Star-in-a-box simulations of fully and partially convective stars Petri J. Käpylä

Institute for Astrophysics, Göttingen University

Käpylä (2021), A&A (in press), arXiv:2012.01259

Introduction

Polarized view on dynamos

No radiative zone \rightarrow no tachocline: qualitatively different dynamo (and activity level?) than in the Sun?

Flux transport dynamo: B_{tor} due to shear in tachocline, \overline{B}_{pol} due to buoyant flux tubes. Convection unimportant.

<u>Distributed dynamo</u>: \overline{B} due to helical convection in CZ, shear in CZ contributes to \overline{B}_{tor} . Tachocline unimportant.

Implications for dynamos

Discontinuity in stellar structure at the transition: break in activity?

Numerical modeling

Star-in-a-box model: embed a spherical star within a cube.

$$egin{aligned} &rac{\partial m{A}}{\partial t} \,=\, m{U} imes m{B} - \eta \mu_0 m{J}, \ &rac{D\ln
ho}{Dt} \,=\, -m{
abla} \cdot m{U}, \ &rac{Du}{Dt} \,=\, -m{
abla} \cdot m{O} + m{J} \cdot m{U}, \ &rac{Du}{Dt} \,=\, -m{
abla} \Phi - rac{1}{
ho} (m{
abla} p - m{
abla} \cdot 2
u
ho m{S} + m{J} imes m{B}) \ &- 2 \,m{\Omega} imes m{U} + m{f}_d, \ &T rac{Ds}{Dt} \,=\, -rac{1}{
ho} [m{
abla} \cdot (m{F}_{
m rad} + m{F}_{
m SGS}) + \mathcal{H} - \mathcal{C}] \ &+ 2
u m{S}^2 + \mu_0 \eta m{J}^2 \end{aligned}$$

Modestly updated version of the model of Dobler et al. (2006), *Astrophys. J.*, **638**, 336.

Numerical modeling

Some salient features:

M dwarf parameter study MS M5 star: $M = 0.2M_{\odot}, R = 0.27R_{\odot}, L = 0.008L_{\odot}$

 $P_{\rm rot}[{\rm days}] \, {\rm Ta}[10^8]$ Co $Co^{(\omega)}$ $u_{\rm rms}[{\rm m/s}] \quad B_{\rm rms}[{\rm kG}]$ Run Ra_t Re Pe Re_M $\tau_{\rm sim}$ [years] DR grid 288^{3} HD1 $6.5 \cdot 10^5$ 189 37 18302_ anti-solar 288³ 17 $2.3 \cdot 10^6$ 181 36 RHD1 433 0.60.1580.16_ _ $1.7\cdot 10^6$ 159 31 1.9RHD2 1441.4150.2_ 37solar-like 288³ 6.40.9 $4.8 \cdot 10^6$ 159 31 RHD3 1536solar-like 288³ 4316_ 31 $3.0 \quad 1.3 \cdot 10^7 \quad 96 \quad 19$ solar-like 288³ RHD4 9.02201414416611 $7.9 \cdot 10^7$ 61 12 solar-like 288³ RHD5 4.35.72091600_ $6.5 \cdot 10^5$ 189 37 288^{3} MHD0 9587 _ 18no dynamo _ $1.2 \cdot 10^6$ 145 29 anti-solar 2883 72MHD1 4330.161411 0.70.11430.7 $3.6 \cdot 10^6$ 293 58 146 0.179anti-solar 576³ MHD1h 4331.4 14122.0 $0.3 \quad 1.7 \cdot 10^6 \quad 152 \quad 30$ MHD2 76107solar-like 288³ 144 1.4 144.59.1 $3.2 \cdot 10^6$ 111 22 MHD3 1.255134solar-like 288³ 431610109.4 $8.0\cdot 10^{6}$ 215 43 107 1.4solar-like 576³ MHD3h 4364 101283 $3.6 \quad 7.8 \cdot 10^6 \quad 62 \quad 12$ 4931solar-like 288³ MHD4 14 144 5.813201 $1.1 \cdot 10^7 \ 34 \ 6$ MHD5 3662417302solar-like 288³ 4.325002.619MHD5h 10^{4} 2.52337514 $3.7 \cdot 10^7$ 67 13 33 149solar-like 576³ 4.3 $C_{0} = \frac{2\Omega_{0}}{u_{rms}k_{R}}, \ k_{R} = 2\pi/R. \quad \Pr_{SGS} \equiv \frac{\nu}{\gamma_{CCC}^{(1)}} = 0.2, \ \Pr \equiv \frac{\nu}{\chi} \gg 1, \ \Pr_{M} \equiv \frac{\nu}{\eta} = 0.5.$

 $L_{\rm ratio} \approx 2.1 \cdot 10^9$

Pencil Code User Meeting 20 May 2021

 $\chi_{\rm SGS}$

Thermodynamic stratification

Deardorff layer $(\partial_r s > 0, F_{conv} > 0.)$

Differential rotation

Slow rotation

Pencil Code User Meeting 20 May 2021

Slow rotation

Intermediate rotation

Comparison to spherical simulations

THE ASTROPHYSICAL JOURNAL LETTERS, 902:L3 (6pp), 2020 October 10

© 2020. The Author(s). Published by the American Astronomical Society.

