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Problem

- In standard theory,Kinetic Helicity leads to Dynamo action.
e.g. In the solar convection zone.

- Rotation + Convection ⇒ α− effect (generation of helicity)

- In Galaxy: Differentially rotating disc with turbulence powered
by Supernovae explosions. α is subcritical to trigger the
Dynamo.

- Question: Can non-helical turbulence in a differentially
rotating disc lead to Dynamo Action.



The shear dynamo problem: the model system
X1

X2

Spacetime coordinates: X = (X1,X2,X3) ; time = τ

Velocity field: V = SX1e2 + v(X, τ)

Fluctuations incompressible with zero mean: ∇· v = 0 ; ⟨v⟩ = 0



Induction equation for the total magnetic field B′(X, τ):(
∂

∂τ
+ SX1

∂

∂X2

)
B′ − SB′

1e2 = ∇×
(
v×B′) + η∇2B′

Navier-Stokes equation for the velocity field v(X, τ):

(
∂

∂t + Sx1
∂

∂x2

)
v+Sv1e2+(v·∇)v = −1

ρ
∇P+

J×B
ρ

+ν∇2v+f

Turbulence is set up by a forcing function f in simulation which is
taken to be homogeneous, isotropic and delta–correlated–in–time.

PENCIL-CODE: weakly compressible MHD code.



Motivation to perform simulation at low Re

(i) Dynamos due to non–helical flows ; Absence of alpha (at low
Re ?)

(ii) Authors1have rigorously proved that non–helical forcing gives
rise to non–helical flows in the limit of low fluid Reynolds
number (Re)

(iii) Low Re situation is analytically more tractable problem than
high Re

(iv) Solution for Navier-Stokes equation can be obtained rigorously
for low Re without the Lorentz force in it.

1N.K.Singh and S.Sridhar, Phys. Rev. E, 89, 056309(2011)



Dynamo action and Spacetime diagrams

Re ≈ 0.641 , Rm ≈ 32.039 , Pr ≈ 50.0 , kf/K = 5.09 , Sh ≈ −0.60



Power spectrum at low Re
Nishant K. Singh & Naveen, Jingade, ApJ 2015, 806, 118

Dynamo is insensitive to the kinetic spectrum



Delta-correlated helicity fluctuations
Scale separation

ℓ0 ≪ ℓα ≪ L ; τ0 ≪ τα ≪ T ,

∂B
∂t = ∇× (αB ) + ηT∇2B

- Helicity fluctuation scale assumed to be larger than velocity
variation scale.

- Split the mean field as B = B + b
- Kraichnan (1976) derived the mean-field equation by

averaging over the scale ℓα and took the delta correlated time
limit.

∂B
∂t = (ηT − α2

rmsτα)∇2B : α(x, t) = 0

Growth if there is negative diffusion.



Single scale helical wave
Naveen Jingade & Nishant K.Singh MNRAS, 495, 4557, 2020

- Can we understand what is happening in simulation by
considering some model?(

∂

∂τ
+ SX1

∂

∂X2

)
v + Sv1e2 +����XXXX(v·∇)v = −∇p + ν���HHH∇2v

- Solution: Shearing helical Waves

v(X, t) = A(t,q) sin(Q(t) ·X+ψ)+h C(t,q) cos(Q(t) ·X+ψ)

Q = (q1 − S q2 t, q2, q3)

Q(t)·A(t) = 0; and Q(t)·C(t) = 0;

Helicity: H = v· (∇× v) = h C(t)· (Q(t)×A(t))



Shearing Amplitudes

A1(q, t) =
q2

(q1 − Stq2)2 + q22 + q23
a1 , A(q, 0) = a
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ũ1

ũ2
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Renovating flows

0 1 2 3 (n − 1)τ nτ

- τ is renovation time
- Velocity field in different time interval are statistically

independent realizations drawn from the PDF.
velocity ensemble construction

- ψ is averaged from [0,2π]
- q is averaged over the sphere of radius q
- initial amplitudes (a, c) are averaged over circle ⊥ to q.



