Proposal for the measurement of the time correlation of the helicity fluctuations in the shear dynamo simulations

> Naveen Jingade (with Nishant K. Singh)

Pencil-code meeting

17-21 May 2021

Problem

- In standard theory, Kinetic Helicity leads to Dynamo action. e.g. In the solar convection zone.
- Rotation + Convection $\Rightarrow \alpha$ effect (generation of helicity)
- In Galaxy: Differentially rotating disc with turbulence powered by Supernovae explosions. α is subcritical to trigger the Dynamo.
- Question: Can non-helical turbulence in a differentially rotating disc lead to Dynamo Action.

The shear dynamo problem: the model system

Spacetime coordinates: $\boldsymbol{X} = (X_1, X_2, X_3);$ time $= \tau$

Velocity field: $V = SX_1e_2 + v(X, \tau)$

Fluctuations incompressible with zero mean: $\nabla \cdot \mathbf{v} = 0$; $\langle \mathbf{v} \rangle = \mathbf{0}$

Induction equation for the total magnetic field $B'(X, \tau)$:

$$\left(rac{\partial}{\partial au} + SX_1rac{\partial}{\partial X_2}
ight) m{B}' - SB'_1m{e}_2 = m{
abla} imes \left(m{v} imes m{B}'
ight) + \eta m{
abla}^2m{B}'$$

Navier-Stokes equation for the velocity field $v(X, \tau)$:

$$\left(\frac{\partial}{\partial t} + Sx_1\frac{\partial}{\partial x_2}\right)\mathbf{v} + Sv_1\mathbf{e}_2 + (\mathbf{v}\cdot\nabla)\mathbf{v} = -\frac{1}{\rho}\nabla P + \frac{\mathbf{J}\times\mathbf{B}}{\rho} + \nu\nabla^2\mathbf{v} + \mathbf{f}$$

Turbulence is set up by a forcing function **f** in simulation which is taken to be *homogeneous*, *isotropic* and *delta–correlated–in–time*.

<u>PENCIL-CODE</u>: weakly compressible MHD code.

Motivation to perform simulation at low Re

- (i) Dynamos due to non-helical *flows* ; Absence of alpha (at low Re ?)
- (ii) Authors¹ have rigorously proved that non-helical forcing gives rise to non-helical flows in the limit of low fluid Reynolds number (Re)
- (iii) Low ${\rm Re}$ situation is analytically more tractable problem than high ${\rm Re}$
- (iv) Solution for Navier-Stokes equation can be obtained rigorously for low Re without the Lorentz force in it.

¹N.K.Singh and S.Sridhar, Phys. Rev. E, 89, 056309(2011)

Dynamo action and Spacetime diagrams

 ${\rm Re}\approx 0.\overline{641}$, ${\rm Rm}\approx 32.0\overline{39}$, ${\rm Pr}\approx 50.0$, $k_{\rm f}/{\it K}=5.09$, ${\rm S_h}\approx -0.60$

Power spectrum at low Re

Nishant K. Singh & Naveen, Jingade, ApJ 2015, 806, 118

Dynamo is insensitive to the kinetic spectrum

Delta-correlated helicity fluctuations

Scale separation

$$\ell_0 \ll \boldsymbol{\ell_{\alpha}} \ll \boldsymbol{L}; \qquad \tau_0 \ll \boldsymbol{\tau_{\alpha}} \ll \boldsymbol{T},$$
$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\alpha \, \boldsymbol{B}) + \eta_T \nabla^2 \boldsymbol{B}$$

- Helicity fluctuation scale assumed to be larger than velocity variation scale.
- Split the mean field as $m{B}=\overline{m{B}}+m{b}$
- Kraichnan (1976) derived the mean-field equation by averaging over the scale ℓ_{α} and took the delta correlated time limit.

$$\frac{\partial \boldsymbol{B}}{\partial t} = (\eta_{\mathcal{T}} - \alpha_{\text{rms}}^2 \tau_{\alpha}) \nabla^2 \overline{\boldsymbol{B}} : \qquad \overline{\alpha(\boldsymbol{x}, t)} = 0$$

Growth if there is negative diffusion.

