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PROGRAM OF THE COURSE

1. Theory of Random walks
The simplest model of polymers and a 
cornerstone of statistical physics

2. Properties of Polymers 
The basic biological macromolecules 
(DNA and proteins)

3. Proteins
The workhorses of all organisms
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A BRIEF HISTORY OF THE RANDOM WALK
(Brownian motion)

1827:  Robert Brown (a botanist) sees under his microscope 
that a pollen grain in water is moving all the time in a random 
way. By repeating the experience with different particles and 
liquids, he discovers that this movement is a universal property
of the particle+liquid system.

1905:  Albert Einstein uses microscopic principles to 
find the mathematical laws governing Brownian motion

1905-10:  Smoluchowski and Langevin, independently from 
Einstein, obtain equivalent descriptions of Brownian motion
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Random walk on a one-dimensional lattice

The Brownian particle can jump to the right with 
probability p and to the left with probability q

q p

ii-1 i+1
p+q=1

If the particle starts from i=0, what is the 
probability to find it at site n after N steps?
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Probability to find the particle 
at n after N steps

#( , )
#
of favorable casesP n N
of possible cases

   
=

    

The total number of possible cases is simply 2N

Physique Statistique de 
Biomacromolecules



To arrive in n after N steps, the random particle must
go NR times to the right and NL times to the left with the 
double constraint

R L

R L

N N N
N N n

+ =
− =

These constraints give

2 2R L
N n N nN N+ −

=                =  

Physique Statistique de 
Biomacromolecules



So the number of favorable cases is given by the 
number of distinguishable ways to mix NR and NL steps

( )
!#

! !R R

Nof favorable cases
N N N

    = 
−

And finally we obtain

1 !( , )
2

2 2
! !

N

NP n N
N n N n

 = 
+ −⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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We use Stirling’s approximation to obtain an
asymptotic expression for P(n,N) in the limit
N»n. The result is

2

22( , )
2

n
NP n N e

Nπ
−
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Is a gaussian distribution surprising?

The position after N steps is the sum of N random 
variables equal to xi=±1 with equal probability. 

1

( )
N

i
i

n N x
=

= ∑

For large values of N the Central Limit Theorem tells 
us that the distribution of n(N) tends to a gaussian
distribution of square variance N 
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Continuous space and time 
description of Brownian motion

Previously we have focused on counting possible 
paths, one by one; now we look at all of them at once.

We need a completely probabilistic description of the random walk!

We want a relation between P(n,N+1) and P(n,N)
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Master equation for P(n,N)

The probability of the particle being in n at time N+1 is related
to its probability of being in a different site n’ at time N, such that
it could jump from n’ to n in one time step.

If the probability of jumping at a distance k
(positive or negative) is p(k), then we have

( , 1) ( ) ( , )
k

P n N p k P n k N
+∞

=−∞

+  =  −∑
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We look at the simple case

, 1 , 1( ) k kp k δ δ+ −

1 1
 = +

2 2

and we obtain the master equation

1 1( , 1) ( 1, ) ( 1, )
2 2

P n N P n N P n N+  = − + +
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Going to the continuum limit

1
1

N t N t t
n x n x x

→        + → + ∆
  →        +  → + ∆

and therefore

1 1( , ) ( , ) ( , )
2 2

P x t t P x x t P x x t+ ∆  = − ∆ + + ∆
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After some simple algebra, the 
continuum time and space limit is

0, 0

2

20, 0

( , ) ( , )lim

( , ) 2 ( , ) ( , )lim
2

x t

x t

P x t t P x t
t

x P x x t P x t P x x t
t x

∆ →  ∆ →

∆ →  ∆ →

+ ∆ −
=

∆
⎡ ⎤∆ − ∆ − + + ∆⎛ ⎞                 = ⎜ ⎟⎢ ⎥ ∆ ∆⎝ ⎠⎣ ⎦
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The limit is then

2

2( , ) ( , )P x t D P x t
t x

∂ ∂
=

∂ ∂
This is the
DIFFUSION EQUATION

And the diffusion constant D is

2

0, 0
lim

2x t

xD
t∆ →  ∆ →

∆
=

∆

Physique Statistique de 
Biomacromolecules



This is the first appearance of a 
special space-time relation

1/ 2x t∆  ∆

Without this relation the diffusion constant 
D would be either null or infinite
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The solution of the diffusion equation 
is obtained by Fourier transform

2( , ) ( , )P k t Dk P k t
t

∂
= −

∂

2

( , ) ( ,0) Dk tP k t P k e− = The solution is

Where              is the transform of the initial condition ( ,0)P k
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Taking the anti-transform yields 

2( ') / 4( , ) ( ',0) 'x x DtP x t P x e dx
Dtπ

+∞ − −

−∞

1
 = 

4 ∫

( ,0) ( )P x xδ=And if the initial condition is 

2

4( , )
x
DtP x t e

Dtπ

−1
 = 

4
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Second time we find the special 
space-time relation

2

4( , )
x
DtP x t e

Dtπ

−1
 = 

4

Space scales as the square root of time!!!
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The variance of the distribution is

2 2Dx t< > = 

The variance grows linearly in time. In particular the diffusion
constant is defined, from experiments, using the above formula.
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The diffusion equation can be 
derived also in d dimensions

[ ]
1

( , ) ( , ) ( , )
d

i i i i
i

P x t t P x x e t P x x e t
d =

1
+ ∆  = + ∆ + − ∆

2 ∑r r r r r

Where     is the unit vector in the ith direction. ier

The known trick for the continuum limit yields

22

2 01 0

( , ) ( , ) lim
2i

d
i

i i xi i t

xP x t D P x t D
t x d t∆ →

= ∆   →

∆∂ ∂
 =            =

∂ ∂ ∆∑r r

The diffusion equation is not necessarily isotropic!
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The solution of the high dimensional diffusion equation
is then