Renovating flows

0 1 2 3 (n − 1)τ nτ

U(X, t) = SX1e2 + u(X, t)
∂B
∂t + (V· ∇)B = (B·∇)V

Cachy’s Solution

Bi(X, nτ) =
∂Xi
∂X0j

Bj(X0, (n − 1)τ)

where Lagrangian co-ordinate is given by

Xi = X0i +

∫ t

0
Vi(X0, s)ds



0 1 2 3 (n − 1)τ nτ

Fourier Transform of average field

B̃i(k, t) =
∫

⟨Bi(x, t)⟩ exp(−ik· x)d3x

Bi(k, nτ) = Gij(k)Bj(k, (n − 1)τ)

Bi(k, nτ) = σn × Bj(k, 0)

Bj(k, 0) and σ are eigenvector and eigenvalue of Gij

Dispersion relation: λ = 1
τ lnσ = γ + iω growth if |σ| > 1

Growth rate γ =
1

τ
ln |σ|

Cycle period Pcyc =
2π

ω
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Expression for response tensor

Gij = γik(τ)σkj(k) (γij) =

 1 0 0
S t 1 0
0 0 1


After averaging over ψ from 0 to 2π

σkj(k) =
⟨
δkjJ0 (∆)− i h qj

[k×(ã×c̃)]k
∆

J1 (∆)

⟩
where

∆ =
√

(k · ã)2 + h2(k · c̃)2

Case 1 : h = 0, σ < 1 because J0 (∆) < 1

Case 2 : fluctuation in h is symmetric; σ < 1



Expression for response tensor
Case 3 : helicity correlation time ≥2×velocity correlation time;

0 1 2 3 (n − 1)τ nτ
ˆB(k, nτ) =

⟨
Ĝ . . . Ĝ

⟩
h︸ ︷︷ ︸

m times

B̂(k, (n − m)τ)

τh = mτ where τh is renovation time of h

0h = −1 h = 1 0h = −1 h = 1

spiked Uniform
⟨h2⟩ = 1 ⟨h2⟩ = 1/3



Axisymmetric growing modes(k2 = 0), m = 3
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Growth rates and maximum growing modes
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(Left) Maximum growing mode as a function of shear. (Right) Growth
rates at maximum growing mode as function of shear.

k̃∗ = k
q |̃S| = S

q a



Contrast with fixed helicity h = 1
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Contrast with fixed helicity h = 1
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v(X, t) = a sin(q · x + ψ) + h c cos(q · x + ψ)



Comparison with simulation(fluctuating helicity)
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(Left) Plot of growth rate versus shear take from Hughes & proctor
(2009). (Right) Plot of growth rate as a function of shear strength for
fixed value of wavenumber.



When can there be a scale separation between
helicity and velocity fluctuations?

Pencil code
- Velocity correlator: ⟨v(x, t)· v(x, t′)⟩ = Cv(x − x′, t − t′)
- Helicity correlator: ⟨H(x, t)H(x, t′)⟩ = Ch(x − x′, t − t′)



Calculations at low re

(
∂

∂t + Sx ∂
∂y

)
v + Sv1e2 +����XXXX(v·∇)v = −1

ρ
∇p + ν∇2v + f

f is delta-correlated in time and forced at a single wavenumber KF.

- Velocity correlator: v(0, t)· v(0, t′) = Cv(t − t′)
- Helicity correlator: H(0, t)H(0, t′) = Ch(t − t′)

where H = v· (∇× v)



Correlation times
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(Left) Velocity correlator as a function of time. (Right) Comparison of
helicity and velocity correlation time.



Rotating turbulence
Dallas,V & Tobias, Steve 2018, Rotationally induced coherence in turbulent
kinematic dynamos

∂v
∂t + (v·∇)v + 2Ω×v = −1

ρ
∇p + ν∇2v + f

Ω = 0 Ω = 3



Rotating turbulence
Dallas,V & Tobias, Steve 2018, Rotationally induced coherence in turbulent
kinematic dynamos

∂v
∂t + (v·∇)v + 2Ω×v = −1

ρ
∇p + ν∇2v + f

Ω = 0 Ω = 3



Average relative helicity
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Scale dependent correlation time of velocity
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Proposal
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Other origin for α−fluctuations


