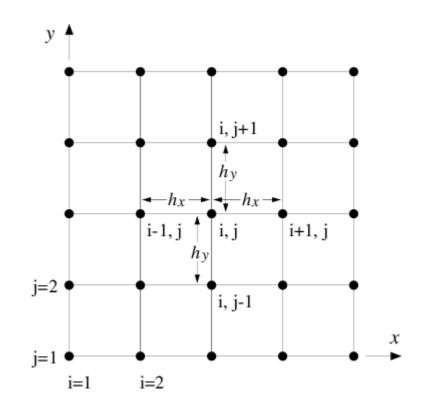
Numerical Viscosity and Diffusion in Finite Difference Eulerian Codes

Simon Candelaresi, Dominika Zieba



What is Numerical Diffusion?

Everyone is talking about it, but no one knows what is really is.

Numerical Experiments

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 230:18 (32pp), 2017 June

© 2017. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4365/aa6254

On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

Tomasz Rembiasz^{1,2}, Martin Obergaulinger¹, Pablo Cerdá-Durán¹, Miguel-Ángel Aloy¹, and Ewald Müller² ¹ Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot, Spain; tomasz.rembiasz@uv.es

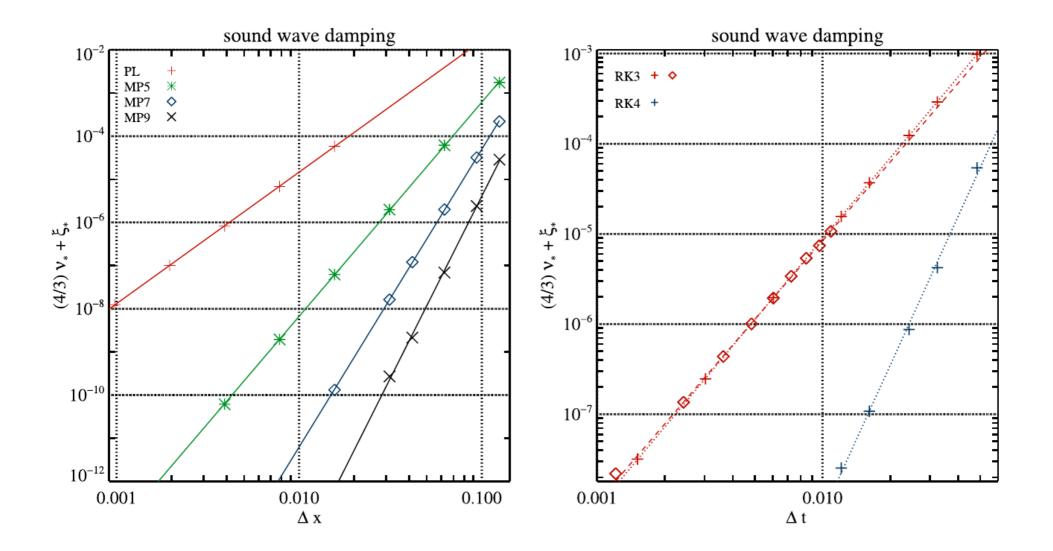
² Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany

Received 2016 November 17; revised 2017 February 18; accepted 2017 February 20; published 2017 June 13

Series	Wave	Reco	Riemann	Time	CFL	Resolution	$\mathfrak{N}_{ ext{tot}}^{\Delta x}$	r	$\mathfrak{N}_{ ext{tot}}^{\Delta t}$	q
#S1	sound	PL	HLL	RK4	0.01	641028	14.3 ± 0.7	3.049 ± 0.009		
#S2	sound	MP5	LF	RK4	0.01	8256	42.9 ± 2.3	4.957 ± 0.013		
#S3	sound	MP5	HLL	RK4	0.01	8256	43.4 ± 2.5	4.961 ± 0.014		
#S4	sound	MP5	HLLD	RK4	0.01	8256	42.7 ± 2.2	4.956 ± 0.013		
#S5	sound	MP7	HLL	RK4	0.01	864	302 ± 20	6.897 ± 0.021		
#S6	sound	MP9	HLL	RK4	0.01	832	830 ± 340	8.42 ± 0.15		
#S7	sound	MP9	HLL	RK3	0.5	8256			1.492 ± 0.013	2.985 ± 0.002
#S8	sound	MP9	HLL	RK3	0.10.9	64			2.45 ± 0.17	2.95 ± 0.01
# S 9	sound	MP9	HLL	RK4	0.5	832			71 ± 32	5.5 ± 0.2
#A1	Alfvén	MP5	LF	RK4	0.01	8256	42 ± 3	4.95 ± 0.02		
#A2	Alfvén	MP5	HLL	RK4	0.01	8256	42.6 ± 2.1	4.96 ± 0.01		
#A3	Alfvén	MP5	HLLD	RK4	0.01	8256	42 ± 3	4.95 ± 0.02		
#A4	Alfvén	MP7	HLL	RK4	0.01	8128	44 ± 53	6.19 ± 0.03		
#A5	Alfvén	MP9	HLL	RK4	0.01	864	1190 ± 190	8.57 ± 0.06		
#A6	Alfvén	MP9	HLL	RK3	0.8	16128			0.86 ± 0.08	2.949 ± 0.022
#A7	Alfvén	MP9	HLL	RK4	0.8	864			7.6 ± 2.5	5.18 ± 0.10
#A8	Alfvén	MP5	HLL	RK3	0.5	51024				
#MS1	magnetosonic	MP5	HLL	RK4	0.01	8128	40 ± 3	4.95 ± 0.02		
#MS2	magnetosonic	MP7	HLL	RK4	0.01	864	288 ± 20	6.903 ± 0.023		
#MS3	magnetosonic	MP9	HLL	RK4	0.01	832	1970 ± 160	8.82 ± 0.03		
#MS4	magnetosonic	MP9	HLL	RK3	0.10.9	64			1.77 ± 0.06	2.977 ± 0.007
#MS5	magnetosonic	MP9	HLL	RK4	0.20.9	64			4.3 ± 0.8	4.834 ± 0.013

