

Bits From Photons: Oversampled Binary Image Acquisition

Feng Yang

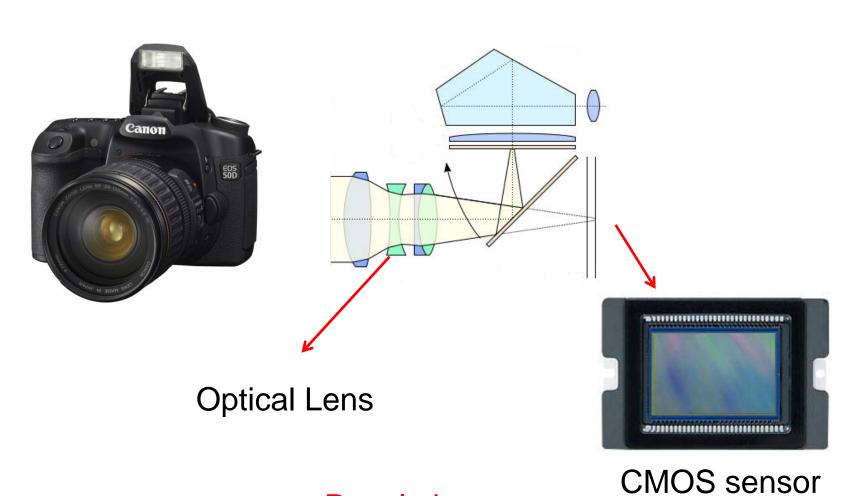
Audiovisual Communications Laboratory École Polytechnique Fédérale de Lausanne

Thesis supervisor: Prof. Martin Vetterli Thesis co-supervisor: Dr. Luciano Sbaiz

February 20, 2012

Outline

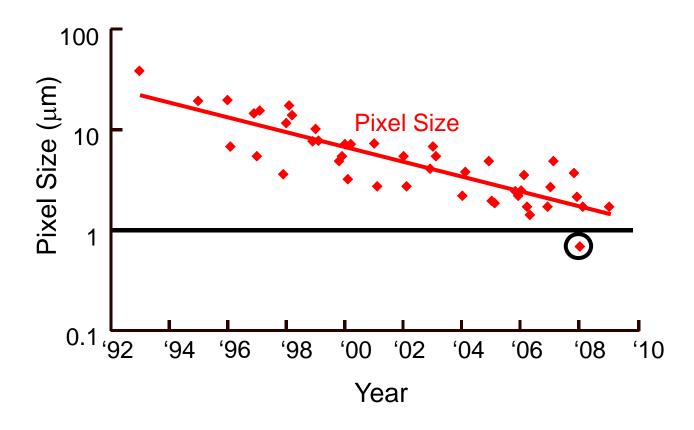
- Motivation
- Binary imaging
- Binary noisy imaging
- Threshold and optimal pattern design
- Generalized piecewise-constant model
- Conclusions and future research



Outline

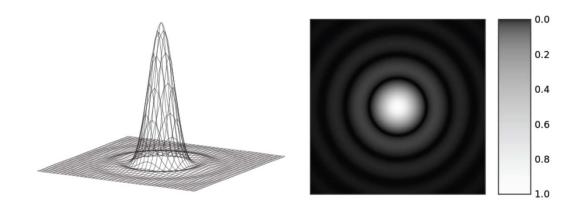
- Motivation
- Binary imaging
- Binary noisy imaging
- Threshold and optimal pattern design
- Generalized piecewise-constant model
- Conclusions and future research

Traditional camera



Resolution

The evolution of pixel size in CMOS sensor



courtesy of Theuwissen [Theuwissen'08]

Do we need small pixels (1/2)

Shape of Airy disc on the sensor plane

Rayleigh Criterion: the minimum spatial resolution

$$\Delta l = 1.22 \lambda F \#$$

Example: $\lambda = 500nm$, $F\# = 8 \Rightarrow \Delta l \approx 5\mu m$

Do we need small pixels (2/2)

- Image sensor design
 Small pixel
 - High resolution
 - High sensitivity
 - Low noise
 - High dynamic range

- - Low full well capacity
 - Low SNR
 - Low dynamic range
 - Oversampling device

- Similar to
 - Film (one-bit pixel)
 - Sigma-delta modulator (one-bit quantizer)

Oversampled binary image sensor

digital film [Fossum'05], gigavision camera [Sbaiz'09]

