SKA machine learning perspectives for imaging, processing and analysis

Slava Voloshynovskiy
Stochastic Information Processing Group
University of Geneva
Switzerland

with contribution of:

D. Kostadinov, S. Ferdowsi, M. Diephuis, O. Taran and T. Holotyak

Outline

- Machine learning challenges in SKA
- Challenge 1 imaging-reconstruction
- Challenge 2 data compression for transfer and storage
- Challenge 3 analytics and processing of big data
- Conclusions

Remark

Compilation of expertise from

Hes·so

Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences Western Switzerland Computer Science department Section of mathematics Observatory

Machine learning realities and SKA

New perspectives of machine learning based image processing due to:

- large amount of collected observations (training data)
- new powerful computational facilities
- modern phased antenna arrays
- optimisation algorithms

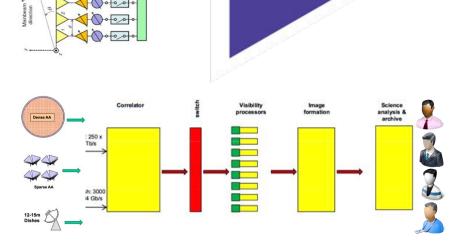
Main SKA challenges

Challenge 1: Imaging-reconstruction

 Huge amount of computation for pair-wise correlations, calibration, reconstruction

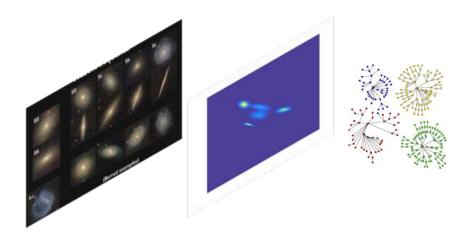
Challenge 2: Data transfer and storage

 Data transfer from correlators to reconstruction servers, data centers, SDP and end users

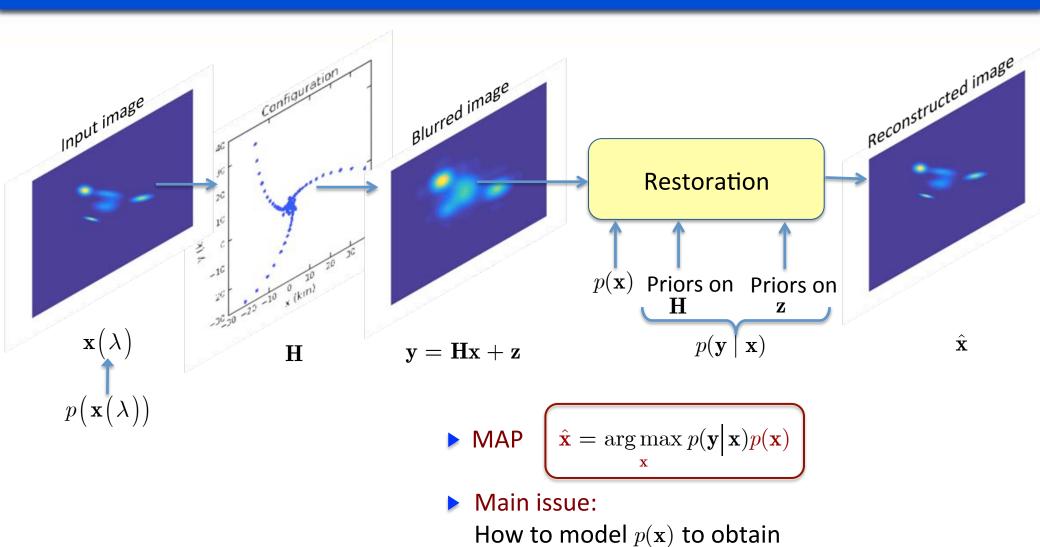


Challenge 3: Analytics

 Automatic processing of produced data (recognition, mining, search, tracking,...)



