EPFL

J.P. Kneib

F. Courbin

P.Jablonka

Y. Revaz

https://www.epfl.ch/labs/lastro/

TP IV @ LASTRO

In two steps over the two semesters

- Learn the specific tools of astrophysics on a set of prepared exercises
- Apply this knowledge to real research projects

Contact information:

jean-paul.kneib@epfl.ch frederic.courbin@epfl.ch pascale.jablonka@epfl.ch

Register to IS-Academia NOW <u>frederic.courbin@epfl.ch</u>

Astrophysics is the study of our Universe as a whole and its components at all scales

Open Questions

- Expansion rate of the Universe
- Dark Energy
- Dark Matter

First Stars, First Galaxies

Coevolution of Large
 Structures and Galaxies

First Stars, First Galaxies?

25.5 gog 25.5 gog 25.5 gog 24.5 24.5 McLure et al. z-7 24.0

M [AB magnitudes]

(2013)

z~9.8 lensed pair

- Universe was dark & neutral =Dark Ages.
- Universe is now bright and ionized.
- When re-ionization started?
- What are the sources of reionization?
- How different are the properties of the first systems from what we know?
- •Strong UV radiation from the first galaxies and quasars are likely responsible.
- Future powerful radio observation (SKA) will also help probing re-ionization epoch by mapping the Hydrogen 21 cm line at z~7

Dark Matter ?

Dark Energy 68.3%

Hot, clifuse gas visible in X-rays

Dask matter found via gravitational lensing

Disk matter found via gravitational lensing

(Stars in) galaxies visible in optical

Matter 26.8%

- ~1930: First evidence by Zwicky studying galaxy velocities in the Coma cluster.
- ~1970: Velocity curves of Spiral Galaxies
 => Missing/Dark Matter.
- 1987: Discovery of giant arcs: cluster lensing requires dark matter.
- 1996: Bullet cluster: Separating Dark Matter and Baryons => Limit on the interaction cross-section.
- Probe nature of DM? Self Interacting?
 - use galaxy clusters as DM laboratories!
 - use dwarf galaxies as testbed

Dark Energy ?

• 1930: E. Hubble first measure the Universe expansion.

$$rac{H^2}{H_0^2} = \Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

- **1990:** Key project of the *Hubble Space Telescope:* measuring H_0 with high precision (today known at ~1-2%).
- 1998-2003: CMB favor a flat Universe.
- 1999: Supernovae Type Ia confirmed accelerated expansion => Nobel Prize (2011).
- 2000: Dark Energy (DE) concept put forward to explain Accelerated expansion.
- What is the nature of DE? new component? or is Gravitation different on large scale? Fractal Geometry???

2011: Physics Nobel Prize

Open Questions

Addressed by new observations, new techniques of analysis, and new technologies.

Involve:

- Instrumentation (ground-based observatory or with space missions)
- Observational strategy (ground- and space-based telescopes)
- (Big) Data flow and processing
- (Big) data analysis (imaging, photometry and spectroscopy)
- Modelling (theory, analytical calculations to numerical simulations)

Research is conducted in a very international context LASTRO is connected worldwide.

Universe expansion

Monitor gravitational lenses to find how fast the Universe grow

Massive Redshift Surveys

- Hubble (1930): expanding Universe
- CfA Redshift Survey (1985): first large scale structures
- 2dF (2000-6): 1500 deg²
- SDSS (2002-9): 5700 deg²
- VVDS/DEEP2 (2004): deep Universe ~1 deg²
- zCOSMOS (2005-10): 2 deg²
- WiggleZ (2011): 800 deg² (BAO)
- SDSS-III/BOSS (2014): 10,000 deg² BAO/LSS (BAO)
- e-BOSS (2014-2020): BAO/LSS: 7,500deg² w/ LRG+QSO & 1,500deg² of ELGs
- **DESI** (2019), **4MOST** (2021) Optical
- MOONS (2020) Infrared
- Euclid (2020) Space mission
- SKA (2025) Radio Telescope

Galaxy Power Spectrum

104

0.01

Galaxy halo occupation distribution (HOD)

Neutrinos Masses

3D mapping of the position of galaxies

Distribution of galaxies (SDSS)

k [h Mpc-1]

Growth of

structure

First Stars in the MW: Pristine

Looking for the imprint of the very first stars by looking deep in the Milky Way!

