On the shear-current effect: toward understanding why theories and simulations have mutually and separately conflicted

Hongzhe Zhou (Nordita), Eric Blackman (UR)

arXiv:2104.11112

Large-scale dynamo (LSD): Amplification of magnetic energy beyond the energy-dominant scale of turbulence

Shear-current effect (SC/SCE): Non-helical turbulence + shear flow lead to LSD

Might operate in weakly stratified flows, planetary cores (source of helicity unclear); may coexist with other dynamo drivers ($\Omega \times J$, incoherent α , etc.)

Basic setup in all theories and most simulations:

Cartesian geometry; mean fields defined by xy-average; forced isotropic turbulence perturbed by a shear flow Compare with: MRI turbulence

PCUM 2021

Shear-current effect:

Mean electromotive force $\mathscr{E}_i = \langle \mathbf{u} \times \mathbf{b} \rangle_i = \alpha_{ij} B_j - \beta_{ij} J_j$ with negative β_{21}

Background shear flow $\mathbf{U} = -Sx\hat{\mathbf{y}}$

Amplification of mean magnetic energy: large-scale dynamo

Main question:

+

What are the respective contributions to β_{21} from turbulent velocity and magnetic fields?

Theory	Simulation	Kinetic/ Magnetic SCE	Remarks E?
 [†]Rogachevskii & Kleeorin (2003) [†]Rogachevskii & Kleeorin (2004) Rädler & Stepanov (2006) Rüdiger & Kitchatinov (2006) [†]Pipin (2008) Sridhar & Subramanian (2009) Sridhar & Singh (2010) Singh & Sridhar (2011) Squire & Bhattacharjee (2015a) 	Brandenburg et al. (2008)	Y/ Y/Y N/ N/ N/ Y/Y N/ N/ N/ N/ N/ N/	Re & Rm defined by u_{rms} and k_f Re = $O(1)$, Rm $\leq O(100)$ Quasi-linear in shearing frame Quasi-linear in shearing frame Quasi-linear in shearing frame
Equire & Enablacitarjee (2010a)	Squire & Bhattacharjee (2015c) *Squire & Bhattacharjee (2015b) Singh & Jingade (2015) *Squire & Bhattacharjee (2016) Käpylä et al. (2020)	N/Y N/Y N/ N/Y N/Y N/N	$\begin{split} &\mathrm{Re} = \mathrm{Rm} \simeq 5 \\ &\mathrm{Re} = \mathrm{Rm} \lesssim 15 \\ &\mathrm{min} \left\{ \mathrm{Re}, \mathrm{Rm} \right\} < 1 \\ &\mathrm{8Re} = \mathrm{Rm} \lesssim 5 \left< u^2 \right> / \left< B^2 \right> \\ &\mathrm{MHD} \text{ burgulence, } \mathrm{Re} < 1, \mathrm{Rm} < 15 \end{split}$

†theory = using τ closure (~ applies for Re & Rm $\gg 1$) otherwise using SOCA or quasi-linear (~ applies for Re & Rm < 1)

*simulation = using the projection method otherwise using test field methods

(Wissing+2021: MRI with SPH, no SCE in ustr+nf, ustr+znf, or str+nf; contradicts Shi+2016)

Theories and simulations have mutually and separately conflicted

$$\partial_t \langle u \rangle = \langle uu \rangle + \cdots$$
$$\partial_t \langle uu \rangle = \langle uuu \rangle + \cdots$$

Second-order-correlation-approximation (SOCA):

Drops nonlinear terms

$$\to \partial_t \langle uu \rangle = \dots + \nu \, \nabla^2 \langle uu \rangle$$

Justified at low Reynolds numbers or low Strouhal number (=correlation time/eddy turnover time)

Spectral- τ **or minimal-** τ **:**

Replaces order ≥ 3 terms by a damping term

 $\rightarrow \partial_t \langle uu \rangle = \cdots - \langle uu \rangle / \tau(k)$ (in Fourier space)

A closure at high Reynolds numbers (hence small dissipation terms)