2

1 4
1/ 2

/ 2

1

( , )
)

d
i

ii

x
D t

d
d

i
i

P x t e
t Dπ

=

−

=

∑1
 = 

⎛ ⎞
(4 ⎜ ⎟

⎝ ⎠
∏

r

The relation between space and time does not change!!!
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Random walk in bounded spaces

The simplest example of a bounded space is the half line

x

t

Forbidden region

Reflective boundary

The boundary could 
also be absorbing
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Random walk on a bounded lattice

x

t

Point of space under investigation

n n0

Forbidden region

Image of target point

What is the probability P(n,N) of being at n after N time
steps, knowing that there is reflecting/absorbing wall in n0?
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Reflecting wall

If the wall is reflecting, all paths that would go the 
image point end up in the target site.

The image point is located at 2n0-n, and therefore

0 0( , ; ) ( , ) (2 , )P n N n P n N P n n N = + −
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Absorbing wall

If the wall is absorbing, all paths that would go the 
image point are destroyed.

The image point is located at 2n0-n, and therefore

0 0( , ; ) ( , ) (2 , )P n N n P n N P n n N = − −
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We can easily go to the continuum

Reflecting wall

0 0( , ; ) ( , ) (2 , )P x t x P x t P x x t = + −

Absorbing wall

0 0( , ; ) ( , ) (2 , )P x t x P x t P x x t = − −
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The principle of the image is very useful in one dimension
and with a simple wall. In more complex geometries, 
and in higher dimensions it cannot be applied. 

What do we learn then from the image trick that can be 
applied in other contexts?

Since our aim is to find a solution for the diffusion 
equation, we look for the boundary conditions imposed by
the principle of the image
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Reflecting wall

0 0 0

0 0

0 0

( , ; ) ( , ) (2 , )

( , ; ) | ( , ) | (2 , ) | 0

r

x r x x x x x

P x t x P x t P x x t

P x t x P x t P x x t

             = + −

                                       ⇓
∂ = ∂ +∂ − =

But                       is the current of probability 
across the wall. If it is null it means that there there
is no probability that a particle crosses the wall, in
perfect agreement with physical intuition for a reflecting
barrier.

00( , ; ) |x r xP x t x∂
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We can then generalize this boundary condition to
arbitrary geometry and dimension

ˆ ( , ) | 0x boundaryn P x t ∈⋅∇ =r

r r

Where      is the unitary vector normal to the boundaryn̂
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Absorbing wall

0 0

0 0 0 0 0

( , ; ) ( , ) (2 , )

( , ; ) ( , ) (2 , ) 0

r

r

P x t x P x t P x x t

P x t x P x t P x x t

     = − −

                               ⇓
= − − =

The probability to find the particle on the wall is therefore 
zero, which is physically intuitive since as the particle
touches the wall, it disappears, so that the probability to
find it there is null
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We can then generalize this boundary condition to
arbitrary geometry and dimension

( , ) | 0x boundaryP x t ∈ =r
r
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Normalization

The particle can be found only on the left of the wall.

Reflecting wall

0 0 0

0

0

0 0( , ; ) ( , ) (2 , )

( , ) ( , ) 1

x x x

x

x

P x t x dx P x t dx P x x t dx

P x t dx P x t dx

−∞ −∞ −∞

+∞

−∞

 =  + −  =  

           =  +  =  

∫ ∫ ∫
∫ ∫

The probability is conserved, compatibly with
the absence of a probability current across the wall.
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Absorbing wall

0 0 0

0

0

0 0( , ; ) ( , ) (2 , )

( , ) ( , )

x x x

x

x

P x t x dx P x t dx P x x t dx

P x t dx P x t dx

−∞ −∞ −∞

+∞

−∞

 =  − −  =  

           =  −  < 1  

∫ ∫ ∫
∫ ∫

Since the probability to find the particle left of 
the wall is smaller than 1, this implies that the 
particle has been absorbed before time t with 
the probability

0

0( ) 1 ( , ; )
x

deathP t P x t x dx
−∞

= − ∫
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What is the total probability of death?

For large time, does the particle always die?

22
0 0

2 2
0 0

( 2 )
4 4

2
4 2

1( )
4

2 21 1
4 2

x x xx
Dt Dt

survival

x x Dtx y
Dt

P t dx e e
Dt

e dx e dy
Dt

π

π π

−
− −

−∞

− −

−∞ −∞

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦

=  −  = −

∫

∫ ∫

This expression goes to 0 in the large time limit!
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The probability of having died before time t 
is the complement of the survival probability

2
0 2

22( ) 1 ( ) 2
2

x Dt y

death survivalP t P t e dy
π

−

−∞

= − = − ∫

Since the particle can die just once, if we define
the probability to die between t and t+dt, then we can also
write

( )dieP t dt

0

( ) ( ') '
t

death dieP t P t dt= ∫
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The probability to die can be obtained as

2
0

0 4
3/ 2

( ) ( )
4

x
Dt

die death
xdP t P t e

dt D tπ

−
= =

  

( )dieP t is also the probability that the particle’s life is t.

As a consequence, the average life of a particle is

2
010 42

0 0

( )
4

x
Dt

die
xt t P t dt t e dt

Dπ

∞ ∞
−−= ⋅ = = ∞∫ ∫
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We have therefore the strange result that, although
the particle dies with probability 1, its average life-time
is infinite. 