New observational strategy!

Numerical simulations

Unveling how galaxies form and evolve

- > Nature of the dark matter?
- ➤ Initial conditions?
- > Physics of baryons?
- > Nature of the first galaxies?

- **★**gravity
- *hydrodynamics
- **★**gas cooling
- **★**star formation
- ★SNe explosions (stellar feedback)
- *chemical evolution

Instrumentation: Astrobots

Aims:

- contribute to the building of the next generation instruments worldwide
- Contribute to the observational strategy
- Get primary access to the new datasets.

- Interdisciplinary Group formed in 2013, with members of LSRO, REACT and LASTRO.
- Goal: develop high-precision fiber positioner robotic system for massive spectroscopic surveys
- Projects: DESI & VLT/MOONS & SDSS-V, Megamapper?
- Group and Equipement funded by: SNF+Innosuisse+EPFL+Sloan Foundation

http://astrobots.epfl.ch/

The Sloan Telescope & Spectrograph

- 90 cm aluminium plate with 1000 holes for fibers,
- 45 min to plug for typical I hour observation on sky
- up to 9 plates observed per (good) night
- I.5 millions redshifts in ~4 years

sdss.org

The best multiplexing spectroscopic facility still

SDSS-V (2020-2025)

- Project started fall 2017
- 2 telescopes (New-Mexico+Chile)
- Fast development, for on-sky in 2020.
- EPFL responsible of the robotic fiber positioner systems, contract with industry
- Production this year by a Swiss company, validation done at EPFL

DESI (2020-2024) 4MOST (2022-2027)

- (eBOSS), DESI, 4MOST
 - ★ Spectroscopic survey
 - ★ From 4 millions to 35 millions
- explore redshift window 0.2<z<3.5
- Use 4 tracers: LRG, <u>ELG</u>, <u>QSO</u> & Ly-alpha forest
- Perform observations on telescopes (USA+Chili)

MOONS (2022-2027)

- Approved by ESO in 2014: 1000 fiber NIR spectrograph at VLT (3rd generation of instruments) to start observing in 2019.
- Study of galaxy evolution and formation at 1<z<5
- Measure ~1 million galaxies over 50-100 deg². Much higher density than *DESI*, and *Euclid*.
- Will also probe the z>7 Universe and will constrain Dark Ages

Euclid (2022-2025)

- Euclid is a major wide-field imaging and spectroscopy space mission, lead by ESA with NASA participation (1 B\$).
 - **★ J.P. Kneib** Cluster Lensing.
 - **★ F. Courbin** Galaxy Lensing.
- Machine Learning on Strong Lensing finder (tensorflow)
- modeling with GPU for fast computing (CUDA)
- Ultimately contribute to the science of *Euclid*.

Square Kilometer Array

- Participate in the SKA at Swiss level (EPFL leading the Swiss effort) http://ska.epfl.ch/
 - ★ Interest in the Astrophysics (Reionization, Dark Energy)
 - ★ Algorithm (Raw reduction Data Analysis)
 - ★ Big-data (Data server Machine Learning) IBM DOME project
- Connections with South-Africa & Australia (Possibility to go there for a master projects/internships)

Conclusion

- Lot's to do in Astrophysics & Cosmology!
 (Strong links with STI, IC possible)
- TP-IVa (learning) b (practise)
- If you are interested, please contact us: <u>jean-paul.kneib@epfl.ch</u>, <u>frederic.courbin@epfl.ch</u>, <u>pascale.jablonka@epfl.ch</u>
- For TP-IV please register to IS-Academia
 NOW. Responsible: frederic.courbin@epfl.ch