Collectively we can write $\partial_t \langle ub \rangle = \text{linear terms} + ck^{\lambda} \langle ub \rangle$

where
$$ck^{\lambda} = \begin{cases} -\nu k^2 & \text{for SOCA} \\ -\tau k^{q-1} & \text{for spectral } \tau \end{cases}$$

q = spectral index (e.g. 5/3 for Kolmogorov)

ZB21: to the $\mathcal{O}(Sh)$ order, $\beta_{21}^u < 0$ only if $\lambda < 1$, thus: In SOCA, $\beta_{21}^u > 0$ always \rightarrow no kinetic SC In spectral- τ , $\beta_{21}^u < 0$ if q < 2 (Rogachevskii & Kleeorin 2003, 2004)

In both theories magnetic SC always works ($\beta_{21}^b < 0$), regardless of the spectral index q

	τ closure	SOCA/Quasi- linear	Test field
Kinetic SC	Yes	No	No
Magnetic SC	Yes	Yes	No

Simulations not finding KSC: too low Re and Rm?

Squire & Bhattacharjee (2015c)	N/Y	$Re = Rm \simeq 5$
_	- 7 -	
*Squire & Bhattacharjee (2015b)	N/Y	${ m Re}={ m Rm}\lesssim 15$
Singh & Jingade (2015)	N/	$\min \{ \operatorname{Re}, \operatorname{Rm} \} < 1$
*Squire & Bhattacharjee (2016)	N/Y	$8 { m Re} = { m Rm} \lesssim 5 \left< u^2 \right> / \left< B^2 \right>$
Käpylä et al. (2020)	N/N	MHD burgulence, $\text{Re} < 1$, $\text{Rm} < 15$

Kinematic test field method (no magnetic background)

 \rightarrow evidence of transiting from positive to negative values (but with large error bars)

	τclosure	SOCA/Quasi- linear	Test field
Kinetic SC	Yes	No	No at small Re Yes at large Re?
Magnetic SC	Yes	Yes	No at Re,Rm<15

Why no magnetic SC detected in test field methods even though both theories predicted it?

Kinetic SC depends more sensitively on spectral index

 $\rightarrow \text{ for steep spectra (as at low Re & Rm),} \\ |\beta_{21}^{u}|\langle u^{2}\rangle > |\beta_{21}^{b}|\langle b^{2}\rangle \text{ even if } \langle u^{2}\rangle \lesssim \langle b^{2}\rangle$

1. Comparable β_{12} and $\beta_{21} \rightarrow$ may invalidate setting $\beta_{12} = 0$ in the projection method

2. No dynamo cycle period \rightarrow SCE at best subdominant in simulations, unless β_{ii} itself is periodic (requires nonlinear theory)

(Cases of shear + rotation /

pure rotation / burgulence

Subtlety 1: The spectral index

The energy-dominant modes are k = 4,5,6, but:

1. q(5,6) very large: a sudden steep slope because of forcing

 \rightarrow destructive to SCE even if q < 2 inside the inertial range

2. q(4,5) < 0: positive slope at $k < k_f$

 \rightarrow constructive to SCE, but not considered in theories

The combined effect is...?

Subtlety 2: The boundary condition

Theories: normally period boundary conditions

$$f(x+L, y) = f(x, y)$$

Shearing box simulations: shear periodic boundary condition f(x + L, y - StL) = f(x, y)

In all theories, $\hat{P}_{ij} = \delta_{ij} - \frac{\partial_i \partial_j}{\partial^2}$ is found crucial to produce SCE, but does using different b.c. change the solution because of ∂^{-2} ?

A possible solution: shearing coordinates (Sridhar, Subramanian, Singh ...), but

- 1. no calculation for magnetic SCE yet
- 2. How to incorporate a closure at large Re & Rm?