This might seem counterintuitive, but this is a typical 
problem with Levy distributions. Indeed            is a 
Levy distribution with infinite first and second moments. 

( )dieP t
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Geometric picture

How can we visualize the “sure death” of the Brownian particle?

In order to understand why the random walk will meet a sure
death we need a new concept: the Fractal Dimension of its
trajectory.

The fractal dimension extends to non-integer values the 
usual concept of Euclidean dimension that we are used to.

We define sets of objects that are geometrically intermediates
between lines and surfaces, and between surfaces and solids.
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Hausdorff fractal dimension

How does the number of points within a 
circle of radius R grow with R?

If the distribution is uniform we
expect that 2( ) ~N R R

R2

R1
The points of the surface itself
are distributed homogeneously:
therefore the surface has an
area 2( )A R Rπ=
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It is important not to mix the dimension of the space where
the collection of objects is embedded, and the dimension of
the collection of objects!!!

In the previous example, the embedding space dimension 
is d=2. The Hausdorff dimension of the collection of objects,
instead, is given by the scaling relation between their number
and the linear dimension R. In the previous example we had

2HD =
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A simple (regular) fractal

and so on

3log 8 2

HD

H

N L
D

=
= <

L1=3
N1=8

L2=9
N2=64
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The fractal dimension of Brownian motion

Given a trajectory, how many of its points fall
within distance R of the origin? 

First we have to give an estimate of the linear dimension
of the region that contains the random walk.

We define two vectors:

0
1

2 2
0

1

1

1 ( )

N

n
n
N

g m
m

R R
N

R R R
N

=

=

=

= −

∑

∑

r r

r r

Center of mass

Radius of gyration
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We are of course interested in average quantities
(a single random walk is not very interesting)

( )

0
1

2 2 2 2
0 0 0

1 1

1 0

1 1( ) 2

N

n
n

N N

g m m m
m m

R R
N

R R R R R R R
N N

=

= =

= =

= − = + − ⋅  

∑

∑ ∑

r r

r r r r r r

by symmetry

The second and third terms in the last expression decrease
as 1/N2 and 1/N with respect to the first, so that in the large
N limit they can be neglected.
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The radius of gyration can therefore be evaluated as

2
2 1/ 2

1 1

1 N N

g m
m m

R R m N
N N

σ σ
= =

= ∑ ∑
r

(once again we find the key space-time relation 
typical of Brownian motion and of diffusion!!!)

So we find at last that N objects (the points of
Brownian motion) are contained in a region of linear
size L=N1/2. The fractal dimension is

/ 2~ H HD DN L N= and therefore DH=2

Physique Statistique de 
Biomacromolecules



First important remark: the fractal dimension of
Brownian motion is 2 independently of the dimension
of the embedding space!!! (the space time relation
does not depend on the embedding dimension)

Second remark: the fractal dimension of Brownian motion
is 2 even in one dimension. 

The path of a random walk is a two dimensional object 
with spherical symmetry! It’s a disordered object. 
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Simplest interpretation in two dimensions:
Since the path of a random walk is a two-dimensional 
structure, it covers the plane completely.
So, a fortiori, it also covers the one dimensional line 
completely. This means that it will pass for each and 
every point of the line, including the wall, and therefore 
death is certain.

This geometrical interpretation tells us that the random walk 
finds a particular point of the plane also with probability one,
since it covers the plane completely!

In three dimensions, instead, the path of the random walk
does not fill the environment, and it has therefore some
hope to avoid death!!!
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Polymers
Polymers are chains of units (monomers). Usually the 
monomers belong to the realm of organic chemistry (that is
chemistry based on carbon), and understanding polymers
of biological relevance will be our ultimate goal.

Polymers can be classified according to the type of units
they are made of, and most of their chemical properties
depends on the details of the sequence along the chain.

Yet, there are some general features that do not depend
too much on the details of the chemistry. 
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Types of monomers

Polyethylene oxideCH

Poly(N-isopropylacrylamide)

Proteins (20 different types 
of aminoacids)

Physique Statistique de 
Biomacromolecules



Polymers composed of a single type of monomers are
called homopolymers, else they are called heteropolymers.

Heteropolymers come in different forms:
if the sequence of monomer species along the chain is random,
they are called random heteropolymers; if the heterogeneity is 
regular (periodicity or others), they are called block copolymers.

Proteins are not random, but you couldn’t tell 
from the seqeunce!!!
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The statistical properties of polymers are different 
from these of random walks. 

In particular the end-to-end distance (and the 
gyration radius) have a different scaling behavior

1/ 2~ Random Walks
~ 1/ 2 Polymers

R N
R Nν ν

                    

   >        

Where does this difference come from?
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Let’s start from unstructured polymers

θ

Due to the bonding properties
of the carbon (or other) atoms,
not every angle is equally probable:
some angles cost less energy than others

θ

E(θ)
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If all angles were possible with the same probability
(that is, they cost the same energy), then the polymer
would correspond to a Freely Jointed Chain (FJC). The
FJC corresponds to a random walk with steps all of 
the same length (this last approximation is due to the
fact that usually the bonds along the backbone are
“rigid”: it is difficult to stretch them).

Introducing a chain stiffness makes it more difficult
to bend the polymer, and we can expect a larger
end-to-end distance that for a random walk. Is it enough
to explain the exponent difference?

