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Abstract. What happens to the eigenpairs of a complex n × n matrix when it is
shrunken to a ñ× ñ matrix? Is there a way to understand and control the effects on
the matrix eigenpairs induced by this rather crude transformation? These questions
are of growing interest in physics and computer science, with the emergence of reduc-
tion methods aiming at coarse-graining complex interacting systems while preserving
their structural and spectral characteristics. In this paper we formalize and unify
the recently introduced Spectral Coarse Graining methods, and we provide bounds
on the eigenpair shifts induced by the shrinkage operation; the latter is shown to be
similar to a projection. We extract from the bounds an objective function suitable for
minimizing the shifts and provide an efficient algorithm to carry out the minimiza-
tion. Finally, we establish connections between spectral coarse graining and popular
dimension reduction methods, such as Principal Component Analysis and clustering
methods, and review some applications of spectral coarse graining to graph theory.
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1. Introduction and Motivations

The development of new techniques that permit the accumulation of large amounts
of data on systems as diverse as the Internet, the World Wide Web (WWW), protein
interactions in the cell, the behavior of stocks in financial markets, has provided a wealth
of information that often comes in the form of matrices—graphs matrices for the Internet
and the Web, covariance matrices of asset returns, etc. In order to handle the sheer
amount of information contained in these matrices, new techniques are often necessary
to reduce their size and complexity. Toward this goal several clustering algorithms
have been proposed by different communities over the years, with the declared aim of
identifying groups of entries (stocks, proteins, servers or web-pages) that more naturally
fit together. In general, however, the clustering approach does not provide the rules of
interaction between the groups, which are necessary for the construction of a clustered
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2 The Spectral Coarse Graining of Matrices

system representative of the initial one. This issue is of particular importance when
a dynamical process is associated with the system, as it would be highly desirable to
preserve at least some feature of the dynamics in the simplified system.

In order to provide a size-reduction scheme that is not only effective at simplifying the
system’s complexity, but that also preserves its behavior, we have introduced a spectral-
based method that we have named Spectral Coarse Graining (SCG) [5, 6]. SCG allows
to go beyond the classical clustering techniques, by not only identifying groups, but
also assembling them in a coarse-grained arrangement while protecting some targeted
features of the original system; typically, these features can be readily expressed in terms
of the spectral properties of the system’s interaction matrix.

In this work our first aim is to frame SCG on robust mathematical foundations by
showing that it can be cast as a projection, which, when duly chosen, causes the least
possible perturbation on some prescribed eigenpairs of the interaction matrix.

Our second goal is to present different algorithms to carry out the SCG of a matrix.
Each specific implementation has both strengths and weaknesses that are going to be ad-
dressed. Finally, some examples drawn from graph and network theory will be provided
to allow for a better assessment of the techniques in practical applications.

1.1. Overview. Our text is structured as follows. We first draw up a formal frame
for the spectral coarse graining of matrices in §2 and §3. The effects of spectral coarse
graining on the eigenpairs of a matrix are analyzed in §4 borrowing techniques from
matrix perturbation theory. Then, in a slightly less formal style, we describe our methods
and algorithms in §5, followed by some applications of the spectral coarse graining
to graph theory in §6. Finally, we present our conclusions and sketch some possible
developments of Spectral Coarse Graining in §7.

1.2. Notations and Style. The conjugate, transpose, and conjugate transpose of a
matrix M are denoted M , M t, respectively M∗. The abbreviation sp(M) stands for the
spectrum of M ∈ Cn×n. The spectral norm, or 2-norm, of M is denoted by ‖M‖. The
couple (λ, v), where Mv = λv, is called (right) eigenpair of M ; it is called zero (right)
eigenpair if λ = 0. Eigenvalues are assumed sorted as |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and
eigenvectors are normalized except where noted. We state our results for right eigenvec-
tors only since the translation to left eigenvectors is straightforward by transposing M ;
therefore, we omit the qualifier “right” to designate a right eigenpair/eigenvector.

2. A Note on Projectors in Cn×n

We introduce this section by recalling some fundamentals about projectors in Cn×n.
By definition, a matrix P ∈ Cn×n is a projection matrix or simply a projector if

P 2 = P . Besides, if P = P ∗ the projector is said to be orthogonal (with respect to the
canonical Hermitian scalar product).

The range and the null space of P are the sets of y such that y = Pz for z ∈ Cn,
respectively the sets of z ∈ Cn such that Pz = 0. By complementarity, we have the
decomposition z = Pz+(In−P )z for any z ∈ Cn, where Pz is in the range and (In−P )z
is in the null space of P .

From P (P −In) = 0, the minimal polynomial of P factors into distinct roots and thus
a projector is always diagonalizable with eigenvalues 0 and 1. There is equality between
the number of one eigenvalues, the dimension of the range and the rank of P .

The next result provides a useful decomposition of a projector that will be used
throughout the text.

Theorem 2.1. A matrix P ∈ Cn×n is a projector of rank k if and only if there exists
two matrices L, R ∈ Ck×n such that P = R∗L and LR∗ = Ik. Furthermore, the rows of
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R span the range of the projector and the rows of L span the orthogonal complement of
its null space.

Proof. The first statement is clearly necessary since P 2 = R∗(LR∗)L = P , and rankP =
rank(R∗L) = rankR = k by the properties of the rank and the fact that L is row-full
rank. To show it is sufficient recall that, up to a row-column permutation in V , the
eigen-decomposition of P reads

P = V

(
Ik 0
0 0

)
V −1 =

(
A B
C D

) (
Ik 0
0 0

) (
E F
G H

)
=

(
A
C

)

︸ ︷︷ ︸
R∗

(
E F

)
︸ ︷︷ ︸

L

,

with LR∗ = EA + FC = Ik by definition of R and L. For the second statement,
P acting on R∗ gives PR∗ = R∗LR∗ = R∗ so that the rows of R belong to the range
of P . As they are k independent vectors they actually span the latter. Finally, for all
z ∈ Cn we have Pz = R∗Lz = 0 ⇔ Lz = 0 (by left-multiplication with L), which shows
that the null space of P is orthogonal to the rows of L (with respect to the canonical
Hermitian scalar product). !

When P is Hermitian, the spectral theorem yields V −1 = V ∗ in the proof of Theorem
2.1. This shows the following result.

Corollary 2.2. A matrix P ∈ Cn×n is an orthogonal projector of rank k if and only if
there exists a matrix R ∈ Ck×n such that P = R∗R and RR∗ = Ik. The rows of R span
the range of the projection.

Even though there is an infinite number of RL-decompositions one can associate to a
projector, when defining the matrices R and L through an eigen matrix of P , as in the
proof of Theorem 2.1, there is no need to know beforehand the range and the null space
of the projection—whose bases are provided by the decomposition1.

The next and last result of this section is useful to assess the non-orthogonality of a
projector.

Theorem 2.3. For any projector P ∈ Cn×n of rank k > 0, ‖P‖ ≥ 1 with equality if
and only if P is orthogonal.

