Simulating Galaxy Images via Progressive GAN

Mohamad Dia i4DS - FHNW

Swiss Euclid Days 5 February 2020

Why Simulated Images?

- Training and calibration of automated algorithms used for measurement/detection on ver large-scale data.
 - Calibration and bias detection for shape measurement algorithms (in weak lensing) require simulated images with known ground truth lensing.
 - Training neural network classifiers (e.g. CNN) to detect strong lenses requires simulated images in order to mitigate class imbalance in the current datasets and avoid false-positive type of error.
- Simulate/generate synthetic galaxy images that mimic the real observations and exhibit real morphologies.

Model-Driven v.s. Data-Driven

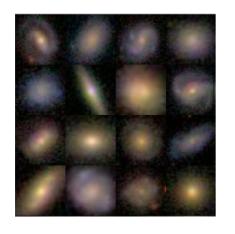
- Model-driven (rule-based) simulation:
 - Fitting of parametric analytic profiles (size, ellipticity, brightness,...). Do not produce complex morphologies.
 - Start with high-quality galaxy images as the input of the simulation pipeline followed by a model that reproduces all the data acquisition effects. Expensive and often infeasible.

Model-Driven v.s. Data-Driven

- Model-driven (rule-based) simulation:
 - Fitting of parametric analytic profiles (size, ellipticity, brightness,...). Do not produce complex morphologies.
 - Start with high-quality galaxy images as the input of the simulation pipeline followed by a model that reproduces all the data acquisition effects. Expensive and often infeasible.

- Data-driven simulation (generative models in ML):
 - Generate new data with similar density distribution as the existing training data (unsupervised learning).

Generative Models



Training data*

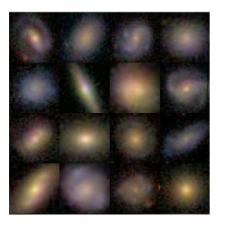
New synthetic sample

$$x \sim P_{\rm data}(x)$$

$$x \sim P_{\text{model}}(x) \approx P_{\text{data}}(x)$$

^{*} Galaxy-Zoo dataset (SDSS).

Generative Models



Training data*

New synthetic sample

$$x \sim P_{\rm data}(x)$$

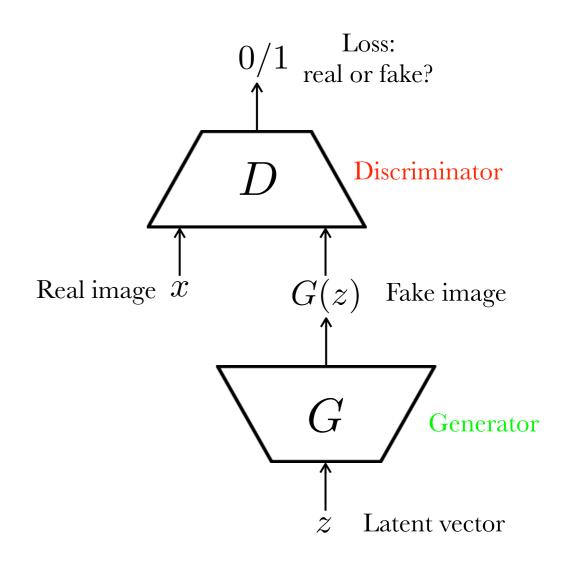
$$x \sim P_{\text{model}}(x) \approx P_{\text{data}}(x)$$

- Explicit density estimation:
 - Classical probabilistic models (e.g. GMM).
 - Neural network approach: Pixel-CNN, Pixel-RNN, VAE, ...
- Implicit density estimation:
 - Generative Adversarial Network GAN.

^{*} Galaxy-Zoo dataset (SDSS).

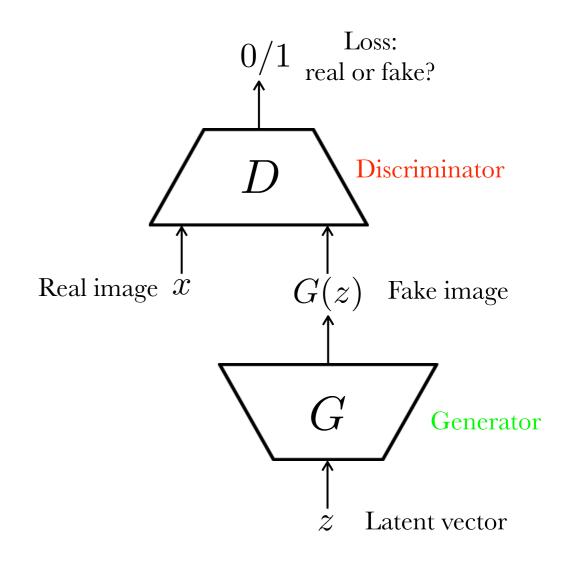
Generative Adversarial Network

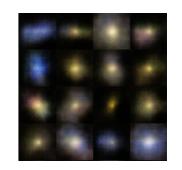
- Two-player minimax game:
 - Two competing neural nets (mirrored CNN architectures).
 - Generator samples simulated (fake) images from random latent space.
 - Discriminator plays the role of adaptive loss.
 - Joint optimization (alternate training between generator and discriminator).
 - Standard version hard to train (saddle point equilibrium): unstable behaviour, convergence issues, mode collapse, etc...



