Giona Matasci & Michele Volpi

giona.matasci@unil.ch

Institute of Geomatics and Analysis of Risk University of Lausanne, Switzerland

UNIL | Université de Lausanne

27th of June 2012

Journée LSSR 2012 Yverdon

Motivation

Introduction

Image classification:

- Impossible to carry out terrain campaigns to obtain ground truth for every acquired image.
- ⇒ Intelligently reuse the information provided by labeled pixels from similar images.

Change detection:

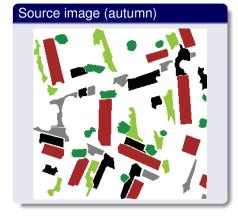
- Ambiguity problem between changed and unchanged pixels.
- ⇒ Better representation of the images to highlight changed regions.

Motivation

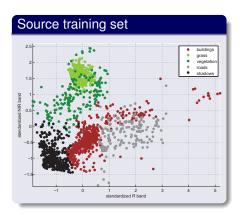
Issues when analyzing multiple remote sensing images:

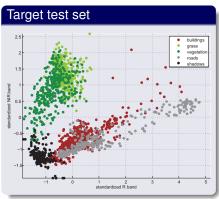
- different illumination.
- changing atmospheric conditions,
- varying acquisition geometry,
- seasonal effects.
- ⇒ shifted probability distributions between images.
- ⇒ need to **match/align the images**: physical models (atmospheric correction), histogram matching,...

A concrete example: 2 QuickBird images of Zurich


Source image (autumn)

Introduction


Target image (summer)



Red vs NIR scatterplots

Objectives

Domain Adaptation via feature extraction

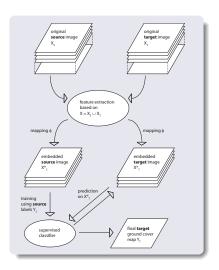
- Map the two images into a feature space where the differences are reduced.
- Test different feature extraction methods (PCA, KPCA, TCA).

Image classification:

⇒ Apply on the target image a classifier built on labeled source samples only.

Change detection:

⇒ Enhanced quality of the difference image.


Domain Adaptation via feature extraction: principle

- $\mathcal{D}_S = \{X_S, Y_S\} \rightarrow \text{labeled}$ source training data.
- $X_T \rightarrow$ unlabeled target data.
- Find a common mapping ϕ (feature extraction techniques: PCA, KPCA, etc.):

$$X_S \to \phi(X_S) = X_S^*,$$

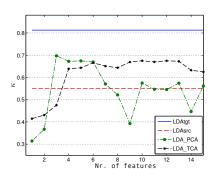
 $X_T \to \phi(X_T) = X_T^*.$

⇒ Reduce differences between distributions so that

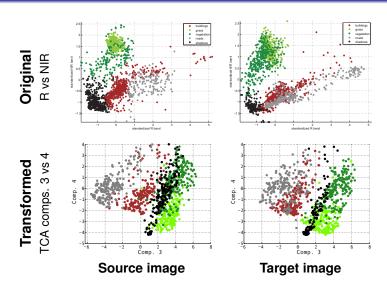
$$P(X_S^*) \approx P(X_T^*). \checkmark$$

Classification accuracy on target image

Target image


LDAsrc: K = 0.54

LDAtgt: K = 0.79

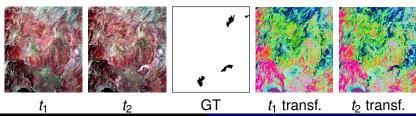


LDA_TCA: K = 0.68

Gain of \sim 0.15 κ points over the Source model (average over 10 runs).

Extracted features

A multitemporal application: change detection


Definitions

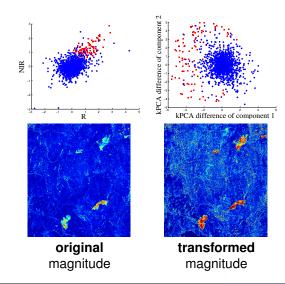
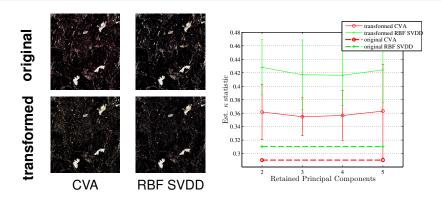

- Pixel-based comparison of (co-)registered images to detect spectral differences related to ground cover changes.
- Image differencing (Change Vector Analysis) is the most applied technique:
 - Magnitude of difference pixel vector $\langle \theta \rightarrow No \text{ change} \rangle$.
 - Magnitude of difference pixel vector $> \theta \rightarrow$ **Change**.

Image alignment in change detection

Aligning unchanged areas

- Based on some 'no change' information (easy to obtain)
 match the distribution of images pre- and post-event.
- A common set of unchanged pixels, at same locations in both images, is used to extract the new projection.
- Physical meaning is lost, but pixel-wise comparison is improved.



Even if the magnitude looks 'noisy' the separability between changes / no changes is increased!

Change detection results

Introduction

 Improvements over the original space with different classification techniques: \sim 0.1 κ points (average over 10 runs).

Summing up

Introduction

• Feature extraction techniques efficiently align images in the feature space.

Image classification:

- ⇒ newly acquired images can be suitably classified using already existing ground truth.
- ⇒ classifiers portability √

Change detection:

- ⇒ the projection aligns unchanged pixels emphasizing changed regions.
- ⇒ enhanced changed detection √

The end

Introduction

Thank you for your attention!

Any questions?

www.unil.ch/unisciences/GionaMatasci www.kernelCD.org

This work has been supported by the Swiss National Science Foundation with grants no. 200021-126505 and PZ00P2-136827.