Proof. The proof can be found in different places, e.g. [11]. !
Remark 2.4. For any sub-multiplicative matrix norm ‖ · ‖ and non-zero projector P ∈
Cn×n, ‖P‖ = ‖P 2‖ ≤ ‖P‖2 ⇒ ‖P‖ ≥ 1. Hence the spectral norm in Theorem 2.3
is to some extent an optimum choice. For example, it is not difficult to show that
‖P‖F ≥ rank P , where ‖ ·‖ F is the Frobenius norm.

3. Exact Coarse Graining

The matrices R and L of a projection can be used to shrink a matrix M down to
a new matrix LMR∗. The purpose of this section is to introduce the formalism used
throughout the text to deal with this coarse graining transformation, as well as to link
it with the projection PMP .

Definition 3.1. The linear map L · R∗ : Cn×n → Cñ×ñ is a coarse graining transfor-
mation if (1) ñ ≤ n and (2) L, R ∈ Cñ×n are such that LR∗ = Iñ. For M ∈ Cn×n the
matrix M̃ ≡ LMR∗ is a coarse graining (CG) of M .

The matrices L and R are referred to as the semi-projectors and P = R∗L as the
projector induced by the coarse graining L · R∗. If the semi-projectors are equal, we

1Such a decomposition provides particular bases for the range and the null space of P that are orthogonal
between each other (i.e. by the condition LR∗ = Ik).
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Figure 3.1: In this diagram M, P ∈ Cn×n and P = R∗L is a projector such that LR∗ = Iñ,
with ñ ≤ n. It is easy to show that sp(PM) = sp(PMP ) = sp(MP ) = sp(LMR∗) ∪ {0}. A
directed edge goes from A to B if there is a mapping from the non-zero eigenpairs of A to the
non-zero eigenpairs of B. Furthermore, left-multiplying an eigenvector of A that is associated
with a non-zero eigenvalue by the label of an edge gives the corresponding eigenvector of B. For
instance, if (λ, v) is an eigenpair of MP and λ += 0 then (λ, Pv) is an eigenpair of both PM
and PMP . Proposition 3.2 establishes the one-to-one mapping between the non-zero eigenpairs
of LMR∗ and PMP .

call L = R the semi-orthogonal projector of the coarse graining. If P = P ∗ the coarse-
graining is said to be orthogonal. Besides, if M is Hermitian (symmetric) and L = R, the
coarse-graining is called Hermitian (symmetric), since M̃ is also Hermitian (symmetric).
The matrix M̃ is sometimes called the coarse-grained matrix and its eigenvalues the
coarse-grained eigenvalues.

As shown by the following proposition, there is a simple one-to-one mapping between
the non-zero eigenpairs of LMR∗ and PMP .

Proposition 3.2. Let M ∈ Cn×n and let L, R ∈ Cñ×n be such that ñ ≤ n, P = R∗L
and LR∗ = Iñ. For every eigenpair (λ̃, ṽ) of LMR∗, (λ̃, R∗ṽ) is an eigenpair of PMP.
Furthermore, for every non-zero eigenpair (µ, w) of PMP (µ, Lw) is an eigenpair of
LMR∗.

Proof. By definition of R and L, we have LMR∗ṽ = λ̃ṽ ⇔LMP (R∗ṽ) = λ̃ṽ ⇔PMP (R∗ṽ) =
λ̃(R∗ṽ). Since R∗ṽ += 0 (R∗ṽ = 0 ⇒ ṽ = 0, which is impossible), (λ̃, R∗ṽ) is an eigenpair
of PMP . On the other hand, suppose there exists (µ, w), an eigenpair of PMP , such
that µ += 0. Left-multiplying PMPw = µw by L yields LMR∗(Lw) = µ(Lw). We note
that Lw += 0 otherwise we would have Pw = 0 ⇒ µw = 0 ⇒ w = 0, which is impossible.
Thus (µ, Lw) is an eigenpair of LMR∗. !

Remark 3.3. As depicted in Figure 3.1, similar mappings exist between the eigenpairs of
LMR∗ and those of some combinations of products between M and P . We stress that
for a given P all the relations hold for any choice of L and R as long as P = R∗L and
LR∗ = Iñ.

Consider the following eigenvalue equations for M and M̃ serving to introduce the
next definition:
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Mvi = λivi ⇒ (LM)vi = λiLvi and
M̃ ṽα = λ̃αṽα ⇔ (LM)R∗ṽα = λ̃αṽα.

Definition 3.4. Let M̃ ∈ Cñ×ñ be a coarse graining of M with projector P and semi-
projectors L, R. Let also (λi, vi) and (λ̃α, ṽα) be eigenpairs of M , respectively of M̃ .
|λi − λ̃α| is the absolute eigenvalue shift between both eigenpairs. We also define the
two eigenvector shifts eR(vi, ṽα) ≡ vi − R∗ṽα, eL(vi, ṽα) ≡ Lvi − ṽα, and the vector
eP (vi) ≡ vi − Pvi.

Together, eR(vi, ṽα), eL(vi, ṽα), and |λi − λ̃α| form the eigenpair shifts. These are
used to estimate the accuracy of a coarse graining with respect to the eigenpair (λi, vi)—
the smaller the eigenpair shifts the more accurate the coarse graining for (λi, vi). An
important particular case, called exact coarse graining, is when the three eigenpair shifts
are zero for some α.

Definition 3.5. The matrix M̃ is an exact coarse graining of M for the eigenpair (λ, v)
if there is an eigenpair (λ̃, ṽ) of M̃ such that λ̃ = λ, eR(v, ṽ) = 0 and eL(v, ṽ) = 0.2

Remark 3.6. The trivial exact coarse graining of M for (λ, v) is obtained by setting
R = L = v∗; this yields LR∗ = 1 and LMR∗ = λ.

An exact coarse graining for (λ, v) means that there is a one-to-one mapping between
(λ, v) and an eigenpair of M̃ . As a consequence, no information about (λ, v) is lost in
the transformation, and we say that (λ, v) is exactly preserved in M̃ .

It is sometimes convenient to define the exact coarse graining in terms of v and P
instead of the unknown eigenpair (λ̃, ṽ).

Proposition 3.7. M̃ is an exact coarse graining of M for the eigenpair (λ, v) if and
only if v is in the range of P (i.e. eP (v) = 0).

Proof. Substituting ṽ = Lv into R∗ṽ = v shows that Pv = v. Conversely, left-
multiplying by LM the equation eP (v) = v − Pv and rearranging yields

LMPv = LMv − LMeP (v) ⇔ M̃Lv = λLv − LMeP (v).

If Pv = v then Lv += 0 and there is an eigenpair (λ̃, ṽ) of M̃ such that λ̃ = λ and
ṽ = Lv; this in turn implies R∗ṽ = v. !

4. Approximate Coarse Graining

Whenever ‖eP (v)‖ > 0 the coarse graining for (λ, v) is said to be approximate. In
this case, it is interesting to have an estimate of the distance between the eigenpairs of
M and M̃ . We address this question here by means of techniques developed in matrix
perturbation theory [10, 9, 7].