Summary:

Assuming using normally or shear periodic b.c. does not qualitatively change the story:

Some unresolved issues:

- 1. More careful justification of the slope dependence
- 2. Any influence from different boundary conditions?
- 3. Physical picture compatible the slope dependence

$$q_s(k) = -\frac{\pi}{E(k)} \frac{E(k+1) - E(k)}{(k+1) - k}$$
$$\sum_{k=1}^{\infty} q_s(k) E(k)$$

 $k \quad E(k+1) - E(k)$

 $\overline{q}_s(k) = \frac{\sum_{k \ge k_f} q_s(n) \ge (n)}{\sum_{k \ge k_f} E(k)}$

For Pm=1, fitted critical exponent is $\{\{x \rightarrow 3.30541\}\}$ Statistic P-Value Pearson Correlation 0.925254 0.000986349 For Pm=0.2, fitted critical exponent is $\{\{x \rightarrow 2.29412\}\}$ Statistic P-Value Pearson Correlation 0.844132 0.0345487 For Pm=5, fitted critical exponent is $\{\{x \rightarrow 3.46678\}\}$ Statistic P-Value

Pearson Correlation 0.773489 0.07115

 $(\Delta k = 1)$

13

Subtlety: Role of the pressure gradient term

$$\partial_t \mathbf{u} = -\nabla p + \text{other terms}$$

If \mathbf{u} is incompressible, then p is not dynamical but instead determined by other fields and and boundary conditions:

$$\partial_t \mathbf{u} = \hat{\mathbf{P}}(\text{other terms}), \ \hat{P}_{ij} = \delta_{ij} - \frac{\partial_i \partial_j}{\partial^2}$$

Theory: $\hat{\mathbf{P}}$ is necessary for both kinetic and magnetic SCEs (ZB21, Squire & Bhattacharjee 2016)

Simulation: not the case? (Käpylä+2020)

Käpylä+2020:

Run	Re _M	$\lambda/(\eta_0 k_{ m f}^{2})$	η_{xx}/η_0	η_{yy}/η_0	η_{yx}/η_0
FK1a	2.1	-0.0354	0.557 ± 0.006	0.547 ± 0.007	0.048 ± 0.001
FK1b	11.9	0.0140	0.608 ± 0.015	0.598 ± 0.014	0.023 ± 0.001
FK8a	2.1	-0.0008	0.572 ± 0.010	0.563 ± 0.011	0.044 ± 0.002
FK8b	12.7	0.0166	0.641 ± 0.019	0.634 ± 0.017	0.023 ± 0.001
SK1a	2.0	0.0006	0.367 ± 0.001	0.393 ± 0.002	-0.003 ± 0.000
SK1b	12.3	0.0183	0.440 ± 0.004	0.412 ± 0.001	-0.011 ± 0.002
SK4a	2.1	-0.0042	0.367 ± 0.003	0.390 ± 0.003	-0.004 ± 0.000
SK4b	13.3	0.0185	0.334 ± 0.037	0.339 ± 0.044	-0.004 ± 0.005
SK8a	2.1	0.0033	0.367 ± 0.003	0.390 ± 0.004	-0.003 ± 0.000
SK8b	12.8	0.0192	0.401 ± 0.005	0.424 ± 0.005	-0.015 ± 0.000
SKM1a	1.9		1.794 ± 0.039	1.278 ± 0.045	0.200 ± 0.025
SKM4a	2.1		2.012 ± 0.179	1.191 ± 0.014	0.221 ± 0.012
SKM8a	1.8		3.054 ± 0.625	1.481 ± 0.131	0.338 ± 0.064
SKM16a	2.0		2.238 ± 0.552	1.215 ± 0.010	0.249 ± 0.062
SKM1ad	2.1	0.0103	1.228 ± 0.214	1.326 ± 0.074	0.247 ± 0.043
SKM4ad	1.9	0.0315	1.279 ± 0.150	1.455 ± 0.066	0.222 ± 0.022
SKM8ad	1.5	0.0948	1.688 ± 0.165	2.040 ± 0.150	0.516 ± 0.061
SKM16ad	1.9	0.0344	1.231 ± 0.070	1.589 ± 0.019	0.364 ± 0.116

MHD burgulence: $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \mathbf{J} \times \mathbf{B} + \nu \nabla^2 \mathbf{u}$

But...

$$\mathbf{J} \times \mathbf{B} = -\nabla \frac{B^2}{2} + \mathbf{B} \cdot \nabla \mathbf{B}$$