Pixel Size: $> 1.25 \mu m$ Multi-photon response

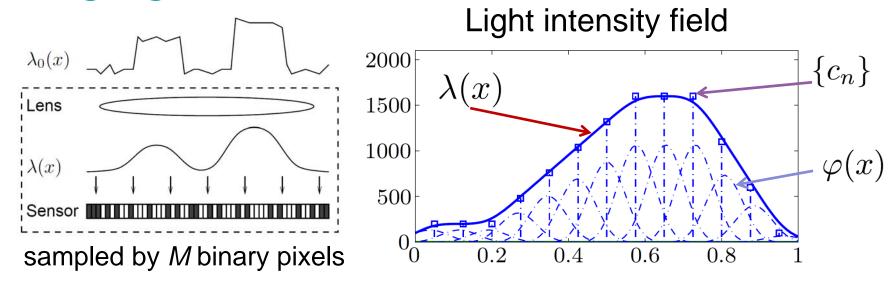
Pixel Size: < 200nm Binary response

High dynamic range imaging

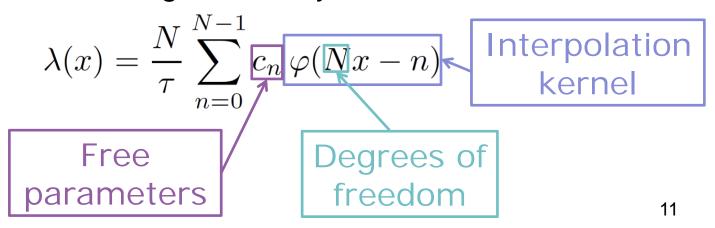
Binary sensors with large oversampling factors achieve higher dynamic range than conventional sensors

Conventional sensor: multiple exposures

Binary sensor: single exposure



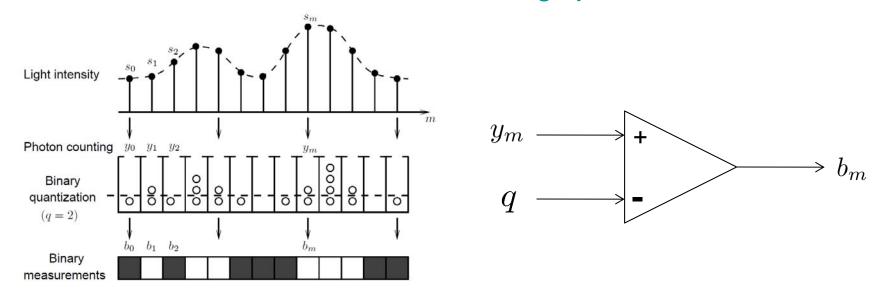
Outline


- Motivation
- Binary imaging
- Binary noisy imaging
- Threshold and optimal pattern design
- Generalized piecewise-constant model
- Conclusions and future research

Imaging model

The diffraction-limited light intensity field is modeled as

Signal processing model


Spatial oversampling factor $K \stackrel{def}{=} \frac{M}{N}$

M: the number of binary pixels

N: the degrees of freedom of the light intensity field

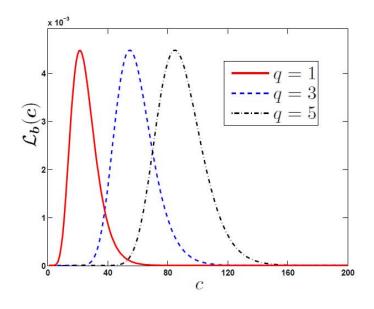
Mathematical model of binary pixel

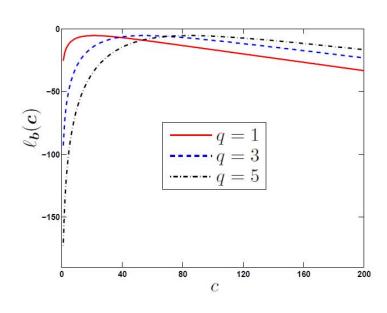
Photon count y_m : Poisson distribution

$$\mathbb{P}(Y_m = y_m; s_m) = \frac{s_m^{y_m} e^{-s_m}}{y_m!}, \quad \text{for } y_m \in \mathbb{Z}^+ \cup \{0\}$$

Binary output b_m : Bernoulli distribution

$$\mathbb{P}(b_m = 0; s_m) = \sum_{k=0}^{q-1} \frac{s_m^k}{k!} e^{-s_m}$$

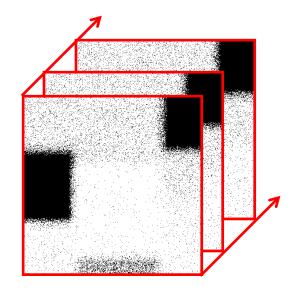



Reconstruction using maximum likelihood estimator

Likelihood function:
$$\mathcal{L}_{\boldsymbol{b}}(\boldsymbol{c}) \stackrel{\text{def}}{=} \prod_{m=0}^{M-1} \mathbb{P}(B_m = b_m; s_m) = \prod_{m=0}^{M-1} \mathbb{P}(B_m = b_m; \boldsymbol{e}_m^T \boldsymbol{G} \boldsymbol{c})$$