The idea is first to bound the smallest distance between λ and an eigenvalue of the
matrix PMP in terms of the difference between Pv and an actual eigenvector of PMP .
Then, the same bound holds for the smallest distance between λ and an eigenvalue of
LMR∗ through the one-to-one correspondence between the non-zero eigenpairs of PMP
and LMR∗ (Proposition 3.2).

2Notice that for λ "= 0, λ̃ = λ and eR(v, ṽ) = 0 readily imply eL(v, ṽ) = 0
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Theorem 4.1. Let M,P ∈ Cn×n with P a ñ-rank projector. Let also Q∗(PMP )Q =
D + N be a Schur decomposition of PMP , where D is diagonal and N strictly upper
triangular. For any eigenpair (λ, v) of M such that Pv += 0,

min
λ̃∈sp(PMP )

|λ− λ̃| ≤ max(β,β1/p),

where p is the smallest integer such that Np = 0, and β is given by

β =
‖PMeP (v)‖
‖Pv‖

p−1∑

k=0

‖N‖k.

Proof. This theorem is the a posteriori version of Theorem 7.2.3 in [7] so its demon-
stration follows similar lines, except for the first part. The theorem clearly holds if
λ ∈ sp(PMP ). If λ /∈ sp(PMP ), consider the identity
(4.1) PMP (Pv) = λ(Pv)− PMeP (v).

As Pv += 0, Equation 4.1 allows us to write 1 ≤ ‖(λIn−PMP )−1‖‖PMeP (v)‖/‖Pv‖.
Using the Schur decomposition of PMP and the invariance under unitary transforma-
tions of the spectral norm, we have ‖(λIn−PMP )−1‖ = ‖(λIn−D−N)−1‖. The proof
is completed by the same technique as in the proof of Theorem 7.2.3 of [7, p.321]. !

The relevant factors influencing the accuracy of a coarse graining can easily be un-
covered by breaking down the upper bound of Theorem 4.1. Indeed, let β be defined as
in Theorem 4.1, then

(4.2) β ≤ ‖M‖Λ(PMP )‖P‖‖eP (v)‖
‖Pv‖ ,

where Λ(PMP ) =
∑p−1

k=0 ‖N‖k ≥ 1 with equality if and only if PMP is a normal
matrix (by the spectral theorem), and by Theorem 2.3 ‖P‖ ≥ 1 with equality if and
only if P is orthogonal. The quantity Λ(PMP ) is an estimate of PMP ’s departure from
normality and ‖P‖ of P ’s departure from “orthogonality”.

In the important coarse graining of Hermitian matrices with orthogonal projectors,
Theorem 4.1 and Equation 4.2 become notably simpler.

Corollary 4.2. Let M ∈ Cn×n be a Hermitian matrix and P ∈ Cn×n be an orthogonal
ñ-rank projector. Then

min
λ̃∈sp(PMP )

|λ− λ̃| ≤ max
µ∈sp(M)

|µ|‖eP (v)‖
‖Pv‖ = max

µ∈sp(M)
|µ|‖eP (v)‖

(
1 + O(‖eP (v)‖2)

)
.

Furthermore, if M is non-singular,

min
λ̃∈sp(PMP )

|λ− λ̃|
|λ| ≤ κ(M)

‖eP (v)‖
‖Pv‖ = κ(M)‖eP (v)‖

(
1 + O(‖eP (v)‖2)

)
,

where κ(M) ≡ ‖M‖‖M−1‖ ≥ 1 is the condition number of M expressed in the spectral
norm.

Proof. Assuming M and P Hermitian implies max(β,β1/p) = β in Theorem 4.1 (since
p = 1), and 1 = Λ(PMP ) = ‖P‖ in Equation 4.2. We also notice that the decom-
position v = Pv + eP (v) yields 1 = ‖v‖2 = ‖Pv‖2 + ‖eP (v)‖2 so that ‖Pv‖−1 =
(1 − ‖eP (v)‖2)−1/2 = 1 + O(‖eP (v)‖2). Finally, the relative bound follows since for
M a non-singular normal matrix κ(M) = maxµ∈sp(M) |µ|(minµ∈sp(M) |µ|)−1 when the
spectral norm is used [9]. !

The following result provides a lower bound on the eigenvector shifts in terms of
‖eP (v)‖.
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Proposition 4.3. Let M̃ ∈ Cñ×ñ be a coarse graining of M ∈ Cn×n with projector
P and semi-projectors L, R. Let also (λi, vi) and (λ̃α, ṽα) be eigenpairs of M and M̃
respectively. The following relations hold for any i ∈ {1, . . . , n} and any α ∈ {1, . . . , ñ}:
(1) eL(vi, ṽα) = LeR(vi, ṽα) and (2) eP (vi) = (In − P )eR(vi, ṽα). As a consequence,
when P is orthogonal,

‖eP (vi)‖ ≤ ‖eR(vi, ṽα)‖ ≤ 2.

Proof. Relation (1) is immediate. Relation (2) can be derived as follows:

eP (vi) = vi −R∗Lvi + R∗ṽα −R∗ṽα

= (vi −R∗ṽα)−R∗(Lvi − ṽα)
= eR(vi, ṽα)−R∗eL(vi, ṽα)
= (In − P )eR(vi, ṽα).

The bound is a straightforward consequence of the definitions and of Theorem 2.3. !

Proposition 4.3 shows that ‖eR(v, ṽ)‖ cannot be decreased faster than ‖eP (v)‖ for
any ṽ; this is a useful fact to have in mind when trying to minimize the eigenpairs shifts
(§5). We add that there is no simple relation between ‖eP (vi)‖ and ‖eL(vi, ṽα)‖ as it is
easy to find examples for either ‖eP (vi)‖ ≶ ‖eL(vi, ṽα)‖.

We conclude this section by mentioning an important theorem that can help localize
the coarse-grained eigenvalues about the original spectrum. This result is cited as the
Poincaré separation theorem in [9].

Theorem 4.4. Let M̃ = LMR∗ ∈ Cñ×ñ be a coarse graining of M such that (1) M

is Hermitian and (2) P = R∗L is orthogonal. Then, the eigenvalues of M̃ interlace the
eigenvalues of M in the following way

λn−ñ+i ≤ λ̃i ≤ λi.

Proof. The proof given in [9, p.190] holds for L = R. The generalization to an arbitrary
RL-decomposition of P is straightforward since sp(LMR∗) = sp(L̂MR̂∗) as long as
P = R̂∗L̂ and L̂R̂∗ = Iñ (Proposition 3.2 and Remark 3.3). !

In [5, Table 1] one can observe the left-positioning of the eigenvalues of the coarse-
grained matrix about the original spectrum. Notice that when ñ = n − 1 the rank of
the eigenvalues is automatically preserved since in that event

λn ≤ λ̃ñ ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ̃1 ≤ λ1.

