SETTLING MOTIONS IN 1-D STRATIFIED MODEL OF SOLAR-CORONA.

Presented By:
VARTIKA PANDEY
M.Sc.
PCUM 2021
ABOUT ME :

- Country of origin: India
- Completed my Masters in August 2020.
- Masters thesis: “Low frequency radio signatures of deflections on CME’s by Coronal Streamers” completed at Kodaikanal Solar Observatory, IIA, India.
- Started PhD at Karl Franzens Universitat Graz in the working group 'MHD simulations for solar corona to study the coronal heating' from December 2020.
- Supervisor: Phillipe Bourdin
- Formal Supervisor: Astrid Veronig
INTRODUCTION:

Currently we are trying to run a 1-D atmospheric stratification model for the whole solar domain taking the work of Bourdin (2014) as a reference.

Figure 1: Combined average stratification of the temperature (red solid line) and the density (blue dashed) in an analytic hydrostatic equilibrium from the solar interior to the corona from Bourdin(2014).
• The profile should be settled in hydrostatic equilibrium.

• So the model tries to settles by starting relaxation motions which is done by igniting Shock waves.

• The **top boundary** is closed boundary so that the waves reflect back.

• The **bottom boundary** is taken from the photospheric observations i.e. velocity and magnetic field vectors.

• **Initial condition**: analytic solution of the hydrostatic equilibrium, based on a composite of model solutions for the solar interior and lower atmosphere, extended towards observations of the outer corona.

• **Modules used**: solar_corona.f90, boundcond.f90, hydro.f90
Fig. 2. Time evolution of the vertical velocities in a 1D stratified hydrodynamic atmosphere (Bourdin 2014).
EXAMPLE OF SWITCH-ON EFFECT

• Here we show a 3D MHD setup with a turbulent flow, Bourdin (2014).

• **Left Boundary**: Here the mixing is applied through the driving velocities.

• **Right Boundary**: It is kept open for outflows.

• Then we can see the turbulent flow evolving through time in two cases:
 - When switched on smoothly.
 - Instant switching on.
Smooth switch-on #0

Smooth #116

Smooth #117
SWITCH-ON TIME FOR PARAMETERS:

- We are using approach by Bourdin (2014) for switching on different parameters in the simulation domains.

- Strong velocity damping till initial 20 minutes.

- Spitzer-type heat conduction smoothly sets in starting with minute 10 and is fully active at minute 30.

- The radiative losses are smoothly switched on from minute 15 to 35.

- Whole simulation domain cools due to heat conduction.

- Finally, the velocity damping is smoothly switched off over a time interval of 20 minutes, spanning from minute 20 to 40.

- After 40 minutes, all physical terms are fully active and the velocity damping has faded out, see Fig. 3. Now the system evolves self-consistently
Fig. 3 Representation of how the different terms in the model are switched on, Bourdin(2014)
Doing the same method we were still not getting rid of the disturbances and there was a permanent downflow of material due to negative velocities when newton cooling and radiative losses are switched on.

Fig.4. This is the output of the simulation with newton cooling and radiative losses on and we can see very clearly the negative velocities suggesting a downflow of material.
Artificial Heating function:

- So now we are trying to introduce a new artificial heating function which we can be switched on from the beginning along with the cooling and the lost energy is provided to the system.

- As this is an artificial function it can be faded out once the system evolves in a stable way.

- There were two possible approaches for this:
 - Heating per volume.
 - Heating per particle.

- We chose the second scheme i.e. heating per particle, as to avoid the runaway effects which can be created when the coronal density is too low i.e. thin corona and it can then get heated up to really high temperatures creating runaway effects.
subroutine calc_heat_cool_H_part(df,p)
!
! Apply external heating and cooling profile for heating per particle.
!
use Diagnostics, only: max_mn_name
use EquationOfState, only: gamma, getmu
use Mpichcomm, only: stop_it
!
real, dimension(mx,my,mz,mvar), intent(inout) :: df
type (pencil_case), intent(in) :: p
!
real, dimension(nx) :: tmp,n_rho
real :: mu
!
! add to energy equation
!
Calculate number of particles
! n_rho = rho / (pc_get_parameter ('m_proton', label=quantity) * mu)
call getmu(mu)
n_rho = p%rho / (1.67d-27/unit_mass * mu)
if (ltemperature .and. ltemperature_nolog) then
 tmp = p%rho1 * p%cp1 * gamma * deltaH_part_init_z(n) * n_rho
!write (100+iproc,*), 'delta_T':, tmp
! flush (100+iproc)
 df(l1:l2,m,n,ilnTT) = df(l1:l2,m,n,ilnTT) + tmp
 tmp = alog (1 + tmp)
elseif (ltemperature) then
 tmp = p%TT1 * p%rho1 * p%cp1 * gamma * deltaH_part_init_z(n) * n_rho
!write (100+iproc,*), 'delta_lnT':, tmp
! flush (100+iproc)
 df(l1:l2,m,n,ilnTT) = df(l1:l2,m,n,ilnTT) + tmp
else
 if (lentropy) &
 call stop_it('solar_corona: calc_heat_cool_deltaH_part:lentropy=not implemented')
endif
The main equation for our function is:

\[\text{tmp} = p\%Tt1p\%rho \times p\%cp1 \times \gamma \times \text{deltaH_part_init}(z) \times n_rho \]

- Here tmp is the function that we have implemented.
- First part of the equation i.e. \(\frac{1}{Tt1} \times \frac{1}{\rho} \times \frac{1}{c_p1} \times \gamma \) gives \(\frac{1}{T\rho c_v} \) which is a multiplication factor in the entropy equation in pencil-code.
- We are using logarithmic temperature which can be replaced with entropy.
- \(\text{deltaH_part_init}(z) \) is the energy difference profile that is to be provided to compensate for the heat loss.
- At the end \(n_rho \) is multiplied to the function because we divided the previous profile with initial density of the particles (as density evolves in overall simulation, so we take initial density) so as to account for heating per particle.
Future Goals:

- Current goal is to reduce the amplitude of the vertical velocity shock wave disturbance so that our model can be used as a stable initial condition in longer runs.

- Once this is done we can use the same grid, the same diffusion parameters, same boundary conditions and same vertical velocity profile as initial conditions in the production run for reproducing solar coronal structures with different magnetic activity levels.
Thank you?