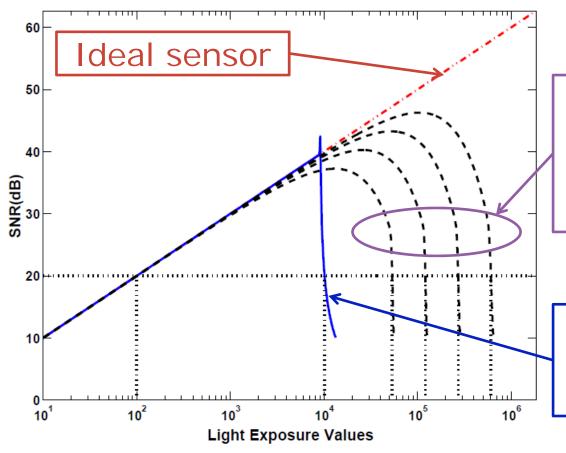
Log-likelihood function: $\ell_b(c) \stackrel{\text{def}}{=} \log \mathcal{L}_b(c)$

Theorem: The log-likelihood function is concave.



Extension: multiple exposures

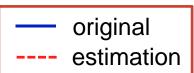
- Temporal oversampling
- Equivalent to spatial oversampling, using box functions
- Log-likelihood function is concave

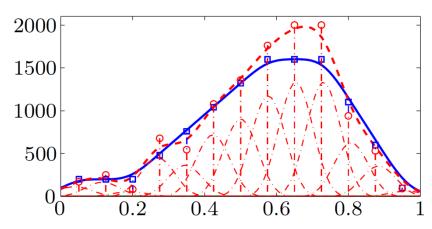

Exposure time for each frame τ/J

Total exposure time is au

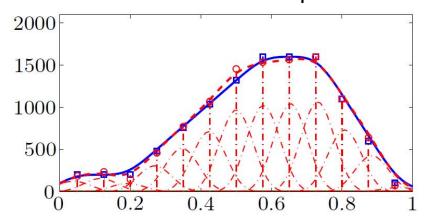
Comparison with a conventional sensor

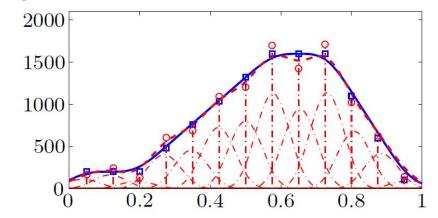
$$SNR = 10 \log_{10} \frac{c^2}{\mathbb{E}[(\widehat{c} - c)^2]}$$




Binary sensors with oversampling factors $K=2^{13}$, 2^{14} , 2^{15} , 2^{16} , and threshold q=1

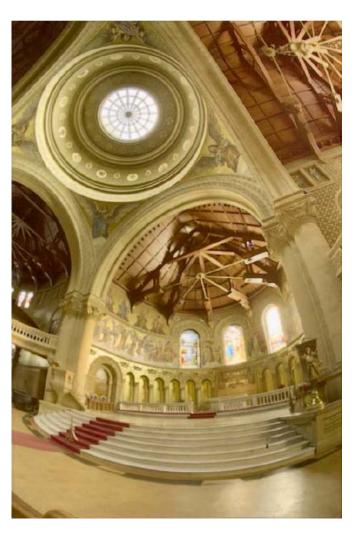
Ideal sensor with saturation, limited full well capacity


Numerical results: 1-D signals



Threshold q=1

Spatial oversampling *K*=256



Spatial oversampling K=256, Temporal oversampling J=8 17

Numerical results: 2-D images

Threshold: *q*=1

Spatial oversampling: 32×32

Temporal oversampling: 256

Experimental results: real sensor

Single-photon avalanche diode (SPAD) camera

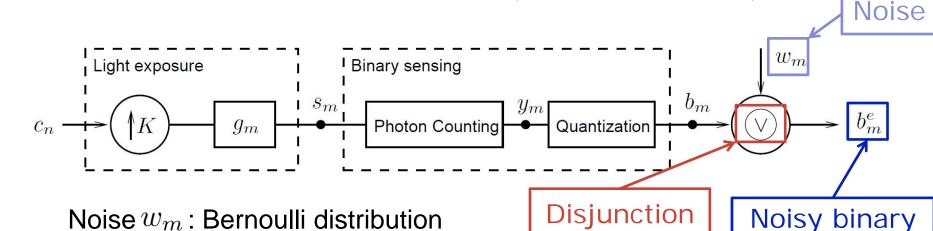
Resolution: 32×32

Pixel value: binary

Sensitivity: single photon

Experimental results: real sensor

Resolution: 32×32, total images: 4096


Outline

- Motivation
- Binary imaging
- Binary noisy imaging
- Threshold and optimal pattern design
- Generalized piecewise-constant model
- Conclusions and future research

