Proposal for the measurement of the time correlation of the helicity fluctuations in the shear dynamo simulations

Naveen Jingade
(with Nishant K. Singh)

Pencil-code meeting

17-21 May 2021

Problem

- In standard theory,Kinetic Helicity leads to Dynamo action. e.g. In the solar convection zone.
- Rotation + Convection $\Rightarrow \alpha$ - effect (generation of helicity)
- In Galaxy: Differentially rotating disc with turbulence powered by Supernovae explosions. α is subcritical to trigger the Dynamo.
- Question: Can non-helical turbulence in a differentially rotating disc lead to Dynamo Action.

The shear dynamo problem: the model system

$\underline{\text { Spacetime coordinates: }} \quad \boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}\right) ; \quad$ time $=\tau$
Velocity field: $\quad \boldsymbol{V}=S X_{1} \boldsymbol{e}_{2}+\boldsymbol{v}(\boldsymbol{X}, \tau)$

Fluctuations incompressible with zero mean: $\boldsymbol{\nabla} \cdot \boldsymbol{v}=0 ;\langle\boldsymbol{v}\rangle=\mathbf{0}$

Induction equation for the total magnetic field $\boldsymbol{B}^{\prime}(\boldsymbol{X}, \tau)$:

$$
\left(\frac{\partial}{\partial \tau}+S X_{1} \frac{\partial}{\partial X_{2}}\right) \boldsymbol{B}^{\prime}-S B_{1}^{\prime} \boldsymbol{e}_{2}=\nabla \times\left(\boldsymbol{v} \times \boldsymbol{B}^{\prime}\right)+\eta \boldsymbol{\nabla}^{2} \boldsymbol{B}^{\prime}
$$

Navier-Stokes equation for the velocity field $\boldsymbol{v}(\boldsymbol{X}, \tau)$:
$\left(\frac{\partial}{\partial t}+S_{x_{1}} \frac{\partial}{\partial x_{2}}\right) \boldsymbol{v}+S_{v_{1}} \boldsymbol{e}_{2}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}=-\frac{1}{\rho} \boldsymbol{\nabla} P+\frac{\boldsymbol{J} \times \boldsymbol{B}}{\rho}+\nu \nabla^{2} \boldsymbol{v}+\boldsymbol{f}$
Turbulence is set up by a forcing function \boldsymbol{f} in simulation which is taken to be homogeneous, isotropic and delta-correlated-in-time.

PENCIL-CODE: weakly compressible MHD code.

Motivation to perform simulation at low Re

(i) Dynamos due to non-helical flows ; Absence of alpha (at low Re ?)
(ii) Authors ${ }^{1}$ have rigorously proved that non-helical forcing gives rise to non-helical flows in the limit of low fluid Reynolds number (Re)
(iii) Low Re situation is analytically more tractable problem than high Re
(iv) Solution for Navier-Stokes equation can be obtained rigorously for low Re without the Lorentz force in it.

[^0]
Dynamo action and Spacetime diagrams

$\operatorname{Re} \approx 0.641, \mathrm{Rm} \approx 32.039, \operatorname{Pr} \approx 50.0, k_{f} / K=5.09, \mathrm{~S}_{\mathrm{h}} \approx-0.60$

Power spectrum at low Re
Nishant K. Singh \& Naveen, Jingade, ApJ 2015, 806, 118

Dynamo is insensitive to the kinetic spectrum

Delta-correlated helicity fluctuations

Scale separation

$$
\begin{aligned}
& \ell_{0} \lll L ; \quad \tau_{0} \lll T, \\
& \frac{\partial \boldsymbol{B}}{\partial t} \ll \times(\alpha \boldsymbol{B})+\eta_{T} \nabla^{2} \boldsymbol{B}
\end{aligned}
$$

- Helicity fluctuation scale assumed to be larger than velocity variation scale.
- Split the mean field as $\boldsymbol{B}=\overline{\boldsymbol{B}}+\boldsymbol{b}$
- Kraichnan (1976) derived the mean-field equation by averaging over the scale ℓ_{α} and took the delta correlated time limit.

$$
\frac{\partial \overline{\boldsymbol{B}}}{\partial t}=\left(\eta_{T}-\alpha_{\mathrm{rms}}^{2} \tau_{\alpha}\right) \nabla^{2} \overline{\boldsymbol{B}}: \quad \overline{\alpha(\boldsymbol{x}, t)}=0
$$

Growth if there is negative diffusion.

