

That is, the transition matrix P that governs the probability of a step to occur must
satisfy the above relation. Such a detailed balance ensures that at equilibrium, every
process is equilibrated by its reverse.

3.3 The Metropolis Algorithm

There are many possible choices for P, with maybe the most straightforward one brought
forward by Metropolis et al. In the Metropolis Monte Carlo scheme the total transition
probability P is expressed as a product of the probability for moving from o to n, P'(o —
n), and the probability of accepting this trial move, Pyec(0 — n), such that:

P(o—n) = P'(0 = n)Pacc(o—n). (8)



The transition matrix P’ is chosen to be symmetric, such that P'(o — n) = P'(n — o).
Hence when detailed balance is maintained, the acceptance probability is:
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Many possibilities exist that account for this condition, with the choice in the Metropolis
algorithm being:

A it N (n) < No)
1 ifN(n) > N(o),

where the factor 1 in the second case is due to P,e.(0 — m) being a probability which
cannot exceed a value of 1. The total transition matrix P is then:
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The criterion whether or not to accept a trial move is inferred from the above equations
and the normalisation of the probability distribution:
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If V(n) < V(o0), the move is always accepted. However, after a move for which V(n) >
V(0), a random number is generated out of a uniform distribution in the interval [0, 1],
such that the interval spans the same range as the Boltzmann factor. The probability

that the random number X is less than Pec(0 — n) is equal to Pyec(o — n) itself:
P (X < Pyec(0 = n)) = Paec(0 — n). (17)

The trial move is then only accepted if X < Pyec(0 — n), and rejected otherwise. This
scheme guarantees that the probability of accepting some trial move o — n is equal to the
probability P,ec(o — m). Thus, the system moves towards an equilibrium distribution
(Pace = 1 for new states lower in energy). Once equilibrium is reached, it is ensured to
retain the equilibrium distribution (P,e. according to the Boltzmann factor). The overall
acceptance probability is:
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i.e. the acceptance probability is 1 if the Boltzmann factor exceeds 1, and it is the Boltz-
mann factor itself otherwise. This guarantees that the sampling preserves the equilibrium
distribution, i.e. it fulfills detailed balance.

3.3.1 An example of a Metropolis Monte Carlo Algorithm

a) Select a random starting configuration with coordinates q.
b) Randomly displace the configuration, such that @' = q+ A

c¢) Accept this move with a probability of:
P,cc(0 — n) = min (1, e—ﬂ[V(q’)—V(q)]> , (20)

depending on whether e AlV(@)=V(@] ig greater or lower than 1. Keep the old
configuration if the move is rejected.

d) Update the averages, regardless whether the step was accepted or not.

e) Go tob)

3.3.2 Ensemble Averages from the Metropolis Monte Carlo Algorithm
3.3.3 The Photon Gas

In this exercise you will be applying the Metropolis Monte Carlo algorithm to calculate
the state occupancy of a photon gas. The photon gas is a gas-like collection of photons,
which has many of the same properties of a conventional gas such as pressure, temperature
and entropy. The most common example of a photon gas in equilibrium is black-body
radiation. Black-body radiation is an electromagnetic field constructed by a superposition
of plane waves of different frequencies, with the caveat that a mode may only be excited
in units of Aw. This fact leads to the concept of photons as quanta of the electromagnetic
field, with the state of the field being specified by the occupancy (n;) of each of the modes
or, in other words, by enumerating the number of photons with each frequency.

The ensemble average of the state occupancy (n;) of a photon gas can be calculated an-
alytically. Deriving the total energy of an idealised photon gas from quantum mechanics
we know that U can be written as the sum of the harmonic oscillation energies:
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where €; is the energy of state j, n; is the occupancy of state j (n; € 0,1,2,--- ,00), N
is the total number of photons and w is the oscilator frequency.
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In this exercise, you are going to compute the ensemble average of the occupancy (n;).
The scheme you will employ is as follows:

a) Start with an arbitrary n;.
b) Decide to perform a trial move to randomly increase or decrease n; by 1.

c) Accept the trial move with probability:
Pyec(0 — n) = min (1, eﬁ(U(")_U(O)) , (22)
where U(n) and U(o) are the energies of the new and old states respectively.
d) Update averages regardless of acceptance or rejection.
e) Go to step b).