Single scale helical wave

Naveen Jingade & Nishant K.Singh MNRAS, 495, 4557, 2020

Can we understand what is happening in simulation by considering some model?

$$\left(\frac{\partial}{\partial \tau} + SX_1\frac{\partial}{\partial X_2}\right)\mathbf{v} + Sv_1\mathbf{e}_2 + \mathbf{v}\nabla \mathbf{v} = -\nabla \mathbf{p} + \nu \nabla^2 \mathbf{v}$$

- Solution: Shearing helical Waves

 $\mathbf{v}(\mathbf{X},t) = \mathbf{A}(t,\mathbf{q})\sin(\mathbf{Q}(t)\cdot\mathbf{X}+\psi) + \mathbf{h} \mathbf{C}(\mathbf{t},\mathbf{q})\cos(\mathbf{Q}(\mathbf{t})\cdot\mathbf{X}+\psi)$

 $\begin{aligned} \boldsymbol{Q} &= (\boldsymbol{q}_1 - \boldsymbol{S} \, \boldsymbol{q}_2 \, t, \boldsymbol{q}_2, \boldsymbol{q}_3) \\ \boldsymbol{Q}(t) \cdot \boldsymbol{A}(t) &= 0; \quad \text{and} \quad \boldsymbol{Q}(t) \cdot \boldsymbol{C}(t) = 0; \end{aligned}$ Helicity: $H &= \boldsymbol{v} \cdot (\boldsymbol{\nabla} \times \boldsymbol{v}) = \boldsymbol{h} \, \boldsymbol{C}(t) \cdot (\boldsymbol{Q}(t) \times \boldsymbol{A}(t)) \end{aligned}$

Shearing Amplitudes

$$A_1(q,t) = rac{q^2}{(q_1 - Stq_2)^2 + q_2^2 + q_3^2} a_1, \quad A(q,0) = a$$

Renovating flows

- τ is renovation time
- Velocity field in different time interval are statistically independent realizations drawn from the PDF.

velocity ensemble construction

- ψ is averaged from [0,2 π]
- **q** is averaged over the sphere of radius **q**
- initial amplitudes (a, c) are averaged over circle \perp to q.

Renovating flows

$$U(\mathbf{X}, t) = SX_1 \mathbf{e}_2 + \mathbf{u}(\mathbf{X}, t)$$
$$\frac{\partial \mathbf{B}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{B} = (\mathbf{B} \cdot \nabla) \mathbf{V}$$

Cachy's Solution

$$B_i(\boldsymbol{X}, \boldsymbol{n}\tau) = \frac{\partial X_i}{\partial X_{0j}} B_j(\boldsymbol{X}_0, (\boldsymbol{n}-1)\tau)$$

where Lagrangian co-ordinate is given by

$$X_i = X_{0i} + \int_0^t V_i(oldsymbol{X}_0, oldsymbol{s}) \, \mathrm{d}oldsymbol{s}$$

Fourier Transform of average field

$$\begin{split} \widetilde{B}_{i}(\boldsymbol{k},t) &= \int \left\langle B_{i}(\boldsymbol{x},t) \right\rangle \exp(-i\boldsymbol{k}\cdot\boldsymbol{x}) \, \mathrm{d}^{3}x \\ B_{i}(\boldsymbol{k},n\tau) &= G_{ij}(\boldsymbol{k}) B_{j}(\boldsymbol{k},(n-1)\tau) \\ B_{i}(\boldsymbol{k},n\tau) &= \sigma^{n} \times B_{j}(\boldsymbol{k},0) \end{split}$$

 $B_j(\mathbf{k}, 0)$ and σ are eigenvector and eigenvalue of G_{ij}

Fourier Transform of average field

$$\widetilde{B}_{i}(\mathbf{k}, t) = \int \langle B_{i}(\mathbf{x}, t)
angle \exp(-i\mathbf{k} \cdot \mathbf{x}) \, \mathrm{d}^{3} \mathbf{x}$$

 $B_{i}(\mathbf{k}, n\tau) = G_{ij}(\mathbf{k}) B_{j}(\mathbf{k}, (n-1)\tau)$
 $B_{i}(\mathbf{k}, n\tau) = \sigma^{n} \times B_{j}(\mathbf{k}, 0)$

 $B_j(\mathbf{k}, 0)$ and σ are eigenvector and eigenvalue of G_{ij} <u>Dispersion relation</u>: $\lambda = \frac{1}{\tau} \ln \sigma = \gamma + i\omega$ growth if $|\sigma| > 1$ Growth rate $\gamma = \frac{1}{\tau} \ln |\sigma|$ Cycle period $P_{cyc} = \frac{2\pi}{\omega}$

Expression for response tensor

$$G_{ij} = \gamma_{ik}(\tau)\sigma_{kj}(\mathbf{k}) \qquad (\gamma_{ij}) = \begin{pmatrix} 1 & 0 & 0\\ St & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

After averaging over ψ from 0 to 2π

$$\sigma_{kj}(\mathbf{k}) = \left\langle \delta_{kj} J_0(\Delta) - i \mathbf{h} \, q_j \frac{[\mathbf{k} \times (\tilde{\mathbf{a}} \times \tilde{\mathbf{c}})]_k}{\Delta} J_1(\Delta) \right\rangle$$

where

$$\Delta = \sqrt{(\mathbf{k} \cdot \tilde{\mathbf{a}})^2 + h^2 (\mathbf{k} \cdot \tilde{\mathbf{c}})^2}$$