Single scale helical wave

Naveen Jingade \& Nishant K. Singh MNRAS, 495, 4557, 2020

- Can we understand what is happening in simulation by considering some model?

$$
\left.\left(\frac{\partial}{\partial \tau}+S X_{1} \frac{\partial}{\partial X_{2}}\right) \boldsymbol{v}+S v_{1} \boldsymbol{e}_{2}+\nabla\right) v=-\nabla p+\nu \overline{\nabla^{2} k}
$$

- Solution: Shearing helical Waves

$$
\begin{gathered}
\boldsymbol{v}(\boldsymbol{X}, t)=\boldsymbol{A}(t, \boldsymbol{q}) \sin (\boldsymbol{Q}(t) \cdot \boldsymbol{X}+\psi)+h \mathbf{C}(\mathbf{t}, \mathbf{q}) \cos (\mathbf{Q}(\mathbf{t}) \cdot \mathbf{X}+\psi) \\
\boldsymbol{Q}=\left(q_{1}-S q_{2} t, q_{2}, q_{3}\right) \\
\boldsymbol{Q}(t) \cdot \boldsymbol{A}(t)=0 ; \quad \text { and } \quad \boldsymbol{Q}(t) \cdot \boldsymbol{C}(t)=0 \\
\text { Helicity: } H=\boldsymbol{v} \cdot(\boldsymbol{\nabla} \times \boldsymbol{v})=h \boldsymbol{C}(t) \cdot(\boldsymbol{Q}(t) \times \boldsymbol{A}(t))
\end{gathered}
$$

Shearing Amplitudes

$$
A_{1}(\boldsymbol{q}, t)=\frac{q^{2}}{\left(q_{1}-S t q_{2}\right)^{2}+q_{2}^{2}+q_{3}^{2}} a_{1}, \quad \boldsymbol{A}(\boldsymbol{q}, 0)=\boldsymbol{a}
$$

Renovating flows

- τ is renovation time
- Velocity field in different time interval are statistically independent realizations drawn from the PDF.
velocity ensemble construction
- ψ is averaged from $[0,2 \pi]$
- \boldsymbol{q} is averaged over the sphere of radius q
- initial amplitudes ($\mathbf{a}, \boldsymbol{c}$) are averaged over circle \perp to \boldsymbol{q}.

Renovating flows

$$
\begin{gathered}
\boldsymbol{U}(\boldsymbol{X}, t)=S X_{1} \boldsymbol{e}_{2}+\boldsymbol{u}(\boldsymbol{X}, t) \\
\frac{\partial \boldsymbol{B}}{\partial t}+(\boldsymbol{V} \cdot \boldsymbol{\nabla}) \boldsymbol{B}=(\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{V}
\end{gathered}
$$

Cachy's Solution

$$
B_{i}(\boldsymbol{X}, n \tau)=\frac{\partial X_{i}}{\partial X_{0 j}} B_{j}\left(\boldsymbol{X}_{0},(n-1) \tau\right)
$$

where Lagrangian co-ordinate is given by

$$
X_{i}=X_{0 i}+\int_{0}^{t} V_{i}\left(\boldsymbol{X}_{0}, s\right) \mathrm{d} s
$$

Fourier Transform of average field

$$
\begin{gathered}
\widetilde{B}_{i}(\boldsymbol{k}, t)=\int\left\langle B_{i}(\boldsymbol{x}, t)\right\rangle \exp (-i \boldsymbol{k} \cdot \boldsymbol{x}) \mathrm{d}^{3} x \\
B_{i}(\boldsymbol{k}, n \tau)=G_{i j}(\boldsymbol{k}) B_{j}(\boldsymbol{k},(n-1) \tau) \\
B_{i}(\boldsymbol{k}, n \tau)=\sigma^{n} \times B_{j}(\boldsymbol{k}, 0)
\end{gathered}
$$

$B_{j}(\boldsymbol{k}, 0)$ and σ are eigenvector and eigenvalue of $G_{i j}$

Fourier Transform of average field

$$
\begin{gathered}
\widetilde{B}_{i}(\boldsymbol{k}, t)=\int\left\langle B_{i}(\boldsymbol{x}, t)\right\rangle \exp (-i \boldsymbol{k} \cdot \boldsymbol{x}) \mathrm{d}^{3} x \\
B_{i}(\boldsymbol{k}, n \tau)=G_{i j}(\boldsymbol{k}) B_{j}(\boldsymbol{k},(n-1) \tau) \\
B_{i}(\boldsymbol{k}, n \tau)=\sigma^{n} \times B_{j}(\boldsymbol{k}, 0)
\end{gathered}
$$

$B_{j}(\boldsymbol{k}, 0)$ and σ are eigenvector and eigenvalue of $G_{i j}$
Dispersion relation: $\lambda=\frac{1}{\tau} \ln \sigma=\gamma+i \omega$ growth if $|\sigma|>1$
Growth rate $\quad \gamma=\frac{1}{\tau} \ln |\sigma|$
Cycle period $\quad P_{\text {cyc }}=\frac{2 \pi}{\omega}$

Expression for response tensor

$$
G_{i j}=\gamma_{i k}(\tau) \sigma_{k j}(k) \quad\left(\gamma_{i j}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
S t & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

After averaging over ψ from 0 to 2π

$$
\sigma_{k j}(\boldsymbol{k})=\left\langle\delta_{k j} J_{0}(\Delta)-i h_{j} \frac{[\boldsymbol{k} \times(\tilde{a} \times \tilde{c})]_{k}}{\Delta} J_{1}(\Delta)\right\rangle
$$

where

$$
\Delta=\sqrt{(\boldsymbol{k} \cdot \tilde{\boldsymbol{a}})^{2}+h^{2}(\boldsymbol{k} \cdot \tilde{\boldsymbol{c}})^{2}}
$$