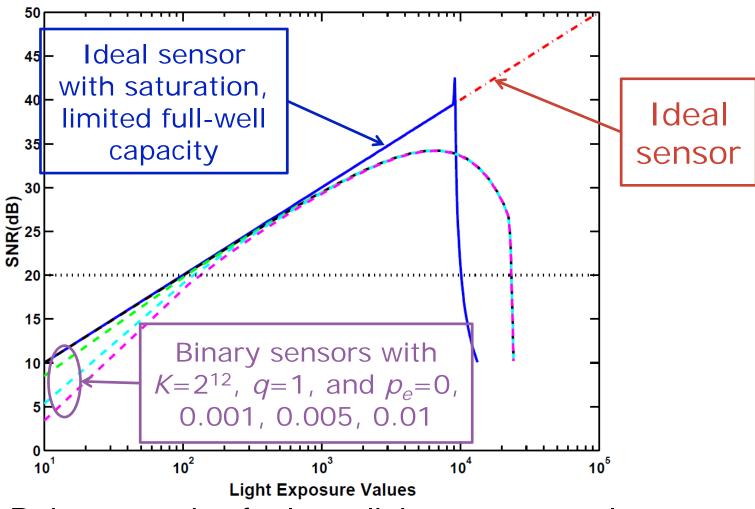
Signal processing model: noisy case

Noise source: dark current noise, threshold noise, etc.

operator

output

22

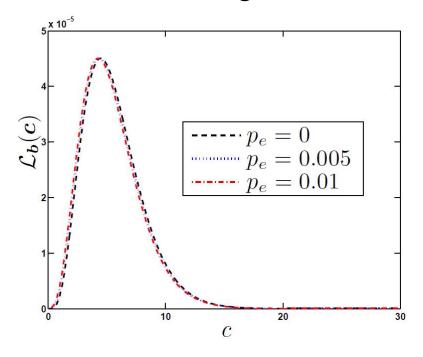

 $\mathbb{P}(w_m = 1; p_e) = p_e$ (noise rate)

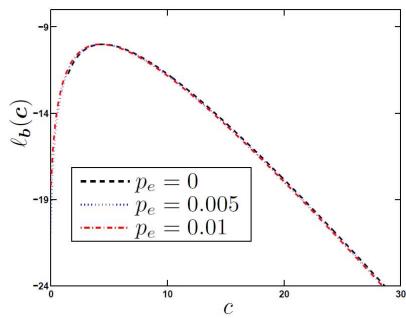
Noisy binary output: $b_m^e \stackrel{\mathrm{def}}{=} b_m ee w_m$, Bernoulli distribution

$$\mathbb{P}(b_m^e = 0; s_m, p_e) = (1 - p_e) \sum_{k=0}^{q-1} \frac{s_m^k}{k!} e^{-s_m}$$

Influence of noise

Robust to noise for large light exposure values

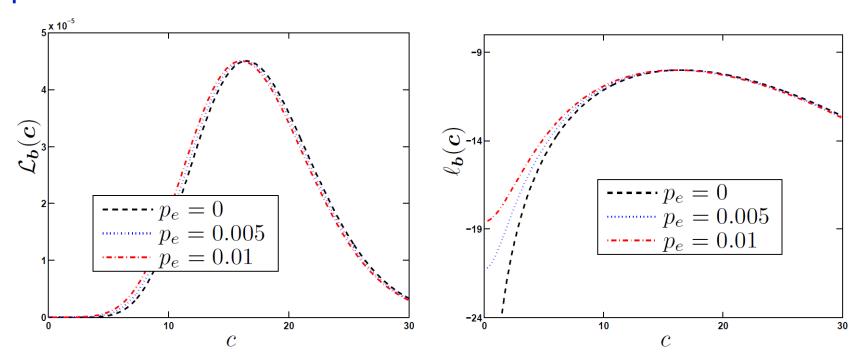



Reconstruction using MLE (1/3)

Maximum likelihood estimator

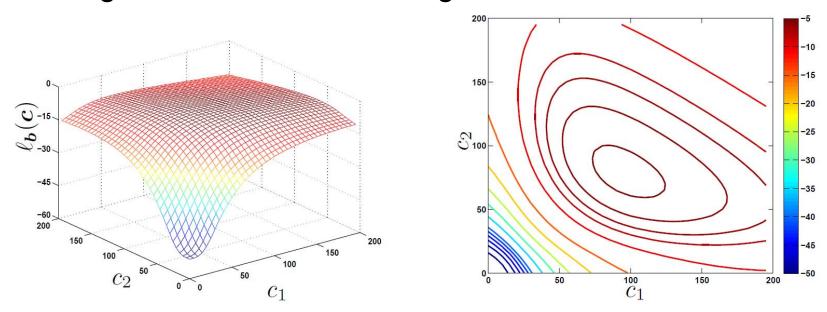
$$\widehat{m{c}}_{ ext{ML}}(m{b}^e) \stackrel{ ext{def}}{=} rg \max_{m{c} \in [0,S]^N} \mathcal{L}^e_{m{b}}(m{c}) = rg \max_{m{c} \in [0,S]^N} \ell^e_{m{b}}(m{c})$$

Theorem: constant light intensity field, and threshold q=1, the log-likelihood function is concave.