 $\begin{array}{l} \underline{\text{Case 1}} \\ \hline \text{Case 1} \end{array} : \ h = 0, \quad \sigma < 1 \ \text{because} \ J_0\left(\Delta\right) < 1 \\ \underline{\text{Case 2}} \\ \hline \text{case 2} \end{array} : \ \text{fluctuation in } h \ \text{is symmetric;} \qquad \sigma < 1 \end{array}$

Expression for response tensor

<u>Case 3</u> : helicity correlation time $\geq 2 \times$ velocity correlation time;

Axisymmetric growing modes($k_2 = 0$), m = 3

Growth rates and maximum growing modes

(Left) Maximum growing mode as a function of shear. (Right) Growth rates at maximum growing mode as function of shear.

$$\widetilde{k}^* = \frac{k}{q} \quad \widetilde{|S|} = \frac{S}{q a}$$

Contrast with fixed helicity h = 1

Contrast with fixed helicity h = 1

 $\mathbf{v}(\mathbf{X}, t) = \mathbf{a}\sin(\mathbf{q}\cdot\mathbf{x} + \psi) + h\mathbf{c}\cos(\mathbf{q}\cdot\mathbf{x} + \psi)$

Comparison with simulation(fluctuating helicity)

(Left) Plot of growth rate versus shear take from Hughes & proctor (2009). (Right) Plot of growth rate as a function of shear strength for fixed value of wavenumber.

When can there be a scale separation between helicity and velocity fluctuations?

Pencil code

- Velocity correlator: $\langle \mathbf{v}(\mathbf{x},t) \cdot \mathbf{v}(\mathbf{x},t') \rangle = C_{\mathbf{v}}(\mathbf{x}-\mathbf{x}',t-t')$
- Helicity correlator: $\langle H(\mathbf{x},t)H(\mathbf{x},t')\rangle = C_h(\mathbf{x}-\mathbf{x}',t-t')$

Calculations at low re

$$\left(\frac{\partial}{\partial t} + Sx\frac{\partial}{\partial y}\right)\mathbf{v} + Sv_1\mathbf{e}_2 + \mathbf{v}\nabla \mathbf{v} = -\frac{1}{\rho}\nabla \rho + \nu\nabla^2\mathbf{v} + \mathbf{f}$$

f is delta-correlated in time and forced at a single wavenumber K_F .

- Velocity correlator: $v(0, t) \cdot v(0, t') = C_v(t t')$
- Helicity correlator: $H(\mathbf{0}, t)H(\mathbf{0}, t') = C_h(t t')$

where $H = \mathbf{v} \cdot (\mathbf{\nabla} \times \mathbf{v})$

Correlation times

(Left) Velocity correlator as a function of time. (Right) Comparison of helicity and velocity correlation time.

Rotating turbulence

Dallas,V & Tobias, Steve 2018, *Rotationally induced coherence in turbulent* kinematic dynamos

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + 2\mathbf{\Omega} \times \mathbf{v} = -\frac{1}{\rho} \nabla \rho + \nu \nabla^2 \mathbf{v} + \mathbf{f}$$

Rotating turbulence

Dallas,V & Tobias, Steve 2018, *Rotationally induced coherence in turbulent* kinematic dynamos

$$rac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + 2\mathbf{\Omega} imes \mathbf{v} = -rac{1}{
ho}
abla \mathbf{p} +
u
abla^2 \mathbf{v} + \mathbf{f}$$

Average relative helicity

Scale dependent correlation time of velocity

$$R(k,\tau) = \frac{\langle \hat{\mathbf{u}}(\mathbf{k},t)\hat{\mathbf{u}}^*(\mathbf{k},t+\tau)\rangle}{\langle \hat{\mathbf{u}}(\mathbf{k},t)\hat{\mathbf{u}}^*(\mathbf{k},t)\rangle}$$

Proposal

Other origin for α -fluctuations

THE ASTROPHYSICAL JOURNAL, 332:857–871, 1988 September 15 © 1988. The American Astronomical Society. All rights reserved. Printed in U.S.A.

TURBULENT TRANSPORT OF MAGNETIC FIELDS. III. STOCHASTIC EXCITATION OF GLOBAL MAGNETIC MODES

P. HOYNG Laboratory for Space Research, Beneluxlaan 21, 3527 HS Utrecht, The Netherlands Received 1988 January 11; accepted 1988 March 2