Case $1: h=0, \quad \sigma<1$ because $J_{0}(\Delta)<1$
Case 2 : fluctuation in h is symmetric; $\quad \sigma<1$

Expression for response tensor

Case 3 : helicity correlation time $\geq 2 \times$ velocity correlation time;

$$
B(\hat{k,} n \tau)=\underbrace{\langle\hat{G} \ldots \hat{G}\rangle_{h}}_{m \text { times }} \hat{B}(\boldsymbol{k},(n-m) \tau)
$$

$\tau_{h}=m \tau$ where τ_{h} is renovation time of h

spiked
$\left\langle h^{2}\right\rangle=1$

Uniform
$\left\langle h^{2}\right\rangle=1 / 3$

Axisymmetric growing $\operatorname{modes}\left(k_{2}=0\right), m=3$

Growth rates and maximum growing modes

(Left) Maximum growing mode as a function of shear. (Right) Growth rates at maximum growing mode as function of shear.

$$
\widetilde{k}^{*}=\frac{k}{q} \quad \widetilde{|S|}=\frac{S}{q a}
$$

Contrast with fixed helicity $h=1$

Contrast with fixed helicity $h=1$

$$
\boldsymbol{v}(\boldsymbol{X}, t)=\boldsymbol{a} \sin (\boldsymbol{q} \cdot \mathbf{x}+\psi)+h \mathbf{c} \cos (\boldsymbol{q} \cdot \mathbf{x}+\psi)
$$

Comparison with simulation(fluctuating helicity)

(Left) Plot of growth rate versus shear take from Hughes \& proctor (2009). (Right) Plot of growth rate as a function of shear strength for fixed value of wavenumber.

When can there be a scale separation between helicity and velocity fluctuations?

Pencil code

- Velocity correlator: $\left\langle\boldsymbol{v}(\boldsymbol{x}, t) \cdot \boldsymbol{v}\left(\boldsymbol{x}, t^{\prime}\right)\right\rangle=C_{v}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, t-t^{\prime}\right)$
- Helicity correlator: $\left\langle H(\boldsymbol{x}, t) H\left(\boldsymbol{x}, t^{\prime}\right)\right\rangle=C_{h}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, t-t^{\prime}\right)$

Calculations at low re

$$
\left(\frac{\partial}{\partial t}+S x \frac{\partial}{\partial y}\right) v+S v_{1} \boldsymbol{e}_{2}+\nabla \nabla v=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \boldsymbol{v}+\boldsymbol{f}
$$

\boldsymbol{f} is delta-correlated in time and forced at a single wavenumber K_{F}.

- Velocity correlator: $\boldsymbol{v}(\mathbf{0}, t) \cdot \boldsymbol{v}\left(\mathbf{0}, t^{\prime}\right)=C_{v}\left(t-t^{\prime}\right)$
- Helicity correlator: $H(\mathbf{0}, t) H\left(\mathbf{0}, t^{\prime}\right)=C_{h}\left(t-t^{\prime}\right)$

$$
\text { where } H=\boldsymbol{v} \cdot(\boldsymbol{\nabla} \times \boldsymbol{v})
$$

Correlation times

(Left) Velocity correlator as a function of time. (Right) Comparison of helicity and velocity correlation time.

Rotating turbulence

Dallas, V \& Tobias, Steve 2018, Rotationally induced coherence in turbulent kinematic dynamos

$$
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+2 \boldsymbol{\Omega} \times \boldsymbol{v}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \boldsymbol{v}+\boldsymbol{f}
$$

Rotating turbulence
Dallas, V \& Tobias, Steve 2018, Rotationally induced coherence in turbulent kinematic dynamos

$$
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+2 \boldsymbol{\Omega} \times \boldsymbol{v}=-\frac{1}{\rho} \boldsymbol{\nabla} p+\nu \nabla^{2} \boldsymbol{v}+\boldsymbol{f}
$$

$\Omega=0$

$\Omega=3$

Average relative helicity

Scale dependent correlation time of velocity

$$
R(k, \tau)=\frac{\left\langle\hat{\mathbf{u}}(\mathbf{k}, t) \hat{\mathbf{u}}^{*}(\mathbf{k}, t+\tau)\right\rangle}{\left\langle\hat{\mathbf{u}}(\mathbf{k}, t) \hat{\mathbf{u}}^{*}(\mathbf{k}, t)\right\rangle}
$$

Proposal

Other origin for α-fluctuations

The Astrophrsical Journal, 332:857-871, 1988 September IS

© 1983. The Amerian Astronomial Scosey. AII righs reserved. Printed in U.SA.

TURBULENT TRANSPORT OF MAGNETIC FIELDS. III. STOCHASTIC EXCITATION OF GLOBAL MAGNETIC MODES

[^0]: ${ }^{1}$ N.K.Singh and S.Sridhar, Phys. Rev. E, 89, 056309(2011)

