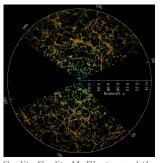


Impact of lensing convergence on galaxy clustering for spectroscopic and photometric surveys

In collaboration with Camille Bonvin, Ruth Durrer, Goran Jelic-Cizmek

Francesca Lepori


Swiss Euclid Days 2020

EPFL campus

5 February, 2020

Observable in Galaxy Surveys

Credit: Credit: M. Blanton and the Sloan Digital Sky Survey.

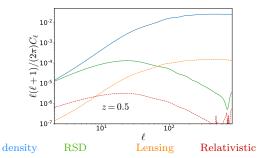
• Galaxy number count

$$\Delta_{\text{gal}}(\mathbf{n}, z) = \frac{N(\mathbf{n}, z) - \bar{N}(z)}{\bar{N}(z)}$$

• Several contributions

$$\Delta_{\rm gal} = \Delta_{\rm dens+rsd} + \Delta_{\kappa} + \Delta_{\rm rel}$$

$$\begin{split} &\Delta_{\rm dens+rsd} = b(z)\delta + \mathcal{H}^{-1}\partial_r^2 V \\ &\Delta_{\kappa} = (5 \quad \frac{\left[s(m^*,z)\right]}{\text{magnification bias!}} - 2) \int_0^{r(z)} \frac{r(z) - r}{2r(z)r} \Delta_{\Omega}(\Phi + \Psi) dr \end{split}$$


 $\Delta_{\rm rel}$ = Doppler, Shapiro time-delay, Sachs-Wolfe, ISW...

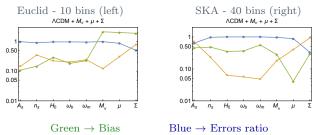
Contributions to angular power spectrum

LSST-like survey

$$b(z=0.5)\approx 1.4 \qquad s(z=0.5)\approx 0.2$$

$$\sigma_z=0.05(1+z)$$

- Density dominates at all scales
- RSD \sim Lensing up to $\ell \sim 60$
- Relativistic effects negligible at all scales
 - → Lensing dominates cross-correlation between distant bins!


Lensing convergence

$$\Delta_{\kappa} = (5 \frac{[s(m^*, z)]}{\text{magnification bias!}} - 2) \int_0^{r(z)} \frac{r(z) - r}{2r(z)r} \Delta_{\Omega}(\Phi + \Psi) dr$$

We focus on

• Bias on parameter estimation (see Villa, Di Dio, FL 2017)

- Measurement of the the lensing potential (see Montanary & Durrer 2015)
 - Different systematics compared to weak-lensing

Spectroscopic and photometric analysis

 $\rightarrow C_{\ell}$ has been used for both photometric and spectroscopic surveys

- Separate analysis for spectroscopic and photometric survey
 - Spectroscopic (DESI, SKA)
 - Real space correlation function (see Goran's talk)
 - Photometric (LSST)
 - Angular power spectrum

2 Lensing impact on parameter estimation and constraints

3 Can we combine C_{ℓ} and $\xi(r)$ analysis?

Fisher Matrix formalism

No Lensing $\epsilon_L = 0$ θ_lpha $\epsilon_L = 1$

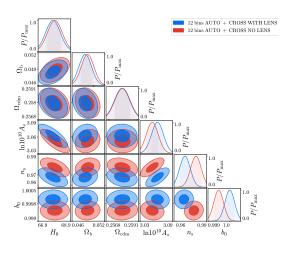
$$\begin{split} C_{\ell, \text{th}}(\theta_{\alpha}, \epsilon_{L}) = & C_{\ell}^{\text{Dens} + \text{RSD}}(\theta_{\alpha}) + \\ & \epsilon_{L} C_{\ell}^{\text{Lens}}(\theta_{\alpha}) \end{split}$$

- Compare errors on common set of parameters
- Bias on estimated parameters
 - The maximum of the likelihood is shifted.
 By Taylor expanding the likelihood of the correct model

$$\Delta\theta_{\alpha} = \sum_{\beta} \left(F^{\theta\theta} \right)_{\alpha\beta}^{-1} F_{\beta}^{\theta\epsilon_L} ,$$