Reconstruction using MLE (2/3)

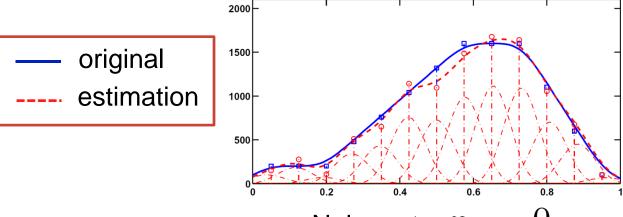
Theorem: constant light intensity field, arbitrary *q*, both the likelihood function and log-likelihood function are strictly pseudoconcave.



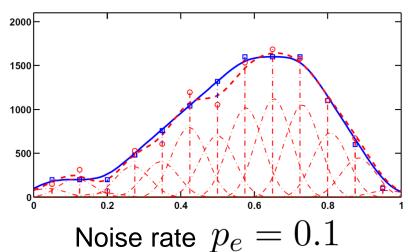
Piecewise-constant model, optimal solution can be achieved.

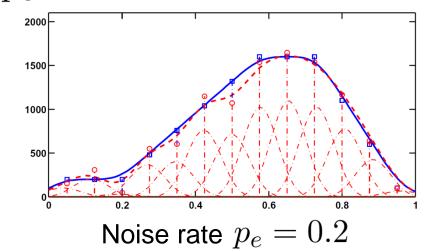
Reconstruction using MLE (3/3)

Log-likelihood function for general linear model

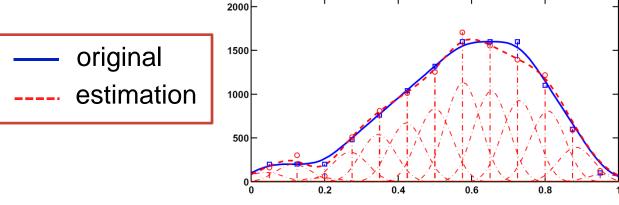

Not even quasi-concave, no guarantee for the optimal solution

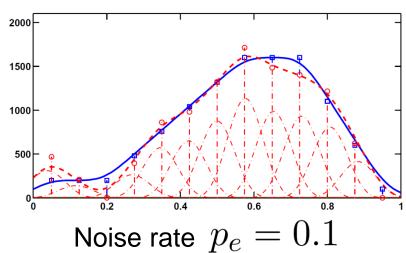
Reconstruction algorithm

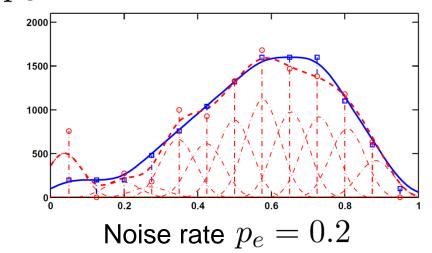

- 1. Initial estimation, using piecewise-constant assumption
- 2. Refined estimation, using the iterative algorithm, i.e., Newton's method



Numerical results: 1-D signals




Spatial oversampling K=1024, threshold q=1



Numerical results: 1-D signals

Noise rate $p_e = 0$

Spatial oversampling K=512, threshold q=3

Numerical results: 2-D images

Threshold: q=1, spatial oversampling: 8×8 , temporal oversampling: 128

Original

Noise rate $p_e = 0$

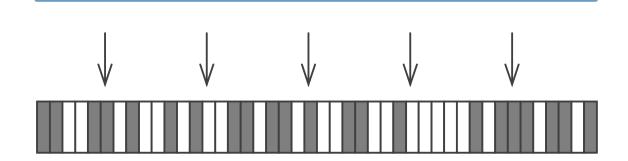
Noise rate $p_e = 0.1$

Noise rate

$$p_e = 0.2$$

Numerical results: 2-D images

Noise rate $p_e = 0.2$


Outline

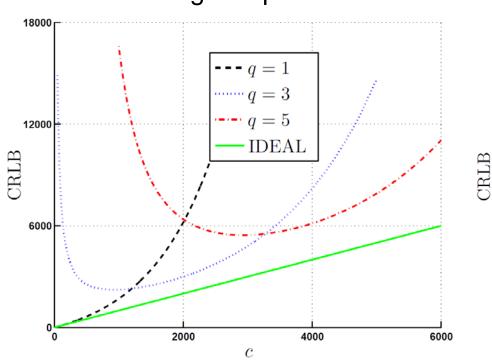
- Motivation
- Binary imaging
- Binary noisy imaging
- Threshold and optimal pattern design
- Generalized piecewise-constant model
- Conclusions and future research