Physique Statistique de 
Biomacromolecules



The Worm-Like Chain (WLC)

We make the simple assumption that, due to the presence
of some preferential angle between two successive segments,
the average

1 0i it t a+⋅ = ≠
r r

Then we set out to evaluate the scaling of the gyration radius
with the number of segments, N
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We compute the radius of gyration of the WLC

( ) ( )
1

22

1 1

1 1 1

1 0

1 1

N

M i
i

N N

g i M i i
i i

N i i

k l
i l k

R R
N

R R R R R
N N

t t

=

= =

= = =

= =

= − = ⋅ =

1
      = ⋅

Ν

∑

∑ ∑

∑∑∑

r r

r r r r

r r

by symmetry
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We must compute            .k lt t⋅
r r

1 1k kt t a+⋅ = ≤
r r

We know that

Then we can write

( )1 1 1

1 1 1

2 2

1 1 1 2

1 2 1 2 1 2

k k

k k k k

k k k k k k

T T
k k

T T T T
k k k k

T T T T T T
k k k k k k

t t t I t

t t t y y z z t

t t t t t y y t t z z t

+ + +

+ + +

+ +

+ + + +

+ + + + + +

⋅ = ⋅ ⋅ =

   = ⋅ + + ⋅ =

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

r r r r

r r r rr r r r

r r r r r r r rr r r r
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In the previous expressions                    are unit vectors
orthogonal to      and the products are not correlated since
the energy depends only on the products of consecutive vectors.
Moreover, we can choose      to be orthogonal to both 

1 1andk ky z+ +   
r r

1kt +  
r

1kz +
r

1andk kt t +   
r r

1 1

1 1

2
1 2 1 2

2
1 2 1 2

k k k k

k k k k

T T T T
k k k k

T T T T
k k k k

t t t t t t t t a

t y y t t y y t b
+ +

+ +

+ + + +

+ + + +

⋅ ⋅ = ⋅ ⋅ =

⋅ ⋅ = ⋅ ⋅ =

r r r r r r r r

r r r rr r r r
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Then we find

( )
0

j k
j kl j k l

k j
l

j k
t t a b a b

l

−
−− −

=

−⎛ ⎞
⋅ =   = +⎜ ⎟

⎝ ⎠
∑

r r

( )

( )

2

1 1 1 1 1 1

1

11 1 1 1

1

2 1 1 1 ( )1
2 1 ( )

N i i N i i
j k

g k j
i k j i k j

N i i N i
j k

Ni k j k i k

R t t a b
N

a ba b N
N N a b

−

= = = = = =

−
−

= = = = =

1
 = ⋅ = + =

Ν

+ +
= + − =

− +

∑∑∑ ∑∑∑

∑∑∑ ∑∑

r r
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So we have clearly that             and the WLC is not different
from the simple FJC (that is, the random walk). 

2
gR N

The ingredient that we have introduced to deal with the
WLC is the local bending energy. It introduces correlations
along the chain, but they decrease exponentially with the 
distance between the segments (k>i):

( ) ln( )( )k i k i a b
i kt t a b e− − +⋅ = + =
r r

Where                    is the persistence length of the chain.1/ ln( )a bλ = +
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In conclusion, a random walk with an exponentially decreasing
correlation along the chain is not enough to break the typical
random walk result and the essence of the Central Limit Theorem.

This is due to the fact that, by a simple coarse graining of the
chain where a number of steps of the order of λ is substituted
by a single step, then consecutive steps would be uncorrelated
(since they extend over a distance of the order of the correlation
length) and the random walk result would follow.

To go beyond the random walk, then we need to introduce
stronger correlations along the chain.
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What kind of correlations do we need? 

A possibility could be to introduce correlations that 
decay slower than an exponential: an algebraic decay 
would work because it is unaffected by the coarse 
graining. Yet there is no physical motivation able to 
justify such correlations. 

Another possibility is to introduce correlations that are 
intrinsically non-local along the chain by asking that no
pair of monomers shares the same region of space, no 
matter how far they are along the chain. It is a long range
correlation along the chain that has a good physical 
motivation. It can, in principle, violate the Central Limit 
Theorem. Does it do it in reality?
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How can we evaluate whether the mutual exclusion of monomers
will be enough to find a result different from Brownian motion?

In d=1 it is clear that it works: once the polymer has chosen
a direction, then it can only go straight on. Hence in d=1
Rg~N.

We can resort to the fractal dimension of the random walk
to begin understanding what happens in d>1.

First we need a simple mathematical tool: the fractal dimension
DI of the intersection of two fractal objects of dimensions 
D1 and D2 in dimension d:

1 2ID D D d= + −
Physique Statistique de 

Biomacromolecules



We can then ask what is the fractal dimension of
a random walk with itself:

2 2 4ID d d= + − = −
How do we use it?

d=1 :    DI=3, that is, the number of intersections
grows with the length of the polymer and
and it will affect  Rg, as we have seen;

2≤d<4: DI>0, and intersections should still be important,
changing the behavior from random walk;

d≥0:     DI ≤ 0 (which means actually =0) and intersections
should not play a role. As a consequence Rg~N1/2.

Physique Statistique de 
Biomacromolecules



The Method of Flory

We can try to understand a little better the behavior of polymers
that satisfy the excluded volume constraint: they are called
self-avoiding walks (SAW).

The method of Flory is a way to estimate the exponent ν in the
expression Rg~N ν.
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The important question is: what is the probability that
the end-to-end distance of a SAW is a given R?

If the SAW was a simple random walk we would know the 
answer

2

22
0 2
( , )

2

R
NP R N e

N
σ

πσ

−1
 = 

But we know that only a fraction of the random walks can
actually be considered: those without self-intersections.
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So, the true probability for a SAW is

0( , ) ( , ) ( , )P R N P R N S R N= ⋅

Where S(R,N) is the survival probability of random walks,
that is the probability that they have no self-intersections. 
The second step is then to evaluate S(R,N).
Actually, it is easier to evaluate the death probability 1-S(R,N),
because it is simply the probability that there are intersections.
Flory found a “mean field” expression for that probability.