Table 1 Wave Damping Simulations I

Wave Damping



4

Analytical Approach

Numerical Methods

Radostin Simitev

July 23, 2019

Local Truncation Error

Definition 7.4. *The quantity*

$$\tau_{(h)} = \mathcal{A}_{(h)}[\hat{u}] - \mathcal{L}[\hat{u}] = \mathcal{A}_{(h)}[\hat{u}] = A_{(h)}\hat{u} - F_{(h)}.$$

discretized exact $\mathcal{L}[\hat{u}] = 0$

is called the local truncation error (local residual) of the numerical scheme $\mathcal{A}_{(h)}[]=0$.

Example 7.5. Find the local truncation error of the numerical scheme $\mathcal{A}_{(h)}[u] = \frac{u_{k-1} - 2u_k + u_{k+1}}{h^2} - f_k = 0$ for the solution of

 $u^{\prime\prime}-f=0.$

This is solved exactly.

$$\mathcal{A}_{(h)}[\hat{u}] = \frac{\hat{u}_{k-1} - 2\hat{u}_k + \hat{u}_{k+1}}{h^2} - f_k = (\hat{u}_k^{\prime\prime} + O(h^2)) - f_k,$$

but

Solution. Now

$$\mathcal{L}[\hat{u}] = \hat{u}_k^{\prime\prime} - f_k = 0,$$

so using the definition directly

5

$$\tau_{(h)} = \mathcal{A}_{(h)}[\hat{u}] - \mathcal{L}[\hat{u}] = O(h^2).$$

Numerical Diffusion

PDEs: $\mathcal{L}[\hat{u}] = 0$

In the PencilCode do we have $\mathcal{A}_{(h)}[\hat{u}] = c \partial_{xx} \hat{u} + \dots$?

What is c ?

Approach:

- 1. Discretize PDEs.
- 2. Apply method of lines to get set of coupled ODEs.
- 3. Construct the Runge-Kutta intermediate steps.
- 4. Eliminate off-center values using the Taylor expansion.
- 5. Eliminate intermediate time steps using time Taylor expansion.

$$f_{i\pm 1} = f_i \pm dx f'_i + \frac{dx^2}{2} f''_i \pm \frac{dx^3}{6} f'''_i + \dots$$
$$\frac{f_{i+1} - f_{i-1}}{2dx} = f'_i + \frac{dx^2}{6} f'''_i + \dots$$

Inviscid Navier-Stokes 3d

$$\begin{split} \frac{\partial \mathbf{u}}{\partial t} &= -\mathbf{u} \cdot \nabla \mathbf{u} - c_{\mathrm{s}}^{2} \nabla \ln \left(\rho \right) & \text{second order space} \\ \text{second order Runge-Kutta} \\ \frac{\partial \ln \left(\rho \right)}{\partial t} &= -\mathbf{u} \cdot \nabla \ln \left(\rho \right) - \nabla \cdot \mathbf{u} \\ \end{split}$$
Truncation errors with $\partial_{xx} u_{x}$:

$$-\frac{c_{s}^{2}dt^{2}dx^{2}\ln(\rho)_{xxx}u_{x}}{24}-\frac{c_{s}^{2}dt^{2}dx^{2}\ln(\rho)_{x}u_{x,xx}}{8}+\dots$$

Similar for $\partial_{yy} u_x$ and $\partial_{zz} u_x$.

Proper diffusion terms: $\partial_t u_x = \partial_{xx} u_x + \partial_{yy} u_x + \partial_{zz} u_x$

Conclusions

- Numerical viscosity and diffusion can be calculated analytically.
- Need to find proper interpretation of the terms.
- Next: higher order space and time discretization, MHD.