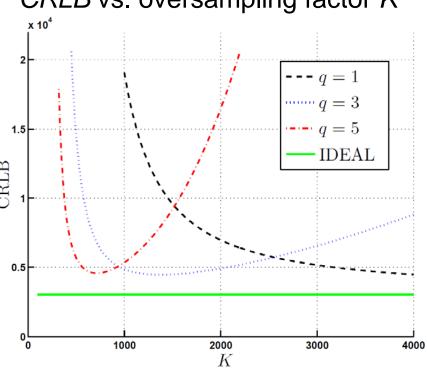
The Cramér-Rao lower bound (CRLB)

Using K pixels to estimate a constant light exposure value c

Ideal sensor: $CRLB_{ideal} = c$

Binary sensor:


CRLB_{bin}
$$(K, q) = c \left(\sum_{j=0}^{q-1} \frac{(q-1)!(c/K)^{-j}}{(q-1-j)!} \right) \left(\sum_{j=0}^{\infty} \frac{(q-1)!(c/K)^{j}}{(q+j)!} \right)$$



The Cramér-Rao lower bound (CRLB)

CRLB vs. light exposure value c

CRLB vs. oversampling factor K

Proposition.

For threshold q=1, $\lim_{K \to \infty} \mathrm{CRLB_{bin}}(K,q) = \mathrm{CRLB_{ideal}}$

For q>1, $\lim_{K\to\infty} CRLB_{bin}(K,q)/CRLB_{ideal}=\infty$

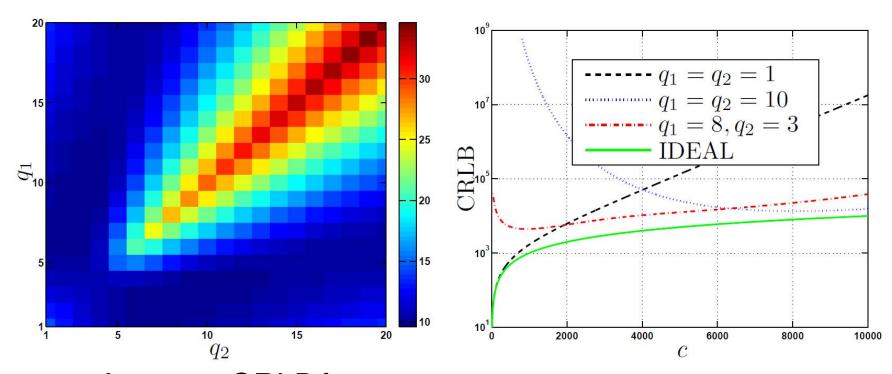
Optimal threshold pattern and reconstruction

2-D sensor with two interleaved thresholds

q_1	q_2	q_1	q_2
q_2	q_1	q_2	q_1
q_1	q_2	q_1	q_2
q_2	q_1	q_2	q_1

Optimal Criterion: Find the minimum average CRLB

$$(q_{1,\text{opt}}, q_{2,\text{opt}}) = \underset{1 \le q_1, q_2 \le q_{\text{max}}}{\arg \min} \int_{c_{\text{min}}}^{c_{\text{max}}} \text{CRLB}_{\text{bin}2}(K/2, K/2, q_1, q_2, c) dc$$

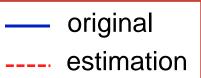

Maximum likelihood estimator

$$\widehat{m{c}}_{ ext{ML}}(m{b}) \stackrel{ ext{def}}{=} rg \max_{m{c} \in [0,S]^N} \mathcal{L}_{m{b}}(m{c}) = rg \max_{m{c} \in [0,S]^N} \ell_{m{b}}(m{c})$$

Proposition: The log-likelihood function is concave.

