A new estimator for weak lensing based on IM-Galaxy cross correlation

Mona Jalilvand

In collaboration with: Elisabetta Majerotto, Camille Bonvin, Fabien Lacasa, Martin Kunz, Kavilan Moodley, Warren Naidoo

> Swiss SKA Days University of Bern June 20, 2019

Motivation

- Future 21cm surveys will probe high redshifts
- Complementary to the CMB and galaxy surveys
- Test our models in a wider range of distances
- Weak lensing: probe of matter distribution and sensitive to the dynamics of the universe

Introduction to weak lensing of galaxies and intensity mapping

Lensing effect on observed galaxies

Shape correlation (cosmic shear)

Number density of galaxies

Needs precise shape measurements

$$\Delta^{galaxy}(\hat{n},z) = b(z)\delta(\hat{n},z) + (2-5s)\nabla^2\phi$$
 magnification bias

Diagram credit: Michael Sachs

Lensing effect on intensity mapping

Lensing conserves surface brightness

$$\frac{dB}{d\Omega}[W/m^2d\Omega]$$

$$\Delta^{IM}(\hat{n},z) = b(z)\delta(\hat{n},z)$$

No first order lensing term added to IM

Remapping of temperature fluctuations

Second and higher order lensing terms

$$\Delta^{HI}(\hat{n}) \to \Delta^{HI}(\hat{n} + \nabla \phi)$$

 $\vec{\alpha} = \nabla \phi$

 ϕ : lensing potential

Standard estimator: galaxy-galaxy cross correlation

$$\Delta^{galaxy}(\hat{n},z) = b(z)\delta(\hat{n},z) + (2-5s)\nabla^2\phi$$

Contamination from density term

$$E_{\ell}^{\text{st}} = C_{\ell}^{g,g}(z_b, z_f)$$

$$= b_g(z_b)b_g(z_f)C_{\ell}^{\delta\delta}(z_b, z_f)$$

$$+ \frac{1}{2}b_g(z_f)(2 - 5s(z_b))C_{\ell}^{\phi\delta}(z_b, z_f)$$

$$+ \frac{1}{2}b_g(z_b)(2 - 5s(z_f))C_{\ell}^{\delta\phi}(z_b, z_f)$$

$$+ \frac{1}{4}(2 - 5s(z_b))(2 - 5s(z_f))C_{\ell}^{\phi\phi}(z_b, z_f)$$

Lensing terms

Introduction to the new estimator

Idea of new estimator

 z_b

 z_f

$$C_\ell^{
m IM-g}(z_f,z_b)$$

density + lensing term

$$C_\ell^{\mathrm{g-IM}}(z_f,z_b)$$

density

New estimator: E^{\times}

Contamination: reduced by a factor proportional to bias difference

Lensing terms

Contamination

DESxHIRAX
$$z_b = 1.25$$
 $z_f = 1.0$

Variance

$$V(\hat{E}^{\text{st}}) = \frac{1}{(2\ell+1)f_{sky}} \left[C_{\ell}^{g-g}(z_f) C_{\ell}^{g-g}(z_b) + C_{\ell}^{g-g}(z_f, z_b)^2 \right]$$

$$V(\hat{E}^{\times}) = \frac{1}{(2\ell+1)f_{sky}} \left[C^{\text{HI-HI}}(z_f)C^{\text{g-g}}(z_b) + C^{\text{HI-HI}}(z_b)C^{\text{g-g}}(z_f) - 2C^{\text{HI-g}}(z_f)C^{\text{HI-g}}(z_b) + 2C^{\text{g-g}}(z_f, z_b)C^{\text{HI-HI}}(z_f, z_b) + C^{\text{HI-g}}(z_f, z_b)^2 + C^{\text{g-HI}}(z_f, z_b)^2 \right]$$

$$\left[b_g(z_b)b_{
m HI}(z_f)-b_{
m HI}(z_b)b_g(z_f)
ight]^2 C_\ell^{\delta\delta}(z_b)C_\ell^{\delta\delta}(z_f)$$

Cosmic variance limited

$$\mathrm{SNR}^{\mathrm{total}} = \sqrt{\sum_{\ell} (\mathrm{SNR}_{\ell})^2}$$

$$E^{\times} \sim 357$$

$$E^{\rm st} \sim 15$$

Shot noise + thermal noise

Optimistic case

$$E^{\times} \sim 11$$

$$E^{\rm st} \sim 8$$

Fisher forecast

DESxHIRAX

$$z = [0.8, 1.3]$$

DES

$$z = [0.2, 1.3]$$

EuclidxHIRAX

$$z = [0.8, 2.5]$$

Euclid

$$z = [0.2, 2.5]$$

EuclidxSKAMID

 $z \in [0.35, 2.5]$

SKA phase1 looks at redshift after reionization SKA1-MID probes $z \in [0.35, 3]$

In optimistic case: EuclidxSKA improves magnificently In realistic and pessimistic case: we are killed by thermal noise

Conclusion

- The new estimator we introduce reduces contamination and allows closer bins to be used for signal detection
- It increases signal-to-noise ratio by a factor of \sim 3 in the redshift range of z=1.4 to z=2 for EucildxHIRAX
- Reduces systematics since it's built up by the cross correlation of data from two different surveys