Challenge 1: Imaging – generic approach



solution?

accurate, tractable and low-complexity

Challenge 1: Imaging – "hand-crafted" approach

Traditional approaches to definition of $p(\mathbf{x})$

Statistical/deterministic approaches

Direct domain

Smoothness of solution, local correlations.....

$$\hat{\mathbf{x}} = \underset{\mathbf{a}}{\operatorname{arg min}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{2}^{2} + \lambda \Omega(\mathbf{x})$$
$$\Omega(\mathbf{x}) = -\ln p(\mathbf{x})$$

Transform domain

(decorrelation, energy compaction, directivity, ...)

$$\hat{\mathbf{a}} = \underset{\mathbf{a}}{\operatorname{arg\,min}} \left\| \mathbf{y} - \mathbf{H} \mathbf{D} \mathbf{a} \right\|_{2}^{2} + \lambda \Omega(\mathbf{a})$$

$$\hat{\mathbf{x}} = \mathbf{D}\hat{\mathbf{a}}$$
 fixed, signal independent (DCT, DWT....)

$$\Omega(\mathbf{a}) = -\ln p(\mathbf{a})$$
 i.i.d. GGD i.i.d. Student i.i.d. Mixture of Gaussians etc

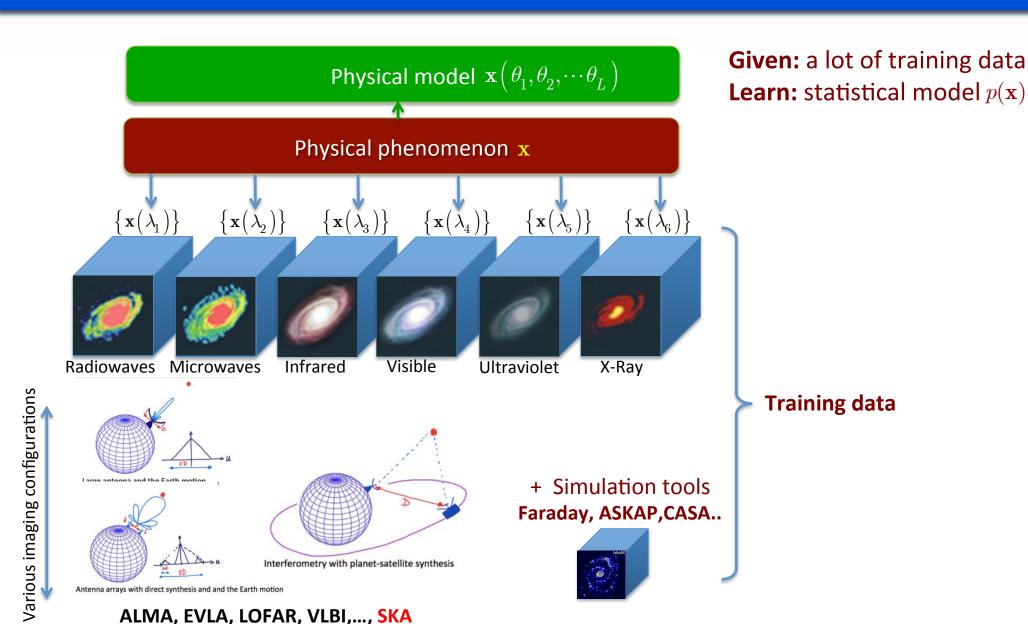
Sparsity-based approach

$$\hat{\mathbf{a}} = \underset{\mathbf{a}}{\operatorname{arg\,min}} \left\| \mathbf{y} - \mathbf{H} \Psi \mathbf{a} \right\|_{2}^{2} + \lambda \Omega(\mathbf{a}) \Rightarrow \hat{\mathbf{x}} = \Psi \hat{\mathbf{a}}$$
Overcomplete and can be learned