Physique Statistique de 
Biomacromolecules



Estimate of 1-S(R,N)

The probability that a monomer is found in a given region
of space dV (volume element in d dimensions) is simply

1
Np dV dV dV
V

ρ = =

where ρ=N/V is the monomer density inside a volume V.
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The probability that TWO monomers fall into the same
region of space is 

2

1

1

2

probability that the

nd monomer is in

the volume of the st

st monomer

v

N Np dV dV dv
V V

   

    

    

 

= ∫
123123

where v is the volume of a monomer. This expression, 
integrated over the whole volume, gives the death probability

2

1 ( , ) NS R N v
V

−  = 
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The volume V is the volume occupied by the polymer:
a sphere of radius Rg in d dimensions: V~Rg

d

There is a further approximation: the density of monomers
ρ~1/V means that monomers are uniformly distributed inside
the volume. This is of course not true.

At last we have

2
2

( , )
d
g

Nv
R

d V
g

NS R N v e
R

−

 →∞
 = 1− ≈
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Putting everything together we finally have

2 2

22

2
( , )

2

g
d
g

R Nv
N R

gP R N e
N

σ

πσ

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠1

 = 

Attention!!! In all this we have freely exchanged end-to-end
distance and gyration radius. This is legitimate, in the spirit
of the Flory method, because they show the same scaling with
respect to N, and because anyway the method is approximate.

The next step is to find the Rg for which P(Rg,N) is maximal.
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P(Rg,N) is maximal when the argument of the exponential
is maximal too. 

32
2

1 0 ~g d
gd

g

R N R N
N R

+
+− + =     ⇒    

So the exponent νF = 3/(d+2). Is it different from the
random walk?

d=1        νF=1           EXACT!!!
d=2        νF=3/4        IT IS EXACT TOO!!! 

(complex analytical derivation) 
d=3        νF=3/5=0.6  Numerics+Experiments show ν=0.588
d≥4 νF=1/2        Random Walk!!!
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These results show, in agreement with the simple geometrical
arguments based on the fractal dimension of the intersection,
that above d=4 self-intersections are negligible and the
random walk result is obtained.
Below d=4 the Flory method, although approximate, performs
amazingly well. How can we explain its quality?

Let’s consider P(R,N) as the “Boltzmann” factor associated
with SAWs of length N and radius of gyration R. Then,
their free energy is 

2 2

( , ) ln ( , ) d

R NF R N P R N
N R

= − = +
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Maximizing the probability means minimizing the free energy,
Which is what has to be done to find the equilibrium state.

Then we can identify the two terms of the free energy as
an entropic and an energetic contributions: 
the entropy is related to the random walk part, that has 
no energetic characterization;
the energy is related to the volume exclusion.

The reason why Flory works so well is likely that both
energy and entropy are over-estimated!!!
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Now that we have introduced the concept of free
energy, we can go further and look better at the
energies that are relevant for polymers.

We can imagine two kinds of energies: interactions
between monomers and individual monomer interactions.

We deal first with single monomer energies.

The typical single particle energy is the chemical potential η:
how much does it cost to add one monomer to the polymer?
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The free energy of a polymer of length N can be written as

( 1) 1) ( ) 1) ln( ( ))BF N N TS N N k T Nη η+  = ( + − = ( + − N

Where          is the number of conformations of a SAW of length
N (which is made of N+1 monomers). 

( )NN

We can try to estimate           on a square lattice. Clearly,
the SAW cannot co back on its trail at the first step, so that
every step has 3 directions. This is an overestimate!!!
If we count only directed paths, that only go to the right and
upward, then every step has two possible directions. This
is an underestimate. 

( )NN

2 ( ) 3N NN≤ ≤N
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Both upper and lower bound grow exponentially with 
the length so the number of SAWs has to grow exponentially
too. In particular it is

1( ) NN N γ µ−=N

Where γ is known as “entropic” exponent and is usually
close to, but greater than, 1.

The constant µ is known as the connectivity constant of
the SAW and it gives a measure of the average number of
directions that every step can take (d=2, µ=2.68…).
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Then we have

( 1) 1) ( ) ln ( 1) ln( )B BF N N TS N N k TN k T Nη η µ γ+  = ( + − = − − −

In the thermodynamic limit,           , the free energy per particle
is  

N → ∞
lnBf k Tη µ= −

What is more interesting is the associated partition function
1) ( 1)( 1) N NZ N z N γµ( + −+  = 

Because it allows the computation of the grancanonical partition
function (z=fugacity=exp(-η/kBT)<1; hence η>0)

1) ( 1)

0

( ) N N

N

z z N γµ
∞

( + −

=

Ξ =  ∑
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Then we can compute the average number of monomers
in the polymer

1ln ( ) (1 )dN z z z
dz

µ −= Ξ ∝ −

The number of monomers is finite as long as z<1/µ, and it
diverges there: if the fugacity z=1/µ then we have a divergence.
Interpretation: 

1/ lnBz k Tµ η µ=    ⇒    =

This means that, if the energetic cost of a monomer is
perfectly compensated by the entropic gain, the length
diverges.
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We deal now with two-body (monomer-monomer) interactions.

First, we have to understand what kind of interactions we can 
expect to be relevant for polymers in solution.

There are two classes of interactions that are important: direct
and effective interactions:
- direct interactions are well known, at least in principle: 
electrostatic interactions are a typical case and are of course
extremely important. In particular they can be polar, dipolar
or multipolar: the latter are usually neglected and are dealt
with in terms of Van der Waals interactions.

