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Large-scale dynamo (LSD): Amplification of magnetic energy beyond 
the energy-dominant scale of turbulence
Shear-current effect (SC/SCE): Non-helical turbulence + shear flow 
lead to LSD

Basic setup in all theories and most simulations: 
Cartesian geometry; mean fields defined by -average; 
forced isotropic turbulence perturbed by a shear flow

Compare with: MRI turbulence

xy

Might operate in weakly stratified flows, planetary cores (source of 
helicity unclear); may coexist with other dynamo drivers ( , 
incoherent , etc.)

Ω × J
α



2

Mean electromotive force  with negative ℰi = ⟨u × b⟩i = αijBj − βijJj β21

Background shear flow U = − Sxŷ+
Amplification of mean magnetic energy: large-scale dynamo

Shear-current effect：

Main question: 
What are the respective contributions to  from turbulent 
velocity and magnetic fields?

β21

β21 =
τ
3

βu
21⟨u2⟩ +

τ
3

βb
21⟨b2⟩ , magnetic SCE∝ ⟨b2⟩

, kinetic SCE∝ ⟨u2⟩
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theory = using  closure ( ~ applies for Re & Rm ) 
otherwise using SOCA or quasi-linear ( ~ applies for Re & Rm )
† τ ≫ 1

< 1

*simulation = using the projection method 
otherwise using test field methods

Re & Rm defined by  and urms kf



τ closure SOCA/Quasi- 
linear Test field Projection 

method

Kinetic SC Yes No No No

Magnetic SC Yes Yes No Yes

Theory Simulation

(Wissing+2021: MRI with SPH, 
no SCE in ustr+nf, ustr+znf, or 
str+nf; contradicts Shi+2016)

Theories and simulations have mutually and 
separately conflicted
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∂t⟨u⟩ = ⟨uu⟩ + ⋯
∂t⟨uu⟩ = ⟨uuu⟩ + ⋯

⋯
Second-order-correlation-approximation (SOCA): 
          Drops nonlinear terms

           

          Justified at low Reynolds numbers or low

          Strouhal number (=correlation time/eddy turnover time)

→ ∂t⟨uu⟩ = ⋯+ν∇2⟨uu⟩

Spectral-  or minimal- : 
          Replaces order  terms by a damping term 

            (in Fourier space)

          A closure at high Reynolds numbers 
          (hence small dissipation terms)

τ τ
≥ 3

→ ∂t⟨uu⟩ = ⋯−⟨uu⟩/τ(k)
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∂t⟨ub⟩ = linear terms + ckλ⟨ub⟩Collectively we can write

where ckλ = {−νk2 for SOCA
−τkq−1 for spectral τ

ZB21: to the  order,  only if , thus: 
In SOCA,  always  no kinetic SC 
In spectral- ,  if  
 
In both theories magnetic SC always works ( ),  
regardless of the spectral index 

𝒪(Sh) βu
21 < 0 λ < 1

βu
21 > 0 →
τ βu

21 < 0 q < 2

βb
21 < 0

q

spectral 
index 

(e.g. 5/3 for 
Kolmogorov)

q =

τ closure SOCA/Quasi- 
linear Test field

Kinetic SC Yes No No

Magnetic SC Yes Yes No

(Rogachevskii & Kleeorin 2003, 2004)
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Simulations not finding KSC: too low Re and Rm?

Kinematic test field method (no magnetic background)

 evidence of transiting from positive to negative values 
     (but with large error bars)
→

τ closure SOCA/Quasi- 
linear Test field

Kinetic SC Yes No No at small Re 
Yes at large Re?

Magnetic SC Yes Yes No at Re,Rm<15
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Why no magnetic SC detected in test field methods 
even though both theories predicted it?

Kinetic SC depends more sensitively on spectral index 
 for steep spectra (as at low Re & Rm), 

      even if 
→

|βu
21 |⟨u2⟩ > |βb

21 |⟨b2⟩ ⟨u2⟩ ≲ ⟨b2⟩

⟨b2⟩/⟨u2⟩

β21 =
τ
3

βu
21⟨u2⟩ +

τ
3

βb
21⟨b2⟩
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The full solution of  for the pure shear caseβij

1. Comparable  and   may invalidate setting  in 
the projection method 
2. No dynamo cycle period  SCE at best subdominant in 
simulations, unless  itself is periodic (requires nonlinear theory)

β12 β21 → β12 = 0

→
βij

(Cases of shear + rotation / 
pure rotation / burgulence 
in ZB21)
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Subtlety 1: The spectral index

The energy-dominant modes are , but: 
1.  very large: a sudden steep slope because of forcing 
     destructive to SCE even if  inside the inertial range 
2. : positive slope at 

     constructive to SCE, but not considered in theories

k = 4,5,6
q(5,6)
→ q < 2
q(4,5) < 0 k < kf
→

The combined effect is…?
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Subtlety 2: The boundary condition
Theories: normally period boundary conditions 
                                          f(x + L, y) = f(x, y)
Shearing box simulations: shear periodic boundary condition 
                               f(x + L, y − StL) = f(x, y)

In all theories,  is found crucial to produce SCE, but 

does using different b.c. change the solution because of ??

̂Pij = δij −
∂i∂j

∂2

∂−2

A possible solution: shearing coordinates (Sridhar, 
Subramanian, Singh …), but 
1. no calculation for magnetic SCE yet 
2. How to incorporate a closure at large Re & Rm?
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Summary:
Assuming using normally or shear periodic b.c. does not 
qualitatively change the story:

arXiv:2104.11112

τ closure SOCA/Quasi- 
linear Test field Projection

Kinetic SC Yes No No at Rm<~15 No at Rm<~15

Magnetic SC Yes Yes No at Rm<~15 Yes(?) at Rm<~15

Different powers of  in the closure term; 
Need large enough Re & Rm, and shallow 
enough spectrum

k

Yes(?) at large Re & Rm

Too steep spectrum of ?u2

Some unresolved issues: 
1. More careful justification of the slope dependence

2. Any influence from different boundary conditions? 
3. Physical picture compatible the slope dependence
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qs(k) = −
k

E(k)
E(k + 1) − E(k)

(k + 1) − k

qs(k) =
∑k≥kf

qs(k)E(k)

∑k≥kf
E(k)

(Δk = 1)
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Subtlety: Role of the pressure gradient term

∂tu = − ∇p + other terms

If  is incompressible, then  is not dynamical but instead 
determined by other fields and and boundary conditions:

u p

∂tu = P̂(other terms), ̂Pij = δij −
∂i∂j

∂2

Theory:  is necessary for both kinetic and magnetic SCEs 
(ZB21, Squire & Bhattacharjee 2016)

P̂

Simulation: not the case? (Käpylä+2020)
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Käpylä+2020:

MHD burgulence: 
∂tu + u ⋅ ∇u = −∇p + J × B + ν∇2u

But…


J × B = − ∇
B2

2
+ B ⋅ ∇B


