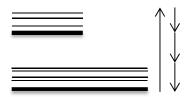
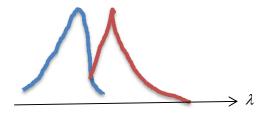
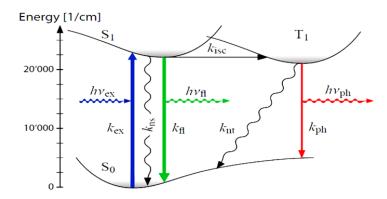
Assignment#4, Fundamentals in BioPhotonics 2013


- 1) % 25 (Hint: check slides)
 - A. Velocity distribution of some atoms in gas is given as $p(v) = \frac{1}{\sigma_v \sqrt{2\pi}} e^{(-\frac{v^2}{2(\sigma_v)^2})}$, $\sigma_v = \frac{KT}{m}$ where T is temperature, m is atomic mass, K is Boltzmann constant. If the line shape function width is Δv for each atom find an expression for the average line shape function, $\overline{g}(v)$.
 - B. Assuming $\Delta v << \frac{v_0 \sigma_v}{v}$ show that it can be estimated as $\overline{g}(v) = \frac{1}{\sigma_D \sqrt{2\pi}} e^{(-\frac{(v-v_0)^2}{2(\sigma_D)^2})}$, $\sigma_D = \frac{v_0 \sigma_v}{c} = \frac{1}{\lambda} \sqrt{\frac{KT}{m}}$ and find Doppler linewidth Δv_D .
 - C. Find Δv_D for CO_2 laser operating at $\lambda_0 = 9.8$ um.
 - D. Demonstrate that the maximum transition cross section for $\overline{g}(v)$ is $\sigma_0 = \frac{\lambda^2}{4\pi\Delta v_D t_{sp}} \sqrt{\frac{\ln(2)}{\pi}}$

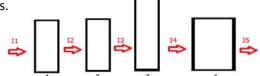
2) % 20


In general, a molecule with N atoms has 3N-6 normal modes of vibration, but a linear molecule has 3N-5 such modes (can be derived but it is not necessary). For a transition between modes there should be change in dipole moment.

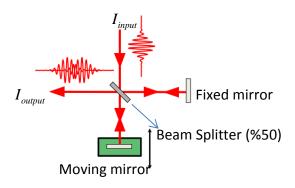
- A. Find number of vibrational modes for CO_2 , H_2O_3 , O_2 , N_2 , CH_4 , C_4H_2 , NO_2
- B. Considering the absorption capability of the molecules given above, explain why we are not concerning about the molecules in air as potential source of global warming? What about H_2O ?
- C. Is that possible that we excite the symmetric stretching mode of $\,C_2H_2\,$?
- D. Given that NO molecule is in the lowest vibrational state ($K = 0.16x10^7 \, g \, / \, s^2$) find the vibrational energy and the wavelength of the photon that excites it to the next level.
- E. For a molecule the population ratio of i^{th} and j^{th} levels is τ_1 for electronic states, τ_2 for vibrational states and τ_3 for rotational states. Find the relation between τ_1 , τ_2 , τ_3 .


3) % 10 (Hint: check slides)

- A. For the Jablonski diagram given above explain what each arrow is representing.
- B. The spectrum of a molecule is given below. Which one represents the excitation spectrum (verify with your answer in part A)? Why emission is mirror image of the excitation?


4) % 15

- A. For the triplet state given above find an expression for the population ratio in T_1 for steady-state excitation and an expression for quantum yield.
- B. Propose a way to measure $k_{\scriptscriptstyle fl}$ experimentally. Can you measure $k_{\scriptscriptstyle nt}$ in a similar way?


Let's imagine a beam propagates through many cuvettes as shown. The cuvettes differ from each other with different reasons. Here are the specs:

- 1) The concentration of the cuvette#2 is double of the others.
- 2) The height of the cuvette#3 is double of the others.
- 3) The width of the cuvette#4 is double of the others.

For cuvette#1, given that I_2/I_1 =0.01 and the concentration=2 M what are the ratios for succeeding intensities? (Hint: use Beer's Law)

6) % 25

Schematic of Fourier Transform Infrared (FTIR) Spectroscopy

- A. Describe the operating principle of this technique qualitatively (in a few words).
- B. If the input is monochromatic (λ_0), find the intensity of the output beam as a function of mirror phase, $I_{output}(\Delta, \frac{1}{\lambda_0})$ (Hint: Check homework assignment#1, 3rd question).
- C. Given that the input is not monochromatic find the total intensity at the output as a function of mirror phase, $I_{output}(\Delta)$ (Hint: integrate the result you find in B over all wave numbers). Show that it is Fourier transform of the intensity at the input, $I_{output}(\Delta) = \Im\{I_{input}(\frac{1}{2})\}$
- D. How can we access the intensity distribution of wavelengths available in the input beam, $I_{\mathit{input}}(\frac{1}{\lambda})$ using the intensity recorded at the output while the mirror is moving?