Summary 4.5. The presence of ‖P‖ in our upper bounds suggests that orthogonal pro-
jectors are less harmful to eigenvalues in coarse graining. Other relevant factors with
potential effects on the accuracy of a CG are the departure from normality of PMP
(closely related with that of M) and the conditioning of M . In particular, when P is
orthogonal and M is Hermitian, the presence of κ(M) in Theorem 4.2 suggests that
matrices amenable to numerical computation (i.e. with low κ(M)) should be amenable
to coarse graining as well.

As the upper bound of Theorem 4.2 suggests the accuracy of a coarse graining can be
independent of the magnitude of the original eigenvalue (since the upper bound on the
minimum relative eigenvalue shift can cancel independently of |λ|); numerous simulations
validate this observation (see also the discussion of Figure 5.2). Finally, in the coarse
graining of Hermitian matrices with orthogonal projector the coarse-grained eigenvalues
interlace the original spectrum as described by the Poincaré separation theorem.
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5. Optimizing Coarse Graining under Constraints

When coarse graining real-world systems—e.g. oscillator networks while retaining
their synchronization properties [6], or large graphs while preserving the mean first
passage time of random walks on them [5]—one aims at preserving an arbitrary number
of M ’s eigenpairs given some problem-specific constraints on the transformation. In this
section, we define a constrained minimization problem and solve it taking into account
the material previously introduced.

We have seen in Proposition 3.7 that an eigenpair (λ, v) of M is exactly preserved in
M̃ = LMR∗ if and only if ‖eP (v)‖ = 0. This yields the following definition of a generic
coarse graining problem.

Problem 5.1. Given M ∈ Cn×n and (λ, v) an eigenpair of M to be preserved by the
coarse graining, the problem is to find a projector P̂ that solves

min
P∈C

‖eP (v)‖

where C is a set of projectors in Cn×n described by some ad hoc constraints c1, . . . cr

(e.g. c1 : P ∈ Rn×n, c2 : P = P t, c3 : Pij ≥ 0, etc).

Assuming a solution exists, P̂ is called a minimizer of Problem 5.1. Once a minimizer
has been found, one can compute an RL-decomposition of P̂ , for instance as in the proof
of Theorem 2.1, and finally the coarse graining LMR∗.

Remark 5.2. In the absence of constraints, the minimization of ‖eP (v)‖ with respect to
P leads to P = vv∗. Then the natural RL-decomposition is provided by the trivial exact
coarse graining (Remark 3.6).

Remark 5.3. The term Spectral Coarse Graining (SCG) is used to stress that the pro-
jector of a coarse graining is chosen so as to preserve one or more (see §5.4) eigenpairs
of the original matrix.

In the next two sections we introduce two important constraints, namely the grouping
by partitioning and the homogeneous mixing.

5.1. Partitioning. In most applications, the entries of a n × n matrix quantify the
pairwise interactions between n objects, or entity, labelled {1, . . . , n}. Conceptually, as
in data clustering [12], the grouping of the objects can be done either by partitioning
{1, . . . , n}, or by allowing every object to have a non-zero degree of membership to all the
groups (the latter is called “soft-grouping”). We focus on the more common partitioning
and introduce below the formalism to deal with it in coarse graining.

Definition 5.4. Let γ be the mapping from {1, . . . , n} to one of its partitions Γ, such
that γ(i) indexes the group (block) of i in Γ. We use Greek letters α,β to label the
elements of Γ and Roman letters i, j for the elements of {1, . . . , n}. To simplify notation
α can represent either the group or its index, so that the reader will encounter the
notations i ∈ α,

∑ñ
α=1 ·, and |α| to designate the number of elements in group α. The

so-called partitioning constraint is the requirement for the product (LMR∗)αα not to
mix up entries of M whose indexes don’t belong to α. Under partitioning, the semi-
projectors L and R are defined as

(5.1) Lαj = &αjδαγ(j) and Rαj = rαjδαγ(j),

where δαγ(j) is equal to one if j belongs to α and zero otherwise, and &αj , rαj ∈ C for
all α ∈ {1, . . . , ñ}, i ∈ {1, . . . , n}.

The next example should clarify the purpose of Equation 5.1.
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Example 5.5. When partitioning is imposed, the condition LR∗ = Iñ (Definition 3.1)
reads

(5.2) (LR∗)αβ =
n∑

j=1

&αj r̄βjδαγ(j)δβγ(j) = δαβ ⇔
∑

j∈α

&αj r̄αj = 1 ∀α,

and the entries of P become

(5.3) Pij =
ñ∑

α=1

R∗
iαLαj = &γ(j)j r̄γ(i)iδγ(i)γ(j).

Hence, P can be put in block form where each block corresponds to a unique group
in Γ. Finally, the coarse graining of M reads

(5.4) M̃αβ = (LMR∗)αβ =
∑

i∈α
j∈β

&αir̄βjMij ,

such that, as expected, M̃αα is a linear combination of M ’s entries whose indexes
belong exclusively to α.

Remark 5.6. When partitioning is the only constraint the minimizing projector is given
by

(5.5) P̂ij =
v(i)v(j)∑

k∈γ(i) |v(k)|2 δγ(i)γ(j),

where v(i) denotes component i of v. It is straightforward to check that P̂ in Equation
5.5 is indeed an (orthogonal) projector and that e bP (v) = 0 for any partition of {1, . . . , n}.

5.2. Homogeneous Mixing. The homogeneous mixing constraint is imposed to ensure
that objects belonging to the same group are identical in the projected system (i.e. that
they are indistinguishable with respect to the interactions described by PMP ), and
therefore that they can be merged into a single entity in the coarse-grained system
described by LMR∗.

Definition 5.7. Let Γ be a partition of {1, . . . , n}. The constraint of homogeneous
mixing is the requirement that for any x ∈ Cn and any α ∈ Γ, component i of Px is the
same for all i ∈ α (i.e. (Px)(i) = constant ∀i ∈ α).

The Homogeneous mixing constraint, which has roots in physics, was implicitly as-
sumed in [5, 6].

5.3. Minimizing ‖eP (v)‖: Methods and Analysis. In this section, we show how to
minimize ‖eP (v)‖ under the partitioning and the homogeneous mixing constraints. For
simplicity, we impose P ∈ Rn×n and v ∈ Rn; the case v ∈ Cn is treated in §5.4.

For v ∈ Rn, the general form of ‖eP (v)‖2 is

(5.6) ‖v − Pv‖2 =
ñ∑

α=1

∑

i∈α

[v(i)− (Pv)(i)]2.

The homogeneous mixing allows us to write ‖eP (v)‖2 =
∑ñ

α=1

∑
i∈α[v(i) − vavg(α)]2

for some vavg ∈ Rñ. We see that ‖eP (v)‖2 is minimum if
∑

i∈α[v(i) − vavg(α)]2 is
minimum for each α, that is for vavg(α) = 1

|α|
∑

i∈α v(i) as it can be readily verified, for
example, by deriving ‖eP (v)‖2 with respect to vavg(α). This gives us the optimal form
of (Pv)(i), that is (Pv)(i) = 1

|γ(i)|
∑

j∈γ(i) v(j). It is not difficult to see that for such
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P the partitioning constraint is satisfied, and thus the problem reduces to finding the
partition of {1, . . . , n} minimizing

(5.7) ‖eP (v)‖2 =
ñ∑

α=1

∑

i∈α



v(i)− 1
|α|

∑

j∈α

v(j)




2

.