- effective interactions are interactions that are “mediated” by
the solvent; they are thermodynamic in nature.
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Electrostatic interactions are usually easy to deal with:

the basis is the usual coulomb potential, possibly screened
by the presence of ions in solutions to give an exponential 
cutoff to the interaction

0/

0

( )
4

r reV r
rπεε

−

=

The Van der Waals interaction is simply treated by means
of Lennard-Jones potentials between particles i and j

6 12
1( )
2ij

ij ij

V r
r r
σ σα

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

where rij is the distance 
between the 2 particles

Physique Statistique de 
Biomacromolecules



The Lennard-Jones potential is strongly repulsive close to
contact distance (this mimics the hard-core repulsion of
two solid objects); it is weakly attractive at large distances.
The minimum of the potential is at rij=σ.

Dealing with effective interactions is instead trickier, 
because their formal derivation is difficult, and one has to
resort to approximations that inevitably reduce the details
of the effect. Only close inspection, and physical intuition, can
help understand whether the approximations are legitimate
and do not lead to the wrong results, or instead they are too
strong. 
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Effective Interaction

The effective interaction of two particles is due to the fact 
that actually they interact with a third particle (or group of
particles) but not with each other. Yet, if one observes the
net effect, the result can be described by means of an 
interactions between the two particles. For example, 
particles A and B could have no mutual attraction, yet they 
could bind strongly to C. If we forget (in proper mathematical 
terms) about C, the net effect is that A and B are often close 
together and we can say that, at an EFFECTIVE level, they
attract each other.
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Formal derivation of effective interactions:

Let’s say that the degrees of freedom of the solvent
are described by a collection of variables      and the
solute particles are described by another collection
of variables         . These variables could be the positions
but also the orientations and maybe other degrees of
freedom.
The partition function is   

{ }ir
r

{ }iR
r

{ } { }( )exp ,i j i j
i j

Z dR dr H R rβ ⎡ ⎤= − ⎣ ⎦∏ ∏∫ ∫
r rr r
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Where                     is the Hamiltonian (energy) of the system. { } { },i jH R r⎡ ⎤
⎣ ⎦
r r

Looking for an effective energy means that we are looking for
an expression of the kind

{ }( )expi eff i
i

Z dR H Rβ ⎡ ⎤= − ⎣ ⎦∏∫
r r

Where we have

{ } { } { },ln e i jH R r
eff i B j

j

H R k T dr β ⎡ ⎤− ⎣ ⎦
⎡ ⎤⎡ ⎤ = − ⎢ ⎥⎣ ⎦ ⎣ ⎦

∏∫
r rr r
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So we have an expression for the effective energy that 
depends on the temperature and that can not, rigorously,
be written as the sum of two body interactions: 

{ }( ) ( )
,

1 ,
2eff i i j

i j

H R V R R≠ ∑
r r r

where                 is the effective potential between two 
particles obtained for a system made of only two solute particles.
Rather we must write

( ),i jV R R
r r

{ }( ) ( ) { }( ) ( )
, ,

1 1, ,
2 2eff i i j eff i i j

i j i j

H R V R R H R V R R
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

∑ ∑
r r r r r r
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The term in square brackets contains intrinsically many-body 
interactions. If it is small with respect to the first term, made
only of two body interactions, then we can approximate the
energy by two-body interactions; else the situation remains
more complex.

In the second case there is no rule, in general, to decide
whether neglecting the term in square brackets is crucial
to the physics of the system: maybe it changes the quantitative
details but not the qualitative picture; maybe it changes also
the important features of the system. A priori, there is no way 
to know.
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Hydrophobicity is an effective interaction: simply
stated, it is the aversion of some molecules with
respect to water. The molecular origin of hydrophobicity
are yet to be completely understood.

For our purposes it is important to remember that
it is an effective interaction, that therefore it depends
on temperature, pressure and other thermodynamic
macroscopic parameters, and that in principle it cannot
be reduced to a sum of two-body interactions (although
the latest could be a fairly good approximation).

It is important to remember that hydrophobicity is very 
likely the most important interaction for living matter!!!
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INTERACTION BETWEEN MONOMERS

To explore the effects of interactions between monomers
we first have to analyze something simpler: the lattice gas.

The lattice gas represents a collection of particles free on
a lattice, that interact when on nearest neighbor sites.

We assume that the attractive interaction is ε and that the 
chemical potential is η.
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The Hamiltonian of the system is

,
i j i

i j i
H n n nε η

< >

= − +∑ ∑

Where ni is a variable that takes value 1 if site i  
is occupied by a particle, 0 otherwise.
As a first step we show that the lattice gas is
equivalent to the Ising model, which allows us to
understand the role of the chemical potential.
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1
2

i
i

sn +
=Let us make the following substitution:

The variable si=±1, so it is a legitimate Ising variable.
The Hamiltonian becomes

,4 4 2i j i
i j i

zH s s sε ε η
< >

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

∑ ∑

This is clearly the Hamiltonian of the Ising model in an 
external field 
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The Ising Hamiltonian is 

,
i j i

i j i

H J s s h s
< >

= − −∑ ∑

The identification is now

4 4 2
zJ hε ε η

=                  = −

Why is the chemical potential important?
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We know that the Ising model is characterized by
a low temperature phase that is ordered, and by a
disordered high temperature phase. How does the
crossover between the two take place?

We are usually taught that there is a phase transition
at some critical temperature Tc such that the passage
between the two is sharp. Actually, this is true if h=0.
If instead h≠0 then the crossover is smooth and there
is no rigorous phase transition.

