

SKA: What is it?

~0.5M Antennae .07GHz-0.45GHz.

~0.5M Antennae .5GHz-1.7GHz.

~3000 Dishes 3GHz-10GHz.

- 1. 109 samples/second * .5M antennae: .5 1015 samples/sec.
- 2. 3.5 10⁹ samples/second * .5M antennae: 1.7 10¹⁵ samples/sec.
- 3. 2 10¹⁰ samples/second * 3K antennae: 6.10¹³ samples/sec

Sum = 2 10¹⁵ samples/second @ 86400 seconds/day:

170 10¹⁸ (Exa) samples/day. Assume 10-12x reduction @antenna:

14 Exabytes/day (minimum).

Top 500: Sum=123 PFlops. → 100x Flops of Sum!

2GFlops/watt. → ~ 7GWh

SKA: Processing?

DOME

There is only one way to get here:

Smart methods & algorithms

Fast hardware

	TByte	PByte	EByte
100Mb/s	~1 Day	~2.5 Years	~2500 Years
1 Gb/s	~2 Hours	~3 Months	~250 Years
10 Gb/s	~10 Min.	~ 1 Week	25 Years
100 Gb/s	~1 Min.	~16 Hours	2.5 Years

SKA: Micro Clouds

- Micro Cloud brings the benefits of cloud computing to data that is difficult to move
- Micro Cloud consists of 3 components:
 - A self-managing on-premise appliance
 - Traditional cloud for SaaS
 - APIs to move SaaS to appliance
- Micro cloud downloads computation from a cloud site to the appliance
 - Computation executed in a safe and controlled environment within the appliance

Specific Case: A Bank

- Operates in many countries, data cannot move off-premises due to compliance requirements
- Micro cloud brings analytics in cloud to on-premise data, enables comparative analytics

Dome Project:

Research Streams...

Sustainable (Green)
Computing

Nanophotonics

Data & Streaming

...are mapped to research projects:

System Analysis

Algorithms & Machines

Computing

- Microservers
- Accelerators

Transport

- Nanophotonics
- Real-Time Communications
- New Algorithms

Storage

- Access Patterns

...plus an open user platform:

User platform

- Student projects
- Events
- Research Collaboration

33M€ 5-year Research Project: 76 IBM PY (32 in NL); 50 ASTRON PY

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

<u> Algorithms and Machines (P1)</u>

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Algorithms & Machines – ZRL Tool Flow

Analytic approach to design-space exploration: in minutes vs. days or weeks!

Goal: Create a holistic design-space exploration tool to overcome fundamental technology limits in data centers, servers and exascale systems by use of a novel formal method that captures first principles in form of equations compounded with boundary conditions (power, required throughput, I/O, technology parameters, architecture).

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Cognitive storage System - Design

Data units assignment example (1000 100GB chunks)

Budget = \$23,000

Mean Response = 0.27 sec

Red SSD Green HDD

Blue Tape

Budget = \$35,000

Mean Response = 0.0017 sec

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Modeled and measured RFoF Link Results

Optical link layout

Realized multimode optical link

Conclusions on a RFoF optical link:

- Established generic analog optical link model
- Multimode link realized
 - Can reach 7 km, possibly also 10 km
 - Limiting factor Receiver Amplifier (TIA)
 - Best improvement through better PD and higher VCSEL Slope Efficiency
- Actual implementation with single mode fiber
 - Fiber cost dominates

Recently an experimental system (single mode fiber) has been tested in Australia

Photonics Beamforming

Beamforming = Reducing Data: = Reducing # cables

- Electronic/Digital Beamforming «in» the dish risks to interfere with signal reception (RFI)
- Optical Beamforming ... does NOT!!

Photonics Beamformer

00

fiber cable

Amplifier

Beamformer Requirements: Frequency Range: ~3 GHz

Array Dimensions: 10 x 11 Elements

Element Spacing: 21 mm Array Size: 22.4 x 22.4 cm Beam-Steering: +/- 30°

Currently being measured

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Microserver - Definition

μServer:

The integration of an entire server node motherboard* into a *single microchip* except DRAM, Nor-boot flash and power conversion logic.

This does NOT imply low performance!

139mm x55mm x 7mm

138mm x67mm x 6.9mm

Planned System: 2U rack unit

40% more performance @ 70% of node level energy consumption

→ 2x more operations per Watt

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Image-Domain gridding

Explore inherent parallelism in gridding...?

Convolution in Fourier Domain = multiplication in image domain

- ~32 x 32 subgrids
- Local memory
- parallelism

Status:

- On CPU (!) 25x faster then LOFAR (CPU) imager
- Presented at GPU-Technology Conf. 2015,

Image courtesy of Bas van der Tol

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Efficiency of data transport

- 1. Power consumption of data transfer and processing
- 2. Efficient data transfer to data processing entity
- 3. Intermediate ingress data buffering at proc. entity

RDMA over UDP vs. TCP/IP

- RDMA over TCP/IP can lose up to 35% of the peak IOPS performance, whereas RDMA over UDP delivers within 85-90% of the peak IOPS performance.
- With an offloaded RDMA-stack access latencies improve by 15%.

It is expected that a large part of SDP will work with FLASH buffers for efficiency and speed. (SDP)

- **FlashNet**
 - Extension to SIW to access remote flash storage
 - Flash storage is managed efficiently
 - Full RDMA end-to-end semantics
 - Extensions to host RDMA protocol processing

 Mediation between varying Flash access delay
 - and network
 - Stall/resume data processing upon media availability
- Extensions to storage abstraction layer (SAL)

 Request I/O page before Read/Write IO memory operation
 - Synchronize after Read/Write completion

Aperture synthesis

Beamforming at stations

Interferometry, correlation of station beams

Reconstruction of sky image

Algorithms and Machines (P1)

Nanophotonics (P3)

Access Patterns (P2)

Microservers (P4)

Accelerators (P5)

New Algorithms (P6)

Conclusion

1. 7 Very active workstreams with focus on SKA, may-be mainly post SKA-1, but many with (partial?) SKA-1 opportunities.

120+ Scientific (peer reviewed) publications since start, many more accepted & in preparation, P1, P2, P3, P4, P5, P6, P7

- 2. Significant impact on current SKA-consortia thinking:
 - P1 being used in SDP consortium, 'chip' approach for SKA-2, MFAA
 - P2 being used in sizing Regional SKA Science Data centers
 - P3 Optical transmission in test in Australia site, optical beamformers SKA-2
 - P4 Microserver evaluation for SDP (and other applications)
 - P5 GPU programming already today improving LOFAR data processing
 - P6 Mathematical re-thinking of radio-interferometry fundamentals (next talk)
 - P7 -- RDMA over UDP & FLASH Plan of record SDP-ingest.