We present below three methods to tackle this problem. The first method finds a true
minimizing partition of ‖eP (v)‖2 in polynomial time and memory load, whereas the
other two find an approximate solution in less time and memory. We stress that the use
of approximate methods, which may be appropriate if one deals with very large systems,
turns out to be indispensable when the SCG aims at preserving several eigenpairs (see
§5.4).

5.3.1. Optimal Minimization of ‖eP (v)‖. The naive approach consists in generating all
the partitions of {1, . . . , n} and extract a minimizer of ‖eP (v)‖. This method, however,
turns out to be infeasible in practice (even for moderately small ñ)3, and we must follow
different lines to obtain a solution in reasonable time. We propose an algorithm in
the spirit of Dynamic Programming [2], which relies on both the sub-optimality of the
problem and the reusability of previously computed values to boost computation. A
similar approach was independently taken in [14] in the context of image analysis.

Algorithm 5.8.

Step 1: Sort the components of v in increasing order: v(1) ≤ v(2) ≤ · · · ≤ v(n).
Step 2: For all i ≤ j, compute

(5.8)

cv(i, j) ≡
∑

i≤k≤j



v(i)− 1
j − i + 1

∑

i≤k≤j

v(j)




2

=
∑

i≤k≤j

v(k)2− 1
j − i + 1




∑

i≤k≤j

v(k)




2

.

Step 3: Starting with Fv(1, j) = cv(1, j), compute Fv(ñ, n) recursively by the fol-
lowing formula

(5.9) Fv(α, j) = min
α−1≤q<j

(Fv(α− 1, q) + cv(q + 1, j)) ,

and store at each step the minimizer of Equation 5.9:

Qαj ≡ arg min
α−1≤q<j

(Fv(α− 1, q) + cv(q + 1, j)) .

According to Equations 5.8 and 5.9, Fv(ñ, n) is the minimum of ‖eP (v)‖ over
all the partitions with ñ groups.

Step 4: Starting from Qñn work out the minimizing partition corresponding to
Fv(ñ, n) by backtracking through the matrix Q.4

Provided cv is computed in time O(n2)—which can always be achieved computing the
right-hand side of Equation 5.8—it can be seen that Algorithm 5.8 finds the minimizing
partitions with size 1 to ñ in time O(ñn2) and memory load O(n2).

3The number of different partitions of {1, . . . , n}, known as the Bell number, grows exponentially with
n. E.g. for n = 20 it already exceeds 1013!
4The same procedure can be applied to retrieve from Q all the minimizing partitions with n′ ≤ ñ groups.
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5.3.2. Approximate Minimization of ‖eP (v)‖: Fixed-Size Intervals Method. For very
large systems (i.e. n # 104), one has to rely on approximate methods to minimize
‖eP (v)‖. We discuss below in some detail the partitioning of v into fixed-sized intervals,
as employed in [5, 6], and give arguments to explain the very accurate coarse grainings
obtained by this simple method.

Recall that the eigenvector v is assumed normalized. Cut v into m ≥ ñ intervals
I1, . . . , Im of respective length ε1, . . . , εm and denote by |Ik| the number of components
falling into Ik; by definition ñ is the number of non-empty intervals. We have seen above
that

∑ñ
α=1

∑
i∈α(v(i)− vavg(α))2 is minimum for vavg(α) = 1

|α|
∑

i∈α vα. Hence,

(5.10) ‖eP (v)‖2 =
ñ∑

α=1

∑

i∈α

(
v(i)− 1

|α|
∑

i∈α

vα

)2

≤
m∑

k=1

∑

i∈Ik

(εk

2

)2
=

1
4

m∑

k=1

|Ik|ε2
k.

Ideally, the Ik should be chosen so as to minimize the right-hand side of Equation 5.10.
For simplicity though, we consider here fixed-size intervals such that εk = ε ∀k, which
yields immediately ‖eP (v)‖ ≤ ε

2

√
n. Let δ(v) be defined as δ(v) = maxi v(i)−mini v(i) ≤

2; then ε = δ(v)/m and we have

(5.11) ‖eP (v)‖ ≤ δ(v)
√

n

2m
≤
√

n

ñ
.

Hence, when P is orthogonal, as in Theorem 4.2,

(5.12)
‖eP (v)‖
‖Pv‖ = ‖eP (v)‖(1 + O(‖eP (v)‖2) ≤ δ(v)

√
n

2m

(
1 + O

( n

ñ2

))
.

Remark 5.9. Equations 5.11 and 5.12 provide informative bounds on the eigenvalue
shifts. Indeed, provided fixed-size intervals or a better partitioning is used (e.g. the
optimal partitioning of §5.3.1):

• The minimum eigenvalue shifts go to zero at least as ñ−1.
• If the accuracy is the same, the SCG of large matrices may achieve better dimen-

sion reduction than the coarse graining of small matrices. E.g. ‖eP (v)‖ ≤ 0.1
is obtained either for n = 104 and ñ = 103, or for n = 106 and ñ = 104, which
improves by a factor 10 the ratio n/ñ.

• The factor δ(v) in Equation 5.11 can affect substantially the accuracy of a coarse
graining. Indeed, it is common to observe values of δ(v) much smaller than 2,
especially for particular eigenvectors of some random matrices (see Figure 5.2).

5.3.3. Approximate Minimization of ‖eP (v)‖: Fixed-Size Intervals+k-means Method.
One can usually improve the result of the fixed-size intervals method by running the
so-called “k-means” algorithm [17, 8] on the obtained partition. Starting from a parti-
tion of {1, . . . , n} with k groups, k-means finds at each step a new partition of same
cardinality such that ‖eP (v)‖ (of Equation 5.7) is smaller for the new partition than
for the former. The algorithm keeps running until it gets stuck—usually—in a local
minimum of ‖eP (v)‖.

Hence, even though the final partition driven by k-means is seldom the “absolute”
minimizer of ‖eP (v)‖, it is certainly a better one than the partition obtained by the
fixed-size intervals method when the latter is used to initialize k-means.

5.4. Several Eigenpairs and Complex Case.

5.4.1. Several Eigenpairs: Exact SCG. In the absence of constraints on the coarse grain-
ing, it is sometimes possible to preserve exactly an arbitrary subspace of M ’s eigenspace.
Suppose M ∈ Cn×n is diagonalizable. Compute a projector P onto the subspace of Cn

spanned by the eigenvectors of M to be preserved, and along the subspace spanned by
the remaining eigenvectors; since M is diagonalizable both subspaces are complementary
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Figure 5.1: This figure depicts the construction of the final partition Γ, when fixed-size intervals
of size ε1 and ε2 are used to bin the components of v1, respectively of v2 (Method 1 of §5.4.2).
All objects whose components end up in the same box are grouped together in Γ.

