Towards distributed image reconstruction

Jonas Schwammberger

Master student @ Institute for Data Science, FHNW

Image reconstruction problem

Why do we need distribution?

Distributed gridding and deconvolution

- Implementation: .netcore (C#)
- MPI for node communication
- Hardware: 4 Linux nodes, 1 CPU each
- Speedup on 1GB LMC MeerKAT observation

Preliminary results and algorithms

Image Domain Gridding (IDG)

Veenboer, Bram, Matthias Petschow, and John W. Romein. "Image-Domain gridding on graphics processors." 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2017.

visibilities

Distributed gridding

Distributed gridding

Distributed deconvolution

Methods for distributed deconvolution

- ADMM methods in Radio Astronomy
 - Ferrari, André, et al. "Distributed image reconstruction for very large arrays in radio astronomy." 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2014.
 - Carrillo, Rafael E., Jason D. McEwen, and Yves Wiaux. "PURIFY: a new approach to radio-interferometric imaging." *Monthly Notices of the Royal Astronomical Society* 439.4 (2014): 3591-3604.
 - ...
- Coordinate Descent methods in Signal Processing
 - Fercoq, Olivier, et al. "Fast distributed coordinate descent for non-strongly convex losses." 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2014.
 - Felix, Simon, Roman Bolzern, and Marina Battaglia. "A compressed sensing-based image reconstruction algorithm for solar flare X-ray observations." *The Astrophysical Journal* 849.1 (2017): 10.
 - •

Coordinate Descent deconvolution

residuals = dirty image

- 1. Search pixel with the value that can be modified the most (optimum of a parabola)
- 2. Optimize maximum pixel
- 3. Update *residuals*
- 4. Repeat until *residuals* are small

More sophisticated CD methods, but that is the core algorithm

Distributed Coordinate Descent deconvolution

Distributed CD:

- 1. Search local pixel with the value that can be modified the most
- Find best global pixel (MPI_ReduceAll)
- 3. Update local residuals
- 4. Repeat

Distributed Coordinate Descent

Baseline distributed gridding + deconvolution

- Distributed gridding: More effective with a lot of input data
- Distributed deconvolution:
 - We have more communication efficient CD methods to explore:
 - Shotgun
 - PCDM
 - Hydra
 - ...
 - CD on the GPU: McGaffin, Madison Gray, and Jeffrey A. Fessler. "Edge-preserving image denoising via group coordinate descent on the GPU." *IEEE Transactions on Image Processing* 24.4 (2015): 1273-1281.

Questions