It is clear therefore what is the role of the chemical 
potential: without it the lattice gas would correspond
to an Ising model with external field: no phase transition.
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It is instead enough to set the chemical potential to 

2
zεη =

and the external field disappears. Hence we can have 
a phase transition between an ordered phase and a 
disordered one.

This is the second time where we find that the chemical
potential is important to have criticality!!!
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The global phase diagram is

T

η

Tc

ηc

critical point

The broken line represents a first order phase transition
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We want to use the same (mean field) approach with a
polymer. Where is the difference? The difference is that 
now monomers are tethered.  

We define again the probability that a site is occupied as ρ,
and that it is empty as 1- ρ. Yet we have to be careful: indeed
an occupied site can be occupied in many different ways.

given an incoming direction, it
has z-1  outgoing direction, in 
principle all equivalent to each other.
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Therefore the probability of a site being occupied is

1

1

z

i
i

ρ ρ
−

=

= ∑

where ρi is the probability to go in a given direction.
Since all of them are equal we say that 

1i z
ρρ =
−
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The free energy per site is

f u Ts= −
where u is the internal energy and s the entropy.
The internal energy is the average of the Hamiltonian.
We have thererfore

22
2

zu ε ρ ηρ−
= − +

where z-2 comes from the available number of nearest
neighbors with which a site can interact (consecutive
monomers do not interact!).
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The entropy is instead
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Overall the free energy becomes

[ ]

[ ]

22 ln( 2)
2

ln (1 ) ln(1 )

B

B

zf k T z

k T

ε ρ η ρ

ρ ρ ρ ρ

−
= − + − − +

      + + − −

In the Ising language we have that the linear term becomes

ln( 2)
2B
zk T z mεη⎡ ⎤− − −⎢ ⎥⎣ ⎦
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The linear term corresponds to an external field, and therefore
we have a line of phase transitions if we set it to zero.
We obtain

ln( 2)
2 B
z k T zεη = + −

T

η

Tc

ηc

critical point

1ρ = 0ρ =
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A more refined analysis tells instead that the phase 
diagram is like below: 

T

η

Tc

ηc

tricritical point

line of 2nd order phase transitions

1ρ = 0ρ =
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Interpretation:

the low density region represents a region where there are
just small polymers, of finite length (although enough to
give a density different from zero);
the “critical” line represents a region where the length
of the polymer diverges (remember the role of the chmical
potential!!!);
the high density region represents a region where there
is an infinite polymer that is very “dense” in the space: imagine
a line that goes through most of the sites of the lattice! 
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Physically it means that, if we move over the critical
line (the line of second order phase transitions), we have
that the polymer is infinite and of moderate density.
As we lower the temperature, at some point we meet
the tricritical point, where a single state for the polymer
is not admissible anymore: the system separates in 
two phases. The dense phase represents the polymer
in a compact state, where it passes through most of
the sites of the system; the dilute phase represents a phase
where there are just strands of the polymer still in solution.

Essentially the polymer has collapsed from a swollen 
conformation, typical of SAWs, to a compact conformation.
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A different interpretation, more easily related to experiments,
goes as follows:

Let’s take a solution of polymers at a given density ρ, which
is neither 0 nor 1. At very low temperatures the only two
possible densities are (see phase diagram) only 1 and 0.
Therefore the system cannot be in either… but in both!!!

Along the cut, it is possible to obtain any total density by
splitting the system in different parts, each with a specific
density, according to volume fractions

1 2
1 2

1 2

V V
V V

V V V

ρ ρ ρ+ =

+ =
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So, at low temperatures there is a part of the volume
occupied by very dense polymers (compact polymers) and
another part occupied by low-density polymers (swollen 
polymers). As temperature increases, the densities ρ1 and ρ2
change but as long as none of them matches ρ, the system is
forced to be in a coexistence phase. When at last one of the
two densities is equal to ρ, the system is again in a single
phase.

ρ0 1

T

Tc

coexistence in this region
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Physics of Proteins

Proteins are polymers that, below a given “folding” temperature,
take a compact conformation.

We have learnt in the previous parts that fundamental ingredients
to have such a behavior are: 
- self avoidance (so to correctly model polymers)
- attractive monomer-monomer interactions (so to allow the low
temperature collapse).

Are we happy with these ingredients? We have to look at the 
phenomenology to decide whether we must add anything.
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A collapsing polymer can go into one of the many possible
compact conformations (akin to Hamiltonian walks).
Instead, a folding protein goes into a single compact 
conformation, the native one.

Moreover, folding is a dynamical process: after synthesis,
there is no temperature change to justify the folding.
Simply, at body temperature, proteins are synthesized in a
non-native conformation and they have to dynamically change
it until they reach the native state. Since proteins are small 
and in solution, these changes are ruled by brownian motion. 

Levinthal paradox: even if every conformational change could
take place in a femtosecond, the time to fold a protein
would be larger than  the age of the Universe… a little bit
too much.



Anfinsen solution to the paradox: folding is Brownian, but 
in a potential landscape where the native state is at the
bottom of a very large basin of attraction. This is the
funnel concept. Such an energy funnel is defined by
energies encoded in the amino-acid sequence. Anfinsen
showed this by folding proteins in vitro: the only ingredient
is the sequence (there are no special “folding machines”
that help proteins in vitro).

Dogma: the sequence dictates the native structure!

Anfinsen won the Nobel prize for this discovery.
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The missing ingredient: the sequence!!!

There are 20 naturally occurring amino-acids (synthesized
by living organisms). 

Roughly half of them are hydrophobic and attract in water.
They provide the driving force for the first stages of the
collapse (just as for homopolymers).
The other half are polar, and they love water (that is a 
polar molecules). 