(but not necessarily orthogonal). Compute an RL-decomposition of P and finally the
coarse-grained matrix M̃ = LMR∗.

This approach is popular in statistics to reduce multidimensional data sets, wherein
it is known as Principal Component Analysis (PCA) [13]. In this context, M is the data
covariance matrix and its eigenvectors are the (independent) directions along which the
variance of the data is maximum; as for the variance along each eigenvector it is given
by the corresponding eigenvalue of M . PCA usually preserves the largest eigenvalues as
they explain the most variance.

When partitioning is imposed, the projector of Equation 5.5 is generally useless to
preserve exactly several eigenpairs. However, if the groups are made up of objects with
equal components in the eigenvectors to be preserved, the projector of Equation 5.5
takes the form P̂ij = |γ(i)|−1δγ(i)γ(j), and ‖eP (v)‖ = 0 for all these eigenvectors. This
technique can be used to eliminate zero eigenpairs resulting from possible row duplication
in M (columns if left eigenvectors are considered).

5.4.2. Several Eigenpairs: Approximate SCG.
Method 1. Let (λ1, v1), . . . , (λs, vs) be s eigenpairs of M , not necessarily ordered, to be
preserved by the coarse graining. We assume the conditions of §5.3 hold, that is P and
the vk are real, and we impose the homogeneous mixing constraint. Suppose one of
the three methods of §5.3 has been applied on each vk and has given the s partitions
Γ1 = {α11, . . . ,α1ñ1}, . . . ,Γs = {αs1, . . . ,αsñs}, where αki denotes group i of partition
k. Let γ(i) stand for the final group of i. Two objects i and j are grouped together in
the final partition Γ if they are grouped together within each Γk. Formally, Γ is defined
implicitly as follows. For all i, j ∈ {1, . . . , n},

(5.13) γ(i) = γ(j) d⇔ ∃k1, . . . , ks such that i, j ∈ α1k1 ∩ · · · ∩ αsks .

Even though each Γk minimizes ‖eP (vk)‖, Γ generally does not minimize any of the
‖eP (vk)‖. The case s = 2 of this construction is illustrated in Figure 5.1.
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Method 2. Another way to preserve (λ1, v1), . . . , (λs, vs) is by trying to minimize the
overall sum
(5.14)

s∑

k=1

‖eP (vk)‖2 ≡
s∑

k=1

ñ∑

α=1

∑

i∈α

(
vk(i)−

1
|α|

∑

i∈α

vk(i)

)2

=
ñ∑

α=1

∑

i∈α

‖wi −
1
|α|

∑

i∈α

wi‖2,

where wi = (v1(i), . . . , vs(i))t and 1
|α|

∑
i∈α wi is the barycentre of the wi belonging to

group α. This amounts to clustering n points (of a s-dimensional space) into ñ groups by
minimizing the overall intra-group variance. This approach was proposed in [15] for the
coarse graining of stochastic matrices, but the problem was previously shown NP-hard
for s > 1 and ñ ≥ 2 in [3]. As a consequence, k-means is commonly employed to drive
an approximate minimizer of Equation 5.14 in reasonable time.

The main drawback of k-means here is that for large ñ the k-means solution can be
much poorer than the true minimizer of Equation 5.14, due to the multiplication of
“trapping” local minima in

∑s
k=1 ‖eP (vk)‖2. More importantly, minimizing Equation

5.14 does not allow precise individual control of the eigenpair shifts, which may be
problematic in applications wherein the eigenpairs to be preserved are not all equally
relevant to the system.

In other words, because of its greater flexibility, Method 1 of this paragraph is gener-
ally a better choice than Method 2 to preserve several eigenpairs in SCG. In particular,
Algorithm 5.8 of §5.3.1 can be used to find the true minimizing partitions of the ‖eP (vk)‖,
which makes further consideration about the (physical) meaning of the groups more per-
tinent than with approximate methods. On the other hand, Method 2 allows one to fix
ñ at the cost of unpredictable eigenpair shifts. Therefore, the latter might be considered
if the size of the coarse grained matrix is imposed beforehand, and one is not concerned
with precise control of individual eigenpair shifts.

5.4.3. Complex Eigenpairs. For v a non-real eigenvector, one can carry out the mini-
mization of ‖eP (v)‖ as the minimization of both ‖eP (1v)‖ and ‖eP (2v)‖ by either of
the methods above. Indeed, provided vavg(α) = 1

|α|
∑

i∈α v(i),

‖eP (v)‖2 =
ñ∑

α=1

∑

i∈α

|v(i)− vavg(α)|2

=
ñ∑

α=1

∑

i∈α

(1 [v(i)− vavg(α)])2 + (2 [v(i)− vavg(α)])2

=
ñ∑

α=1

∑

i∈α

(1[v](i)−1[v]avg(α))2 + (2[v](i)−2[v]avg(α))2

= ‖eP (1v)‖2 + ‖eP (2v)‖2.
The need to minimize two eigenvector shifts in the complex case is not surprising

since, for M a real matrix, the preservation of an eigenpair automatically implies the
preservation of its conjugate. In this case, Method 1 of §5.4.2 allows the differentiation
between the preservation of 1v and 2v.

The accuracy of the methods presented in this section is compared in Figure 5.2.

6. Application to Graph Theory

The spectral coarse graining (SCG) of graphs under constraint has been initially
introduced through the SCG of stochastic matrices in [4, 15, 5] and through the SCG
of Laplacian matrices in [6]. The main goal in these works was to reduce large graphs
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Figure 5.2: These figures depict the relative eigenvalue shifts when coarse graining for λ1

and λ2, by Method 1 of §5.4.2, two different classes of matrices in R500×500. (1) On the left-
hand side, the results for symmetric matrices with positive i.i.d. entries. In this case, the v(i)
are densely distributed with no particular pattern. We observe that the three methods, optimal
(“——”), intervals+kmeans (“– – –”), and intervals (“− · ·−”), give equally accurate coarse
grainings. The important gap between both shifts follows from the fact that δ(v1) = maxi v1(i)−
mini v1(i) ≈ 10−3 whereas δ(vi) ≈ 1∀i ∈ {2, . . . , n} (Remark 5.9). We stress that the relative
eigenvalue shifts for i > 2, not shown here, are all identical to the case i = 2 (i.e. the relative
accuracy is—generally—independent of the magnitude of the eigenvalues; see also Summary
4.5). (2) On the right-hand side, the results for adjacency matrices of Barabasi–Albert random
graphs [1]—the latter have correlated entries drawn from {0, 1}. For these matrices, the v(i)
are sparsely distributed and a stripe pattern can be observed. As a consequence, the groups are
better identified by the optimal algorithm, which outperforms the approximate methods. Results
have been averaged over a thousand realizations of both matrices.

while preserving their spectral-related features (i.e. features of the system related to
the spectral properties of the associated interaction matrix). In the following we recast
these SCG in the framework of this article, and introduce the SCG of a graph adjacency
matrix.