3.3.4 Coding the C++ Program
Begin by creating a photon.cpp file and enter the following code:

#include <iostream>
#include <ctime>
#include <cstdlib >
#include <random>
#include <math.h>

using namespace std;
mt19937 mt rand;
double random (double lower, double upper) {

uniform real distribution<double> dist (lower, upper);
return dist (mt_rand);

}

int main(int argc, char * argv []) {
int numberOflterations = atoi(argv|[1l]);
double beta = atof(argv|[2]);
int seed = time(nullptr);

mt_ rand.seed (globalSeed);

int trialnj = 1;
int currentnj =
int njsum = 0;

int numStatesVisited = 0;

1;
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double estimatedOccupancy = (double) njsum/numStatesVisited;
cout << "Average Occupancy: " << estimatedOccupancy << endl;
cout << "Theoretical Value: " << (1 / (exp(beta) — 1)) << endl;
cout << "Relative Error: " << fabs((exp(beta) — 1.0) % (( sum / count ) —
(1.0 / (exp(beta) — 1.0))));
return 0;
}
}

Here, your task is to implement the Metropolis Monte Carlo algorithm to estimate
the ensemble average of state occupancy, (nj). The code is commented thoroughly to
provide you with hints. You can call the function exp (x) to calculate exponentials and the
function random(min, max) to create a uniformly distributed rational number between
min and max. Finally, the operators ++ and -- provide a shorthand for incrementing and
decrementing a variable by 1 as follows: numStatesVisited++;.

3.3.5 Compiling Your C++ Code

To compile the photon gas program, navigate your terminal focus to the directory which
contains photon.cpp and type the following:

gt++-4 -std=c++11 photon.cpp -o photon.x

This will produce an executable file called photon.x in your current directory. You can
execute this program using the following command-line arguments:

./photon.x numberOfIterations betaValue

3.4 Configurational Sampling using the Metropolis Monte Carlo Algorithm
3.4.1 The Lennard-Jones Potential

In this exercise you will study the configuration of a collection of gaseous particles us-
ing the Metropolis Monte Carlo algorithm. The system includes N particles within a



cubic box of volume V' at a given temperature T, in any configuration permitted by the
Lennard-Jones potential:
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0 if r > re.

This potential traditionally has an infinite range, however, the potential decays rapidly
with separation distance and can be effectively ignored at large |r|, resulting in a faster
calculation. In practical applications it is customary to establish a cutoff r. and disregard
pairwise interactions separated beyond this radius. This truncation leads to a disconti-
nuity in the pairwise potential energy function; large numbers of these events are likely
to spoil energy conservation thus an improvement is to shift the potential such that the
energy continuously approaches zero at r.:
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This approach results in a potential that produces discontinuities in the first and higher
order derivatives. To compensate, switching functions are often employed to smoothly
and continuously taper the pair potential to zero between two cutoff limits.

Truncating pair interactions systematically removes a non-trivial contribution to the
net potential energy and pressure. For interactions that are cut but not shifted, one can
approximately add the interactions beyond r. to the total energy and pressure, assuming
the radial distribution function g(r > r.) ~ 1:
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To sample configurational space using the Lennard-Jones potential, a randomly selected
particle is first randomly translated to generate a new system configuration. Whether
the new configuration is accepted depends on the acceptance probability discussed in
section 3.3.1. This procedure repeats iteratively such that classical phase space is directly

sampled and ensemble averages of physical properties become arithmetic averages over
their sampled values.

where




3.4.2 Using and Compiling the LJ-NVT Code

In this exercise the code is provided for you. To compile the code navigate your terminal
to the Source directory and type make. This will produce an executeable file called
mc_nvt. To run the program, navigate your terminal to the Run directory, and type
./run. The program will print results to your terminal, and also produce a file called
movie.pdb in your Run directory.