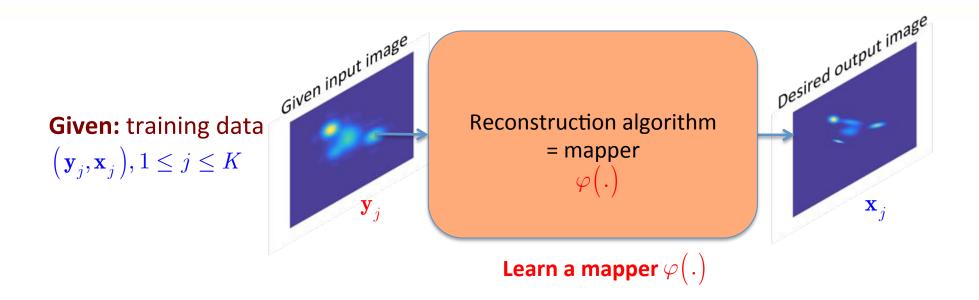
$$\Omega(\mathbf{a}) = \|\mathbf{a}\|_0$$
 Nonconvex and NP-hard problem: relaxatiotion/greedy approaches $\Omega(\mathbf{a}) = \|\mathbf{a}\|_1$ Complex optimization tools:

- proximal algorithms
- prime-dual methods
- augmented Langrangianleading to parallel and distributed solutions

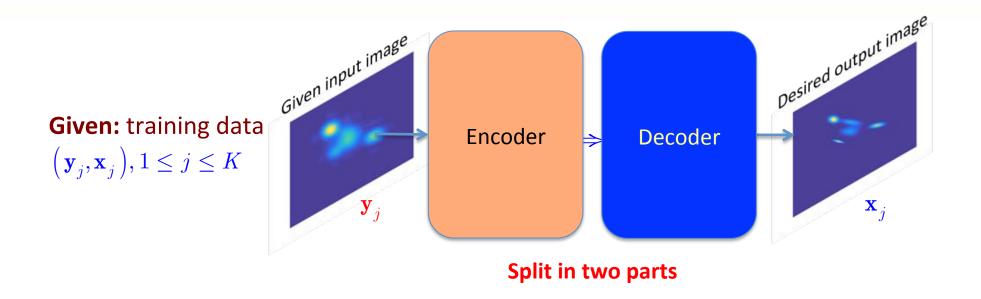
Challenge 1: Imaging – "machine learning" approach



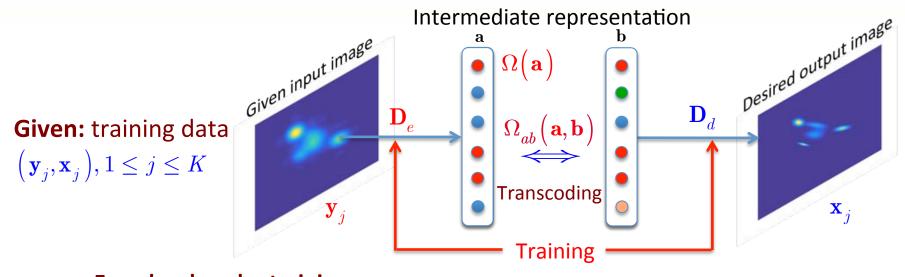
Challenge 1: Imaging – as learning problem

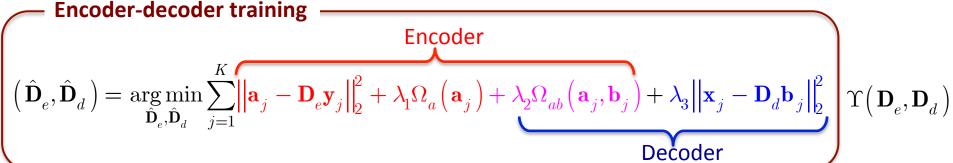


Challenge 1: Imaging – learning as encoding-decoding



Challenge 1: Imaging – learning as encoding-decoding





$\hat{\mathbf{a}} = \underset{\mathbf{a}}{\operatorname{arg \,min}} \left\| \mathbf{a} - \mathbf{D}_{e} \mathbf{y} \right\|_{2}^{2} + \gamma_{1} \Omega_{a} \left(\mathbf{a} \right) + \gamma_{2} \Omega_{ab} \left(\mathbf{a}, \hat{\mathbf{b}} \right) \right\| \rightleftharpoons \left\| \hat{\mathbf{b}} = \underset{\mathbf{a}}{\operatorname{arg \,min}} \left\| \mathbf{y} - \mathbf{D}_{d} \mathbf{b} \right\|_{2}^{2} + \lambda \Omega_{ab} \left(\hat{\mathbf{a}}, \mathbf{b} \right) \right\|$ $\hat{\mathbf{a}} = \psi \left(\mathbf{D}_{e} \mathbf{y}, \hat{\mathbf{b}} \right)$ $\hat{\mathbf{x}} = \mathbf{D}_{d} \hat{\mathbf{b}}$