Definition 6.1. Let G(V,E) be a weighted strongly connected graph (i.e. there is a
path between any pair of vertices in G). V is the set of vertices, labeled from 1 to n, and
E is the set of edges; to every edge is associated a weight eij ≥ 0 and, with no mention
of the contrary, G is supposed directed, that is eij is not necessarily equal to eji.

(1) The adjacency matrix A is defined as Aij = eij , with Aij = 0 indicating that
there is no edge from vertex i to vertex j. By definition G is undirected if A is
symmetric.

(2) We define the graph Laplacian matrix L as Lij = δij
∑n

k=1 Aik −Aij .

(3) The row-stochastic matrix W is defined as Wij =
Aij∑n

k=1 Aik
.

Definition 6.2. Let G(V,E) be a weighted graph with edge weights {eij}. Let Γ be a
partition of V . A coarse-grained graph G̃(Ṽ , Ẽ) with respect to Γ is a graph where (1)
to each vertex in Ṽ corresponds one and only one group in Γ, and (2) every edge weight
ẽαβ is a linear combination of the elements in {eij |i ∈ α, j ∈ β and α,β ∈ Ṽ }.
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Remark 6.3. A crucial condition to the coarse graining of A, L and W is that the
transformation preserves the structure of the original matrix, that is Ã ≡ LARt, resp.
L̃ ≡ LLRt and W̃ ≡ LWRt, must be an adjacency, respectively a Laplacian and a
stochastic matrix, of a graph; this is called the structural constraint.

6.1. Adjacency Matrices. G(V,E) is a weighted graph with n vertices and A its
associated adjacency matrix.

If A is symmetric, and the coarse-grained adjacency matrix LARt is to be symmetric
as well, the natural choice is to coarse-grain A with L = R—which implies that the
projector P = RtR is orthogonal. In addition, we impose the homogeneous mixing
constraint of Section 5.2 (i.e. (Px)(i) is constant within each group and ∀x ∈ Rn).
Recall that ‖eP (v)‖2 =

∑
i∈α[v(i)−(Pv)(i)]2 is minimum if (Pv)(i) = 1

|γ(i)|
∑

j∈γ(i) v(j),
and the partitioning constraint is automatically satisfied by P (§5). A simple way to
satisfy homogeneous mixing, while still ensuring RRt = Iñ, is to define R as

Rαj =
1√
|α|

δαγ(j).

The coarse-grained matrix Ã is the adjacency matrix of the coarse-grained graph
G̃(Ṽ , Ẽ), with edge weights given by

ẽαβ = Ãαβ =
1√
|α||β|

∑

i∈α
j∈β

Aij .

Obviously, taking L = R is also possible if LARt is not to be symmetric (e.g. G(V,E)
is directed), as long as this choice does not violate other ad hoc constraints.

6.2. Laplacian Matrices. In this example, G(V,E) is a weighted undirected graph
with n vertices and L is its associated Laplacian matrix. Under these conditions, it can
be shown that L is symmetric semi-positive definite.

By definition the rows of L sum up to zero, which in this case is equivalent to say-
ing that L has a unique zero eigenvalue with corresponding right eigenvector vn =
(1, . . . , 1)t ∈ Rn—the zero eigenvalue has multiplicity one since G is connected.

The structural constraint is satisfied if L̃ = LLRt also has a unique zero eigenvalue
with right eigenvector ṽñ = (1, . . . , 1)t ∈ Rñ. A natural choice is then to choose R such
that Rtṽñ = vn, which implies rαj = δαγ(j) under partitioning (Equation 5.1). Since
LRt = Iñ, it follows that the rows of L verify

∑n
j=1 &αjδαγ(j) =

∑
j∈α &αj = 1, which can

be achieved by taking &αj = |α|−1. This results in the following definitions:

(6.1) Lαj =
1
|α|δαγ(j) and Rαj = δαγ(j).

As with adjacency matrices, this choice of L and R is optimum in the sense that
(Pv)(i) = 1

|γ(i)|
∑

j∈γ(i) v(j) for all i (§5). Hence, the homogeneous mixing is satis-
fied and the minimization of ‖eP (v)‖ to find the optimal partition can be carried out as
described in §5.

Let us examine the main properties of this coarse graining.
P1: A straightforward calculation shows that L̃ṽñ = 0.
P2: (Px)(i) is constant over each group ∀x ∈ Rn.
P3: Denote by H the ñ × ñ matrix Hαβ =

√
|α|δαβ and consider the change of

basis HL̃H−1 = (HL)L(RtH−1). It is easy to see that HL = (RtH−1)t, such
that L̃ is similar to a symmetric semi-positive definite matrix (though it is not
symmetric since L += R).
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P4: Since the projector P = RtL is orthogonal, the coarse-grained eigenvalues
obey the interlacing of the Poincaré separation theorem (Theorem 4.4). As a
consequence, the zero eigenvalue of L̃ is unique.

Properties P1 and P4 ensure that the matrix L̃ is the Laplacian matrix of a connected
weighted graph G̃(Ṽ , Ẽ) in the sense of Definition 6.1. To find the edge weights ẽαβ ,
we first notice that LLRt = LDRt − LARt = D̃ − Ã, where Ãαβ = 1

|α|
∑

i∈α
j∈β

Aij and

D̃αβ = δαβ
∑ñ

ω=1 Ãβω. Hence, Ã is the adjacency matrix of G̃ and the edge weights are
given by

ẽαβ = Ãαβ =
1
|α|

∑

i∈α
j∈β

Aij .

As argued in [6] the coarse graining presented in this paragraph can be used to re-
duce efficiently large graphs of coupled oscillators while preserving their synchronization
properties (the latter are related to the ratio λ1(L)/λn−1(L)).

6.3. Stochastic Matrices. For this last application, G(V,E) is a strongly connected
weighted graph with n vertices and row-stochastic matrix W .

The matrix W gives the transition probability distribution of a Markov chain on G.
Since G is strongly connected W has a unique eigenvalue λ = 1 associated to a right
eigenvector v1 = (1, . . . , 1)t ∈ Rn, and to a left eigenvector p1 ∈ Rn with p1(i) > 0∀i.
The components of p1 give, up to a scalar multiplication, the stationary distribution
of the Markov chain. Importantly, for undirected graphs p1 (unnormalized) is given by
p1(i) =

∑n
j=1 Aij .

In order to satisfy the structural constraint, we require that the coarse-grained matrix
W̃ is row-stochastic, that is λ = 1 must be an eigenvalue of W̃ with corresponding right
eigenvector ṽ1 = (1, . . . , 1)t ∈ Rñ.

In addition, we demand to preserve exactly the stationary state p1 in W̃ , that is, we
look for semi-projectors L and R such that pt

1R
t is a left eigenvector of LWRt with

eigenvalue equal to one.
To this aim the following choice for R and L was independently proposed in [4, 15, 5]

(although column-stochastic matrices were considered there):

(6.2) Lαj =
p1(j)∑

k∈γ(j) p1(k)
δαγ(j) and Rαj = δαγ(j).