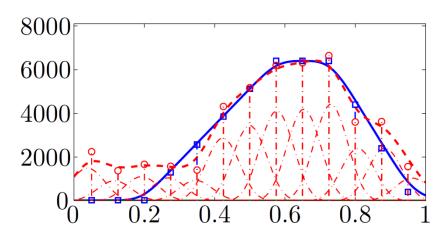
Design example

Optimal threshold pattern, when K = 1024, $c \in [10, 10^4]$

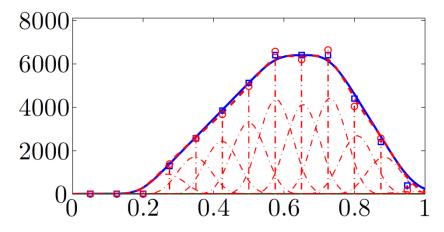


Average *CRLB* for different threshold patterns Optimal pattern q_1 =8, q_2 =3

CRLB for different threshold patterns



Numerical results: 1-D signals



Threshold pattern $q_1 = q_2 = 1$

Threshold pattern $q_1 = q_2 = 10$

Threshold pattern q_1 =8, q_2 =3 36

Numerical results – synthetic images

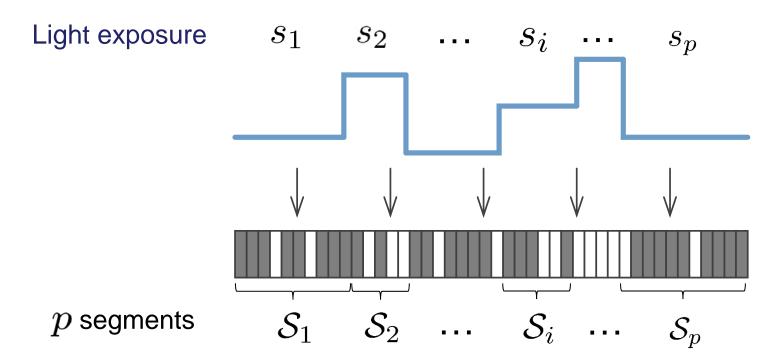
Threshold: q=1, spatial oversampling: 8×8, temporal oversampling: 16


Original

 $q_1 = 1$ $q_2 = 1$

 $q_1 = 8$ $q_2 = 3$

37


Outline

- Motivation
- Binary imaging
- Binary noisy imaging
- Threshold and optimal pattern design
- Generalized piecewise-constant model
- Conclusions and future research

Generalized piecewise-constant model

Estimate the light exposure values $\{s_m\}$ using M binary measurements

Estimate the light exposure values changed to reconstruct

$$\mathcal{P} \stackrel{\text{def}}{=} \{ (\mathcal{S}_1, s_1), (\mathcal{S}_2, s_2), \dots, (\mathcal{S}_i, s_i), \dots, (\mathcal{S}_p, s_p) \}$$

Reconstruction using MLE (1/2)

Likelihood function

$$\mathcal{L}_{\boldsymbol{b}}(\mathcal{P}) = \prod_{i=0}^{p} \mathbb{P}(B_m = b_m, m \in \mathcal{S}_i; (\mathcal{S}_i, s_i)) \theta^{p-1} (1 - \theta)$$

Log-likelihood function

$$\ell_{\boldsymbol{b}}(\mathcal{P}) \stackrel{\text{def}}{=} \log \mathcal{L}_{\boldsymbol{b}}(\mathcal{P})$$

Probability for segment i with light exposure value s_i

Probability when there are *p* segments

Maximum likelihood estimator

$$\widehat{\mathcal{P}} \stackrel{\text{def}}{=} \underset{\mathcal{P}, s_i \in [0, S]}{\operatorname{arg max}} \ell_{\boldsymbol{b}}(\mathcal{P})$$

$$= \underset{\mathcal{P}, s_i \in [0, S]}{\operatorname{paramax}} \sum_{i=1}^{p} \mathbb{P}(B_m = b_m, m \in \mathcal{S}_i; (\mathcal{S}_i, s_i)) - \gamma p$$

Reconstruction using MLE (2/2)

Iteratively solving two problems

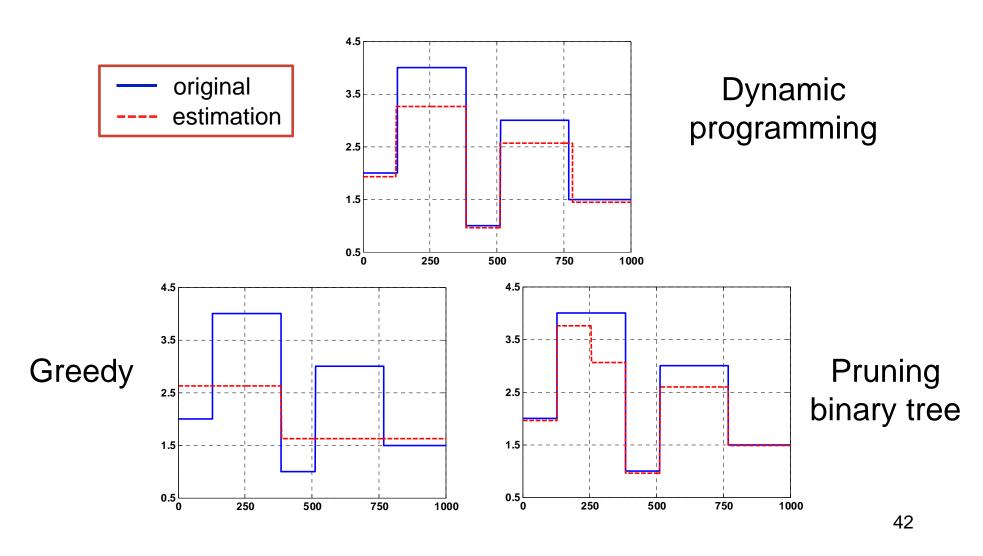
1. Estimate light exposure values

$$\widehat{s}_i \stackrel{\text{def}}{=} \underset{s_i \in [0,S]}{\operatorname{arg max}} \mathbb{P}(B_m = b_m, m \in \mathcal{S}_i; (S_i \mid s_i))$$