- The difference between the two models is small
- The shifts are small

LSST: parameter constraints


Standard Λ CDM cosmology + galaxy bias

$N_{ m bins}$	H_0	Ω_b	Ω_{cdm}	$\ln 10^{10} A_s$	n_s	b_0
5 bins - $1\sigma_{\rm lens}$ [%]	6.2%	8.5%	1.3%	3.6%	3.0%	2.4%
5 bins - $\sigma_{\rm lens}/\sigma_{\rm no-lens}$	0.996	0.994	1.004	0.275	0.991	0.119
8 bins - $1\sigma_{\rm lens}$ [%]	3.0%	3.4%	0.5%	2.3%	1.7%	2.4%
8 bins - $\sigma_{\rm lens}/\sigma_{\rm no-lens}$	0.993	0.998	1.011	0.351	0.999	0.240
12 bins - $1\sigma_{\rm lens}$ [%]	0.7%	2.4%	0.2%	0.4%	0.5%	0.02%
12 bins - $\sigma_{\rm lens}/\sigma_{\rm no-lens}$	1.000	1.000	0.998	0.998	0.998	0.999

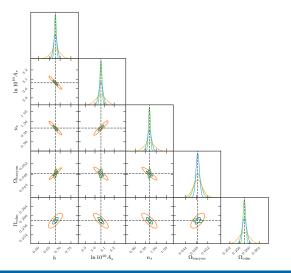
- Errors on cosmological parameters are smaller for larger number of bins
- For 5 and 8 bins \rightarrow lensing reduce significantly the error on $\ln 10^{10}\,A_s$ and b_0
- For 12 bins lensing has no impact on the constraints for all parameters

LSST: bias in best-fit

• Significant bias for $\ln 10^{10} A_s$, n_s and b_0

• Neglecting lensing is not a good idea for LSST

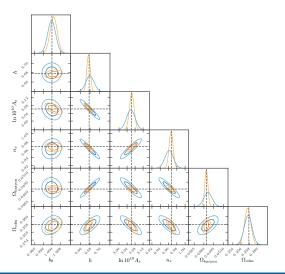
Measurement of lensing potential


\rightarrow Amplitude of the lensing potential A_L (in GR $A_L = 1$)

$N_{ m bins}$	H_0	Ω_b	Ω_{cdm}	$\ln 10^{10} A_s$	n_s	b_0	A_{L}
5 bins	6.2 %	8.5%	1.3%	13.1%	3.0 %	20.1%	20.2%
8 bins	3.0 %	3.4%	0.5%	6.5%	1.7%	9.9%	10.2%
12 bins	0.7%	2.4%	0.2%	0.4%	0.5%	0.02%	2.3%

- \bullet For 12 bins configurations, constrains on the $\Lambda {\rm CDM}$ parameters do not change significantly
- For SKA2 with correlation function analysis $\sigma_{A_L} \sim 5\%$
- Photometric surveys provide better constraints on the lensing potential amplitude

DESI SKA2 LSST



- LSST and SKA2 gives similar constraints on ACDM parameters
- For DESI and SKA2 the bias on best-fit is below 1σ
- Lensing cannot be neglected for LSST (shift in best-fit above 1σ)

Combining $\xi(r)$ and C_{ℓ} analysis

SKA2 alone SKA2 + cross-correlations LSST

- Spectroscopic analysis neglect cross-correlation between bins: add that information with a C_{ℓ} analysis
- Apply to SKA2 (8 bins) + LSST
- Cross-correlation improve significantly the constraints
- Does it help adding the cross-correlation with C_ℓ for a spectroscopic survey alone?

Conclusions

Summary

- Spectroscopic surveys are better suited for a $\xi(r)$ analysis, while C_{ℓ} approach is optimal for photometric surveys
- Fisher matrix analysis to study the lensing magnification impact for the two analysis
- Lensing does not affect the errors on cosmological parameters
- Neglecting lensing lead to significant bias for a photometric survey like LSST
- Lensing magnification is negligible for DESI, but there is a shift in parameters estimation for SKA2 $(< 1\sigma)$

Future perspective

- Apply this analysis to Euclid
- How much we gain combining a correlation function analysis (for the autocorrelation of the z-bins) and a C_{ℓ} analysis for the cross-correlation between the bins?
- In order to have reliable forecast it will be important to model accurately the magnification bias for Euclid

Thanks for listening!