We verify immediately the following properties:
P1: P = RtL is indeed a projector since LRt = Iñ, but P += P t in general.
P2: (Px)(i) is constant over each group ∀x ∈ Rn.
P3: The stationary state is exactly preserved. Indeed, it is easy to verify that

pt
1P = pt

1 so that pt
1R

tW̃ = pt
1PWRt = pt

1R
t.

P4: The structural constraint is fulfilled: W̃ ṽ1 = ṽ1. Furthermore, λ̃ = 1 has mul-
tiplicity one since the coarse-grained graph defined from W̃ is strongly connected
(see Equation 6.3).

By property P4, the coarse-grained matrix W̃ = LWRt is the row-stochastic matrix of
the coarse-grained graph G̃(Ṽ , Ẽ) with edge weights given by

(6.3) ẽαβ = Ãαβ =
∑

i∈α
j∈β

p1(i)∑n
k=1 Aik

Aij .
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To see this, we first write down explicitly W̃αβ :

(6.4) W̃αβ = (LWRt)αβ =
∑

i∈α
j∈β

p1(i)∑
l∈α p1(l)

Aij∑n
k=1 Aik

=
Ãαβ∑

l∈α p1(l)
,

where we have defined Ãαβ ≡
∑

i∈α
j∈β

p1(i)∑n
k=1 Aik

Aij . Recall that the left eigenvector p1

satisfies pt
1 = pt

1W ⇔ p1(l) =
∑n

j=1 p1(j)
Ajl∑n

k=1 Alk
. Substituting p1(l) in Equation 6.4

gives

W̃αβ =
Ãαβ

∑
l∈α

∑ñ
ω=1

∑
j∈ω p1(j)

Ajl∑n
k=1 Alk

=
Ãαβ∑ñ

ω=1 Ãωα

.

Now, since W̃ ṽ1 = ṽ1, we have that
∑

β W̃αβ = 1 ⇔
∑

β Ãαβ =
∑

β Ãβα, and thus

W̃αβ =
Ãαβ∑ñ

ω=1 Ãαω

.

Therefore, Ãαβ is the adjacency matrix of a (directed) graph G̃(Ṽ , Ẽ) with edge weights
given by Equation 6.3. If G(V,E) is undirected, we recall that p1(i) =

∑n
j=1 Aij ; as a

consequence

ẽαβ =
∑

i∈α
j∈β

Aij ,

which is the (intuitive) sum of the edge weights between the two groups α and β.
Importantly, Equation 6.2 implies that ‖eP (v)‖2 now reads

(6.5) ‖eP (v)‖2 =
ñ∑

α=1

∑

i∈α



v(i)− 1∑
j∈α p1(j)

∑

j∈α

p1(j)v(j)




2

.

Even though Equation 6.5 and Equation 5.7 are different in general, when the groups
are composed of vertices with equal components in v (i.e. v(i) = v(j) ∀i, j ∈ α and ∀α),
the coarse graining is exact in both cases (i.e. ‖eP (v)‖ = 0).

The optimal minimization of ‖eP (v)‖ (Algorithm 5.8) can still be carried out by
defining cv accordingly. Furthermore, the fixed-size intervals method yields a similar
upper bound as in Equations 5.10 and 5.12, so that adding the constraint pt

1R
tW̃ = pt

1R
t

to the minimization does not alter the main results of §5. In particular, the approximate
methods presented in the previous section still lead to very accurate coarse grainings, as
observed in [5].

Finally, if G is undirected, we show that the coarse-grained matrix LWRt with L and
R as in Equation 6.2 is similar to the matrix R̂MR̂t, where M is real symmetric and R̂
is a semi-orthogonal projector (see also Property P3 of the Laplacian matrix).

Let D be the diagonal matrix defined as Dii =
∑n

j=1 Aij ; hence W = D−1A. We
consider the matrix M defined as

(6.6) M = D1/2WD−1/2 = D−1/2AD−1/2.

Clearly M and W have the same eigenvalues and if G is undirected M is symmetric.
We introduce the matrix M̃ = D̃1/2W̃ D̃−1/2, with D̃ the diagonal matrix defined as
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D̃αα =
∑

i∈α Dii; then sp(M̃) = sp(W̃ ). Further, M̃ can be expressed as

M̃ = D̃1/2W̃ D̃−1/2

=
(
D̃1/2LD−1/2

)

︸ ︷︷ ︸
bL

M
(
D1/2RtD̃−1/2

)

︸ ︷︷ ︸
bRt

.

It is straightforward to see that L̂R̂t = Iñ as required. Finally, if the graph is undirected,
we have that L̂ = R̂ since p1(i) =

∑n
k=1 Aik. Therefore, although P is not orthogonal in

this coarse graining, the results of the symmetric SCG apply; in particular the eigenvalues
of W̃ and W interlace as described by the Poincaré separation theorem.

7. Summary and Conclusion

Spectral Coarse Graining (SCG) is a general framework for dimension reduction of
large systems. It goes beyond traditional clustering strategies by providing a coarse-
grained system, and includes Principal Component Analysis as the exact coarse graining
of correlation matrices for their large eigenvalues.

In this work our first goal was to put SCG on a firm mathematical basis. To this aim,
we have addressed some important theoretical issues, such as the mathematical definition
of a coarse graining transformation and its connexion with projection in Linear Algebra.
Then, borrowing techniques from matrix perturbation theory, we have bounded from
above the minimum eigenvalue shifts caused by a coarse graining. We have extracted
from the bound the quantity ‖eP (v)‖, whose minimization has been shown to be a
necessary and sufficient condition to the preservation of the eigenpair (λ, v) in the coarse-
grained matrix.

In a second part, we have defined a generic SCG problem along with the partition-
ing and homogeneous mixing constraints. We have solved the problem by means of
an optimum algorithm and of two approximate methods—introduced do deal with very
large systems—which have been further extended to the preservation of several eigen-
pairs. Finally, we have performed the SCG of graphs within our framework through
the SCG of the adjacency, the Laplacian and the stochastic matrices. In particular, we
have incorporated the conservation of the matrix structure as a constraint in all these
instances.

We believe that SCG, being still in its infancy, offers a number of interesting extensions
and open questions. For example, it would be interesting to refine the perturbative
analysis so as to obtain upper bounds on the eigenvector shifts, as well as lower bounds
on the eigenvalue shifts, in terms of ‖eP (v)‖. Possible extensions of the theory include
the SCG of linear operators in Hilbert space (for which the spectrum is discreet and
often meaningful), SCG with overlapping groups (in analogy with “soft” clustering), and
the SCG of higher-rank tensors for which “eigen-decompositions” have recently found
application in Genetics [16].

As could be noticed, setting up a specific SCG problem involves the choice of system-
dependant constraints that can make the problem delicate to solve. We hope the present
framework, along with the various examples, will be helpful to anyone interested in
applying SCG techniques to his or her problem. Toward this goal, a computer program
will soon be released that will make the methods presented in this paper ready-to-use.
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