It’s a subtle mix of the two kinds, in particular orders, that
provide the missing ingredients.
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The “Protein Folding Problem” consists in finding
the right key to decode the sequence.
There are different strategies:

1. All atom brute force simulations: let’s take the  
protein with all of its atoms (and maybe the 
solvent too) and let’s solve Newton’s equations. 
It can (and likely it will) work, but:
a) do we really learn the code?
b) computers are not yet powerful enough

2. Empirical methods: is two proteins have a similar
sequence and we know the native state of one of
them, we may guess the native state of the 
other.
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Maybe we can try to learn something simpler by simple models.
Important: as we introduce simplifications, we can ask only
simple questions!

First simple model: the HP model.

As stated, we define only two kinds of amino-acids: hydrophobic
and polar (H and P). We add the ingredient that H amino-acids
attract each other (it’s an effective interaction!). Then proteins
are modeled on a lattice (two or three dimensions, it does not
matter at a first stage).
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P
H

In this conformation there are,
for example, 4 HH contacts:
the energy is –4.

It has been shown that, out of the 2N possible sequences
(N is the protein length), just a few are “good” sequences:
they have a unique native state (the ground state for 
this model). Therefore only a small number of possible 
sequences can work as proteins. This is not yet the “decoding”
of the sequence, because looking at them we still do not
understand. 
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A further important result is that of all the possible compact
conformations, only a few are chosen by the “good” sequences
as native states. This is important because the concept
of “fold family” is an important one. It is seen that of many
proteins whose structure is known, many have very
similar structure even if the sequence is quite different.

Moreover, the HP model predicts proteins with a hydrophobic
core (as seen experimentally) that fold below a certain
temperature. 

Unfortunately the HP model is not the best to address the 
dynamics: it is on a lattice, so that a natural dynamics cannot
be defined.
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The same results are found in 2 and 3 dimensions, and even by 
enlarging the amino-acid alphabet to 3 or 5 letters (details
change but not the main message).

What if we want to look to more refined models, or to look
at real proteins, without using all the atomistic information?

We have to resort to simplified off-lattice models.

Since we do not want all the details, where do we introduce 
simplifications?
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We simplify both the degrees of freedom and the energies.

1. every amino acid is treated as a spherical ball. A protein
is then a chain of beads, each one with a label (its amino-acid
species).
The relevant degrees of freedom are the two rotation
angles φ and θ that characterize the direction of every protein 
bond with respect to the previous one. 

2. The energies are of two kind: local and non-local. Local 
energies depend on the local bending angles, E(φ,θ). Non-local
energies are related to contacts between amino-acids that are
not consecutive along the chain.
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Determination of the energy functions:
although complex, E(φ,θ) can be determined by the physics
of the peptide bond (the link between consecutive amino-acids).

The non-local interaction is instead more difficult to obtain: 
it could be derived from first principles, but that would be 
still too difficult. So we need some different way to determine
it. 
The spatial form is the usual Lennard-Jones potential 
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The values of εα,β depend on the two amino-acid species
under consideration, α and β. How can these values be
determined? 

Idea: we can learn them on known native states, 10000 
(rough numbers) of which are known by X-ray crystallography, 
NMR and other techniques.  

We look at, say, 1000 native states and see that in most cases
species α and β are closer to each other than a given threshold
distance (a parameter of the procedure). Then we can say
that they have an attractive interaction and εα,β <0.
If they are most often above that threshold then εα,β <0.
If they are equally distributed above and below, their interaction
is negligible.
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Of course the real “learning” techniques are much more 
complex, technically, but their essence is what stated in
the previous slide. 

Do these techniques work? Yes and no.

If we try to fold a protein using these interactions, we will be
successful with a score of 60-70% on proteins that were part
of the learning set (the potentials are indeed optimized for those
proteins), but we fail most of the time as we try to apply them 
to proteins not in the training set. Consequently, we cannot trust
them much for proteins whose native structure is not even known.

Physique Statistique de 
Biomacromolecules



Although all these results show that our understanding
of proteins is still limited, and our ability to use simple
models to describe them is not what theoretical physicists
are used to, this is a consequence of the relatively young
age of the domain.
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Levy probability distributions

The Central Limit Theorem holds for indipendent
identically distributed (iid) random variables with 

finite first and second moments

So, we can break the CLT if one (or both) 
of the above conditions is broken.

1

N

i
i

X x
=

= ∑Let us take
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0

x x

x xσ

=

= +

where σ is the variance of the distribution. 
For a symmetric distribution x0=0.



With xi  taken all from a given probability distribution 
p(x), with first and second moments

0

2 2 2
0

x x

x xσ

=

= +
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The Central Limit Theorem (for physicists!)

1

N

i
i

X x
=

= ∑

With xi  taken all from a given probability distribution p(x).
Then PN(x) is given by

1 2
11

( ) ... ( ) ( )
N N

N N i j
ji

P X dx dx dx p x X xδ
==

= − ∑∏∫ ∫ ∫
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The Central Limit Theorem (for physicists!)

1

N

i
i

X x
=

= ∑
With xi  taken all from the probability distribution p(x).
Then the second moment of P(X) is

1
2 2

1 1 1 1 1

22 2 2

2
N N N N N

i j i i j
i j i i j i

X x x x x x

N N x Nσ σ

−

= = = = = +

= = + =

                    = + =

∑∑ ∑ ∑ ∑
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By taking the Fourier transform of both hands 
of the equation we obtain

~ ~
( ) ( )

N

NP q p q⎡ ⎤ = ⎢ ⎥⎣ ⎦

And the antitransform, in the limit of large N, is
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