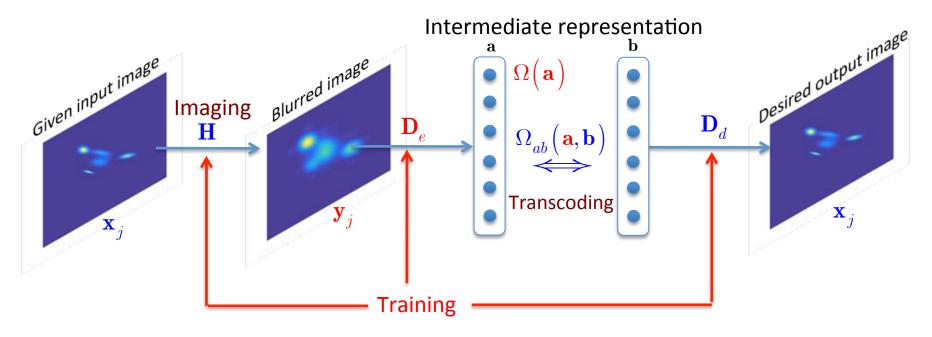
Projection problem

Reconstruction problem

$$\begin{split} \hat{\mathbf{b}} &= \arg\min_{\mathbf{a}} \left\| \mathbf{y} - \mathbf{D}_{d} \mathbf{b} \right\|_{2}^{2} + \lambda \Omega_{ab} \left(\hat{\mathbf{a}}, \mathbf{b} \right) \\ \hat{\mathbf{x}} &= \mathbf{D}_{d} \hat{\hat{\mathbf{b}}} \end{split}$$

Challenge 1: Imaging – learning optimal imaging configurations

Objective: joint optimization of reconstruction and imaging (CS – random sampling)



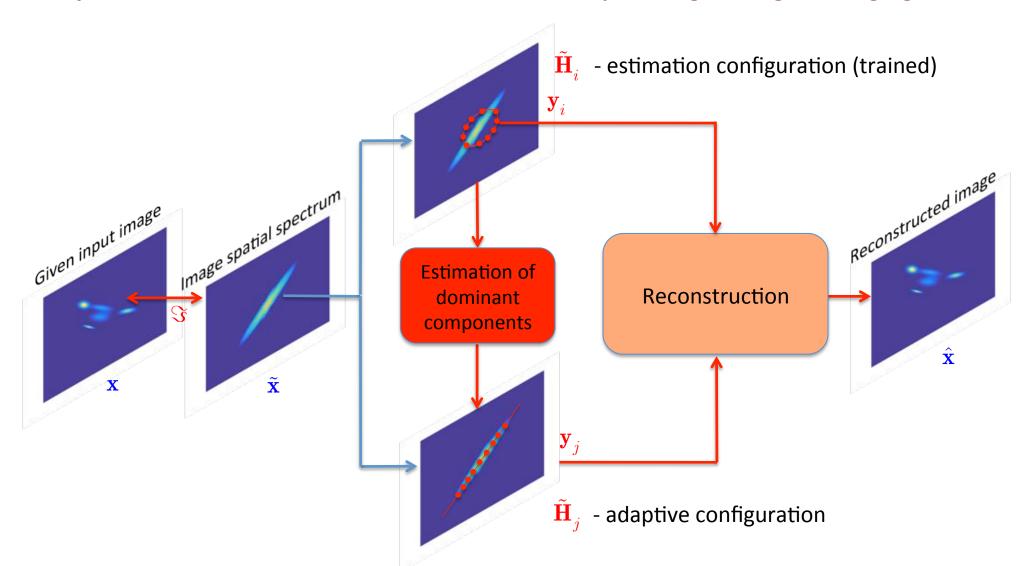
$$(\hat{\mathbf{H}}, \hat{\mathbf{D}}_{e}, \hat{\mathbf{D}}_{d}) = \underset{\mathbf{H}, \hat{\mathbf{D}}_{e}, \hat{\mathbf{D}}_{d}}{\min} \sum_{j=1}^{K} \left\| \mathbf{a}_{j} - \mathbf{D}_{e} \mathbf{H} \mathbf{x}_{j} \right\|_{2}^{2} + \lambda_{1} \Omega_{a} \left(\mathbf{a}_{j} \right) + \lambda_{2} \Omega_{ab} \left(\mathbf{a}_{j}, \mathbf{b}_{j} \right) + \lambda_{3} \left\| \mathbf{x}_{j} - \mathbf{D}_{d} \mathbf{b}_{j} \right\|_{2}^{2}$$