Solution: bisection method

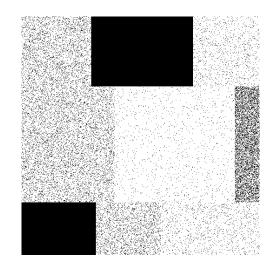
2. Estimate segments

$$\widehat{\mathcal{G}} \stackrel{\text{def}}{=} \arg \max_{\mathcal{G}} \mathbb{P}(B_m = b_m, m \in \mathcal{S}_i; (\mathcal{S}_i, \widehat{s}_i)) - \gamma p$$


Solution: dynamic programming, greedy algorithm or pruning of binary trees (for 2-D case, quadtrees).

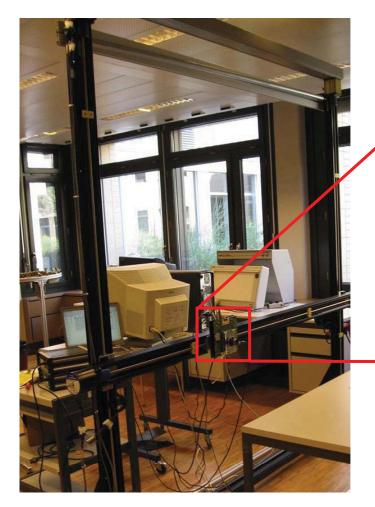
Segments are known

Light exposure values are known


Numerical results: 1-D signals

Numerical results: synthetic images

Binary image



Pruning Quadtrees

Experimental results: real images (1/2)

SPAD camera Resolution: 32×32

Experimental results: real images (2/2)

Binary image, 1024×1024

128×128

128×128

Greedy

Pruning Quadtrees

Outline

- Motivation
- Binary imaging
- Binary noisy imaging
- Threshold and optimal pattern design
- Generalized piecewise-constant model
- Conclusions and future research

Conclusions

- Oversampled binary imaging
 - Diffraction limit and spatial oversampling
 - Binary pixel
 - Log-likelihood function is concave
- Noise performance
 - Robust to noise for large light intensity
 - Constant, log-likelihood function,
 - concave (*q*=1)
 - strictly pseudoconcave (q>1)

Conclusions

- Threshold and optimal pattern design
 - Asymptotic behavior
 - Large threshold strong light intensity, small threshold low light intensity
 - Optimal threshold pattern
 - Log-likelihood function is concave
- Generalized piecewise-constant model
 - Maximum likelihood estimator
 - Iteratively solving two problems

Future Research

Sensor design

90nm technology

Pixel size: 0.75µm×0.75µm

Chip size: 2mm×2mm

Resolution: 1600×1200

Designed by Prof. Charbon's team

- Super resolution for binary images
- Color sensor

References

- A.J.P. Theuwissen. CMOS image sensors: State-of-the-art. In Solid-State Electronics, vol.52, Sep 2008, pp 1401-1406
- E. R. Fossum. Gigapixel digital film sensor. (invited) in *Nanospace Manipulation of Photons and Electrons for Nanovision Systems, The 7th Takayanagi Kenjiro Memorial Symposium and the 2nd International Symposium on Nanovision Science, University of Shizuoka, Hamamatsu, Japan, October 25-26, 2005*
- L. Sbaiz, **F. Yang**, E. Charbon, S. Süsstrunk, M. Vetterli. The gigavision camera. In *IEEE Conference on Acoustics, Speech and Signal Processing*, 2009
- **F. Yang**, L. Sbaiz, E. Charbon, S. Süsstrunk and M. Vetterli, Image reconstruction in the gigavision camera, *IEEE 12th International Conference on Computer Vision, Ninth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras* (OMNIVIS 2009), pp. 2212-2219, 2009
- **F. Yang**, L. Sbaiz, E. Charbon, S. Süsstrunk and M. Vetterli, On pixel detection threshold in the gigavision camera, Proceedings of IS&T/SPIE Electronic Imaging, Digital Photography VI, Vol. 7537, 2010
- F. Yang, Y. Lu, L. Sbaiz and M. Vetterli, An optimal algorithm for reconstructing images from binary measurements, Proceedings of IS&T/SPIE Electronic Imaging, Computational Imaging VIII, 2010
- F. Yang, Y. Lu, L. Sbaiz and M. Vetterli, Bits from photons: Oversampled image acquisition using binary Poisson Statistics, IEEE Transactions on Image Processing, 2012, accepted

http://panorama.epfl.ch

Questions?