Generative Adversarial Network

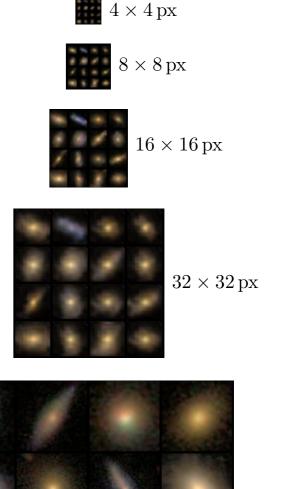
- Two-player minimax game:
 - Two competing neural nets (mirrored CNN architectures).
 - Generator samples simulated (fake) images from random latent space.
 - Discriminator plays the role of adaptive loss.
 - Joint optimization (alternate training between generator and discriminator).
 - Standard version hard to train (saddle point equilibrium): unstable behaviour, convergence issues, mode collapse, etc...





Improved Training of GAN

- Progressive training methodology:
 - Start with low resolution (easy to train) and keep on growing both networks by adding layers synchronously and smoothly [Karras et al. 2018].
- Stable loss function:
 - Wasserstein distance with gradient penalty to mitigate vanishing gradient [Arjovsky et al. 2017].

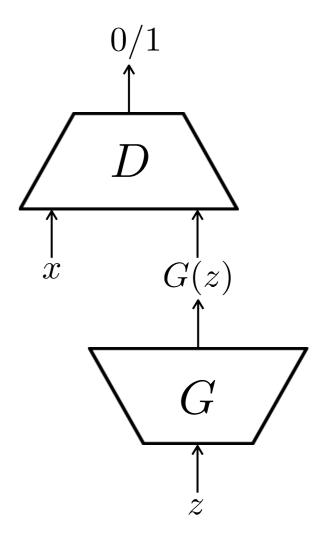


 $64 \times 64 \,\mathrm{px}$

[Dia et al. 2019]

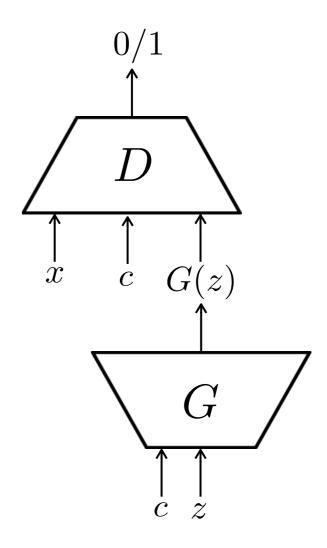
Possible Extensions

- Using labels (when available):
 - Control the generation task.
 - Improve the quality.
 - Increase the diversity.
 - Conditional GAN: learn a model that samples from a conditional distribution.
 - Info GAN, Auxiliary Classifier GAN.



Possible Extensions

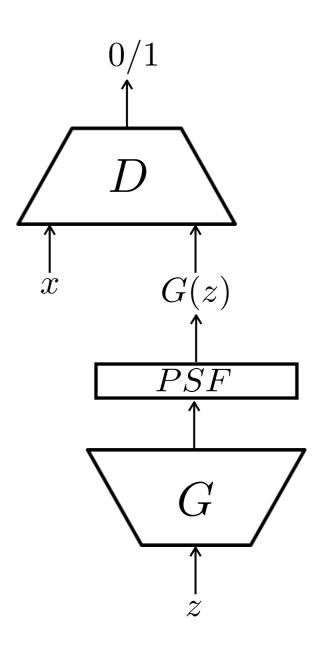
- Using labels (when available):
 - Control the generation task.
 - Improve the quality.
 - Increase the diversity.
 - Conditional GAN: learn a model that samples from a conditional distribution.
 - Info GAN, Auxiliary Classifier GAN.



$$x \sim P_{\text{model}}(x|c) \approx P_{\text{data}}(x|c)$$

Possible Extensions

- Generate PSF deconvolved images:
 - The training dataset is PSF convolved (for certain instrument, i.e. DES, SDSS,...).
 - Add a model-based PSF convolution layer to the generator during training.
 - The PSF layer is non-trainable.
 - Get access to PSF deconvolved images during generation (independent of the instrument).
 - Convolve the images with another instrument's PSF model.



THANK YOU