$$Decoder$$

 $\Upsilon(\mathbf{D}_e,\mathbf{D}_d)$ $\Phi(\mathbf{H})$ constraints on number and possible geometry of synthesized arrays

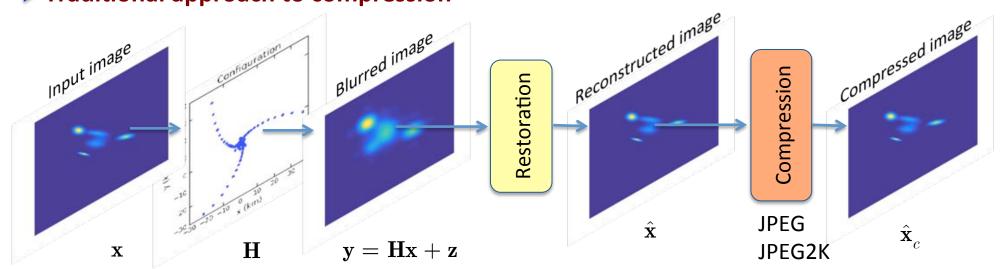
Challenge 1: Imaging – learning for "adaptive" imaging

Objective: minimize the load on correlators ⇒ adaptive "light-weight" imaging



Challenge 2: Compression for transfer, storage and distribution

Traditional approach to compression



Generic and "image independent"

► Alternative - compressive sensing ⇒ quantized compressive sensing

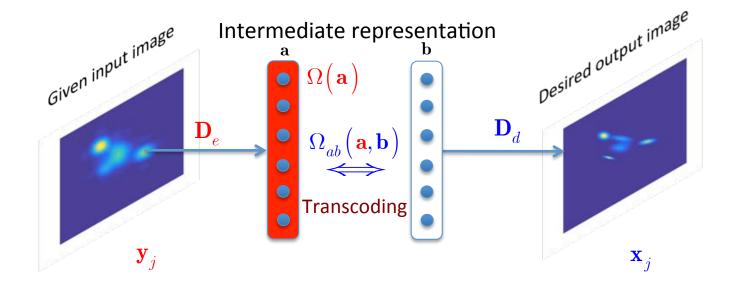
$$\mathbf{y} = Q(\mathbf{H}\mathbf{x} + \mathbf{z})$$

observations are quantized (even to several bits)

$$\hat{\mathbf{x}} = \operatorname*{arg\,min}_{\mathbf{a}} \left\| \mathbf{y} - Q(\mathbf{H}\mathbf{x}) \right\|_2^2 + \lambda \Omega(\mathbf{x})$$
 - inverse problem

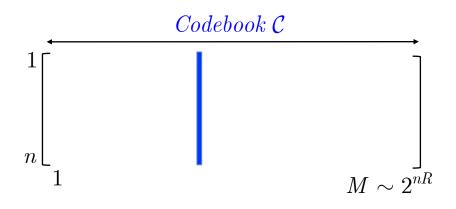
Challenge 2: Compression – machine learning approach

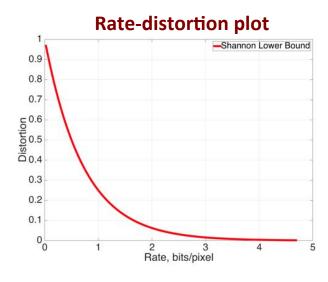
- Option 1: Replace generic JPEG/JPEG2K codecs by special algorithms trained on RI images
 - We suppose that the image is already reconstructed and the problem is how to deliver it to the end users
- Option 2: Sparse code representation between the Encoder-Decoder
 - Encoder-decoder pairs in reconstruction are trained with the entropy constrained sparse code
 - Efficient coding based on structured codebooks vs random ones