3.5 Exercises

3.5.1 Monte Carlo and Statistical Mechanics

a) Show that based on the form of the Hamiltonian:
H=T(p)+ V(a), (29)

the partition function can be divided into a kinetic and potential part, and for an
ensemble average of an observable O(q) that depends on q only, one has:
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which is the equation you have encountred in the section on detailed balance.

b) Bonus: In the Metropolis scheme, why is it important that P’ be a symmetric
matrix?

3.5.2 The Photon Gas

a) How can this scheme retain detailed balance when n; = 07 Note that n; cannot
be negative.

b) Make modifications in the code, within the section ‘MODIFICATION - -- END MODIFICATION'.
Include your entire code within your report and comment upon the part that you
wrote.

c) Using your code, plot the photon-distribution (average occupation number as a
function of Be € [0.1,2]). Assume that the initial n; = 1 and €; = € and recalculate
with the same (e values using the analytical solution:

1

<N>: eBe _1° (32)

Plot your calculated values versus those from the analytical solution and include
your curve in your report.



d) Bonus: Modify the program in such a way that the averages are updated only
after an accepted trial move. Why does ignoring rejected moves lead to erroneous
results? Starting from P,..(0 — n), define P'(0 — o) (i.e the probability that
you stay in the old configuration). Recall that the transition probability P’ is
normalised.

e) Bonus: At which values of 8 does the error you obtain when ignoring rejected
moves become more pronounced and why?

3.5.3 Sampling Configurational Space

a) Perform a simulation at 7' = 2.0 and various densities p € [0.05,1.0]. Up to which
density does the ideal gas law hold?

BP=p (33)

Note: you can modify 7" and p in the input file within the Run directory. The value
of (P) is printed at the end of the calculation.

b) The program produces a sequence of snapshots of the state of the system. Visualise
these snapshots using the program Visual Molecular Dynamics (VMD). See section
3.5.4 for instructions on using VMD. Include snapshots in your report at the fol-
lowing iteration numbers: 0, 30, 50, 500, 999. Explain the observed behaviour of
the system upon increasing iteration number.

c¢) Instead of performing a trial move in which only one particle is displaced, one can
do a trial move in which all particles are displaced. What do you expect will happen
to the maximum displacements of these moves when 50% of all displacements are
accepted?

3.5.4 Visual Molecular Dynamics (VMD)

To open a trajectory or structure in VMD, navigate your terminal to the file of interest
and type the following command:

/Applications/VMD/VMD\ 1.9.1.app/Contents/vmd/vmd_MACOSXX86 movie.pdb

You can explore the system by holding your left mouse button and moving. You can
translate the system by pressing T or selecting Mouse — Translate Mode in the VMD
Main panel. Rotation and scaling can be performed from this menu as well, or you can
just type r and s respectively. To change the centre of the viewport (i.e the position
about which geometry operations occur), press ¢ and select a particle to move the centre
to.

To view the trajectory as a movie, press the play button from the VMD Main panel,
or manually move the counter bar to scroll through the trajectory. Experiment with the
buttons on this panel to become more comfortable - you will need this program for the
following exercises.



Changing the Drawing Mode Click on Graphics in the VMD Main panel, and go
to Representations.... On the Draw style tab, select ColourID from the Colouring
Method drop-down box, and select a colour of your choosing. Next, select CPK from the
Drawing Method drop-down box, and change Sphere Scale to (.1 and Sphere Resolution
to 20. Click Apply and close the Graphical Representations window.

Changing the Viewport Background Click on the Graphics item in the VMD Main
panel, and select the Colours... option. Next, click on the Display item within the
Categories list, and select Background. Change the background of the viewport to 8
white. Close the Colour Controls window.

Rendering and Saving To save a snapshot of the current frame, go to File in the
VMD Main panel, and click the Render... option. Change the filename to something
meaningful, and click Start Rendering. The mac program Preview will immediately
open, and from there you can export the snapshot as a .png image.
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