Single-hemisphere Dynamos in M-dwarf Stars

Benjamin P. Brown¹, Jeffrey S. Oishi², Geoffrey M. Vasil³, Daniel Lecoanet⁴, and Keaton J. Burns^{5,6} ¹Department Astrophysical and Planetary Sciences & LASP, University of Colorado, Boulder, CO 80309, USA; bpbrown@colorado.edu ²Department of Physics and Astronomy, Bates College, Lewiston, ME 04240, USA ³School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia ⁴Department of Engineering Science and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA ⁵Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁶Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA *Received 2020 August 4; revised 2020 September 11; accepted 2020 September 17; published 2020 October 7*

This Letter has focused on a single-dynamo solution that shows striking hemispheric asymmetries. We find the same preference for single-hemisphere dynamos in every fully convective M-dwarf case computed to present, including a sweep of cases at $Ek = 2.5 \times 10^{-5}$ and $Ro_C = 0.38-0.57$, corresponding to rms Reynolds numbers of 210-350 and Rossby numbers of 0.27-0.42. These cases also all undergo cyclic reversals of magnetic polarity. To check if singlehemisphere preference happens spuriously from a numerical source, we also rotated around the \hat{x} rather than the \hat{z} axis (for $Ro_C = 0.41$, $Ek = 2.5 \times 10^{-5}$). In this strange solution, cycling single-hemispheric-dynamo action happened around the east-west pole, relative to the numerical grid.

Comparison to spherical simulations

THE ASTROPHYSICAL JOURNAL LETTERS, 833:L28 (6pp), 2016 December 20

© 2016. The American Astronomical Society. All rights reserved.

doi:10.3847/2041-8213/833/2/L28

MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI

RAKESH K. YADAV¹, ULRICH R. CHRISTENSEN², SCOTT J. WOLK¹, AND KATJA POPPENHAEGER^{3,1} ¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; rakesh.yadav@cfa.harvard.edu ² Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany ³ Astrophysics Research Center, Queen's University Belfast, Belfast BT7 1NN, UK *Received 2016 October 8; revised 2016 November 28; accepted 2016 December 1; published 2016 December 19* $\tau_{CVC}/2 \approx 9$ yr.

Observational results: e.g. Suárez Mascareno et al. (2016), Wargelin et al. (2017)...

Rapid rotation

Rapid rotation

The video covers about 40 years of evolution.

Rapid rotation: azimuthal dynamo wave

View at the pole:

View at the equator:

(e.g. Krause & Rädler (1980), Cole et al. (2014), Astrophys. J. Lett., **780**, 22; Viviani et al. (2018), Astron. Astrophys., **616**, 160.)

Three runs with same P_{rot} , different K_0 . $F_{\text{rad}} = -K\nabla T$, $K = K_0 \rho^{-2} T^{6.5}$

Cycles disappear in Deardorff and partially convective runs?

Pencil Code User Meeting 20 May 2021

Conclusions

- Transitions of differential rotation and magnetism occur similarly in partially and fully convective stars.
- Quasi-steady magnetic fields for slow rotation, cyclic and axisymmetric for intermediate rotation, and non-axisymmetric for rapid rotation.
- Future studies: more realistic flow regimes, self-gravity, radiation, magnetic braking.

Transition to full convection

- According to stellar structure and evolution models the transition occurs around $M = 0.35 M_{\odot}$.
- Interestingly, the transition is not continuous: a minimum stable size of the radiative core is around $0.4R_{star}$.

(Jao et al. 2018, *Astrophys. J. Lett.*, **861**, 11; Baraffe & Chabrier 2018, *Astron. Astrophys.*, **619**, 177; Feiden et al. 2020, *arXiv:2020.07991*)

van Saders & Pinsonneault (2012), Astrophys. J., 751, 98

Enhanced luminosity method

M stars have a low luminosity leading to slow convective velocities. Thus the Mach number is small: (1/3)

$$Ma = \frac{u_{conv}}{c_s} = 10^{-5} \dots 10^{-2}, \ u_{conv} \propto \left(\frac{L}{\rho}\right)^{1/5}$$

Timestep of simulations determined by the fastest signal speed: $\delta t = \Delta x / \max(c_s, u_{conv}, v_A, ...)$.

Typical values yield $\delta t_{\rm ac} \approx 1$ s. However, the Kelvin-Helmholtz time ($\tau_{\rm KH} = GM^2/RL$) in M stars is 10⁹-10¹⁰ years.

The wall-clock time per timestep for a typical current simulation is roughly $0.1s \rightarrow$ time to solution 10^8 (10^3) years.

Enhanced luminosity method

Enhanced luminosity method (ELM): use a much higher luminosity in the simulation, $L = L_{ratio}L_{\star}$, $L_{ratio} \gg 1$.

Reinterpret $u_{\rm conv}$ as the actual convective velocity. Implies rescaling of sound speed, $c_{\rm s} \propto L_{\rm ratio}^{-1/3}$:

$$Ma_{ELM} = \frac{u_{conv}}{c_s} = L_{ratio}^{1/3} Ma_{\star}.$$

Gap between $\tau_{\rm KH}$ and $\delta t_{\rm ac}$ diminishes proportional to $L_{\rm ratio}^{4/3}$.

The model describes a numerically tractable analogy of the star where the range of timescales is compressed.