Challenge 2: Compression – information-theoretic approach

Codebook training (like Shannon R(D) theory) from p(x)

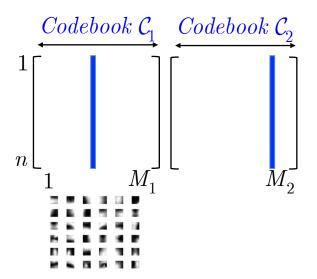


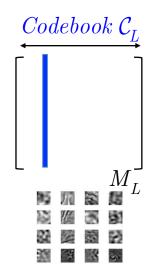


- Information-theoretic approach (limits)
- $p(\mathbf{x})$ is not known
- Codebook size is exponential in n
- Codebook is unstructured
- High compression complexity and memory

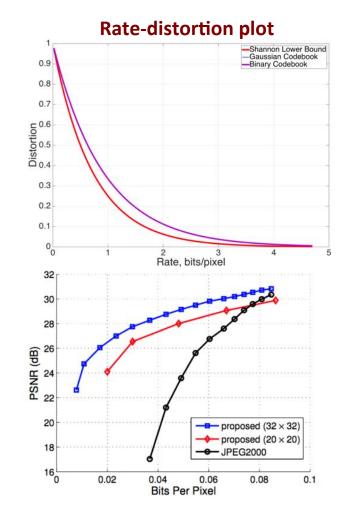
Challenge 2: Compression – machine learning approach

Structured codebooks with successive refinement



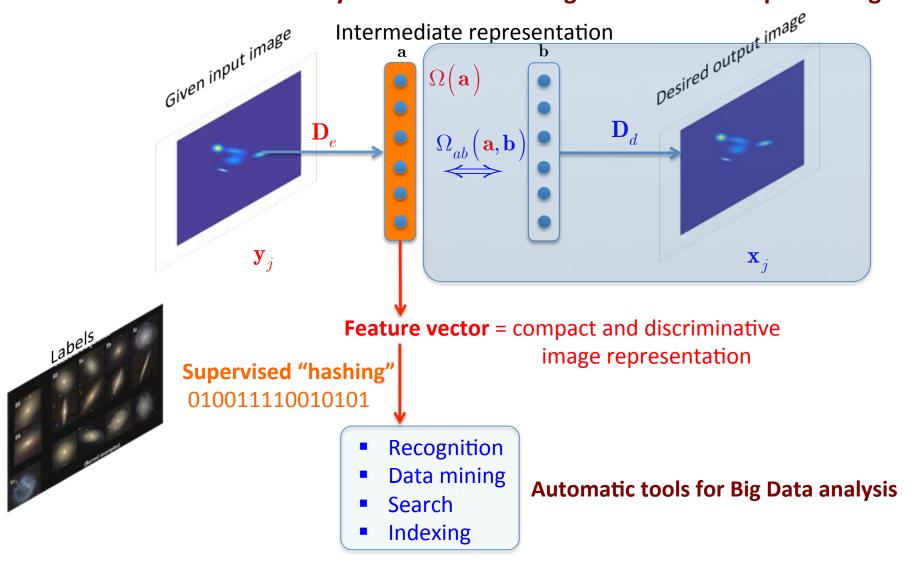


- L trained codebooks (structured)
- Polynomial complexity
- Approaching Shannon lower bound
- Outperforming JPEG/JPEG2K for very low bit rates



Challenge 3: Analytics – automatic processing of Big Data

Main issue: dimensionality and amount of images for automatic processing



Conclusions

- SKA is a great tool for research
- and not only in astronomy and astro-physics
- It is a "test" platform for many ideas in machine learning based image processing thanks to big data and flexible imaging
- In turns, it will lead to new alternative approaches to three SKA challenges covering:
 - imaging and reconstruction algorithms
 - compression algorithms
 - automatic processing of big data