

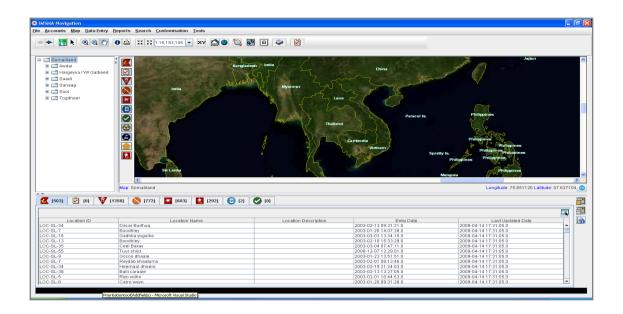
Cartographic Methods for Visualizing the Explosive Remnants of War

Lacroix Pierre

Université de Genève – Institut des Sciences de l'Environnement
GIS consultant for the GICHD

The problem of landmines

- > Dozens of millions of landmines worldwide. 70 affected countries
- > 2010: 4'191 victims of landmines. 1'155 killed (ICBL 2011)
- > 13 states are still potential producer of anti-personnel mines



IMSMA

- > Information Management System for Mine Action
- > Relational database management system + reporting
- > 60 countries
- > Data stored as XY pairs + estimated/calculated area
- > IMSMA is not a global repository of data

Who are the end users of this research?

1. Donors and the general public

- > \$480 in 2009
- > Need a global overview of the contamination to decide which country/area to fund as well as which activity (e.g. landmine clearance, mine risk education etc.)

2. Directors of national MA authorities

- > Need a reliable indicator of the progress of mine action activities to show e.g. to donors
- > Are asking for advanced information technology that is 'too complex to include in the regular IMSMA'

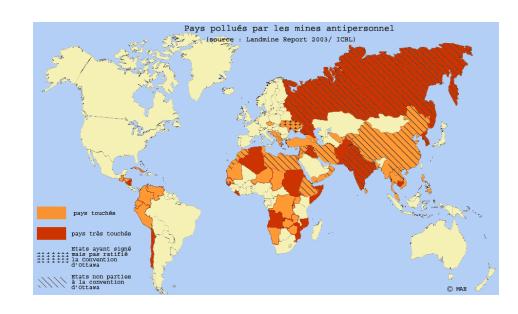
Who are the end users of this research?

3. Operations officers

- > Small to large prioritization process
 - 1. Refer to national-regional impact surveys results to decide where to clear
 - 2. Refer to other data (infrastructures, landcover, slope) to decide how to access the areas

4. Database administrators

- > Probing the database for inacurracy or incompletness
- > Work at large scales
- > GIS expertise of these users is quite low

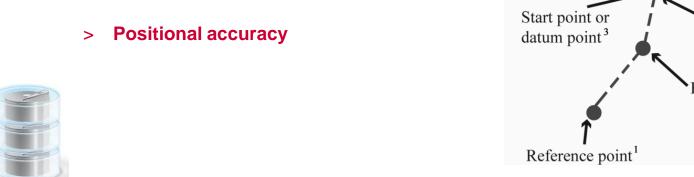


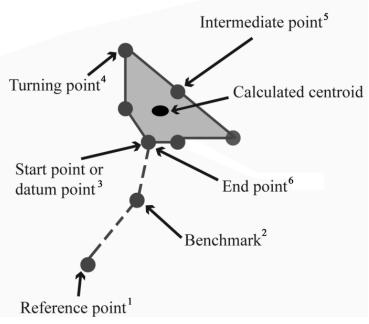
State of the art: cartography and GIS in mine action

- > Few attempts
- Few contamination maps available on the Web. Not up-to-date, not always interactive, sometimes hardly legible
- One paper on the use of KDE to analyse and cartography landmine risk
 - > Single scale
 - > Points only

Scientific question

To what extent can GIS improve visualization of contamination?

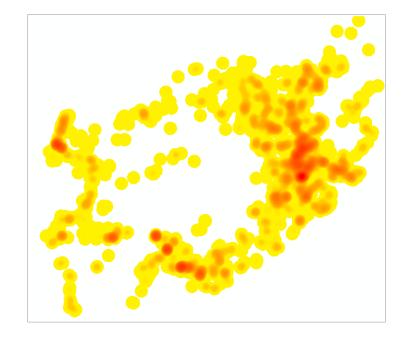



Data related specificities

> Heterogeneity:

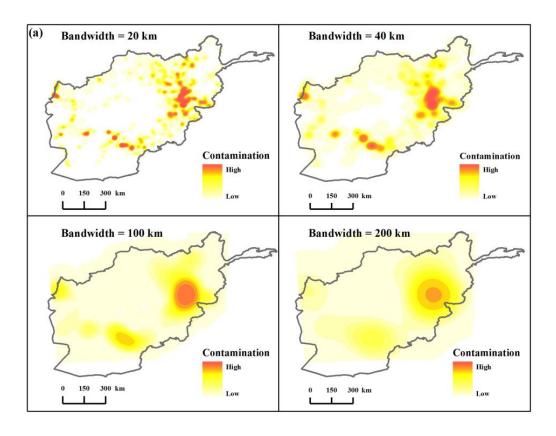
- > Updates: few/year (Nicaragua, Zambia) vs thousands/year (Afghanistan)
- > Geometry: points > polygons
- > Reliability depending on the type
- > Few polygons in some programmes
- > Completeness of database

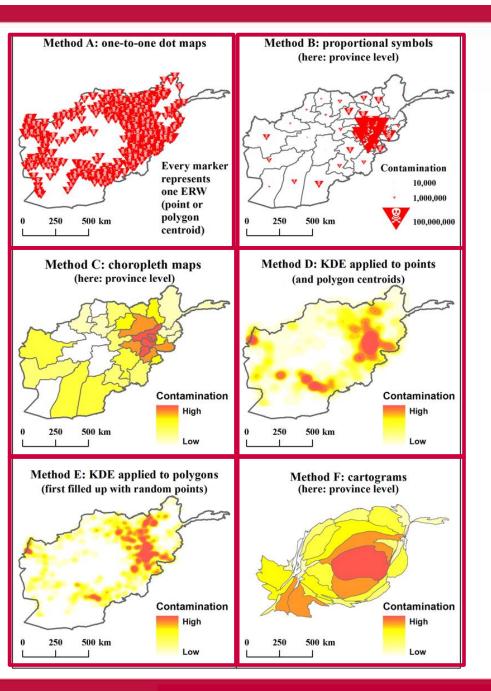
Defined Hazardous Area (DHA)



User related requirements

- > Respecting data privacy
 - Disputed borders should not be visible
 - Exact locations could be used to sell landmines on the black market
 - > Protection of civilians
- > The method presented here does not address these requirements
 - > Each mine ~ one circle





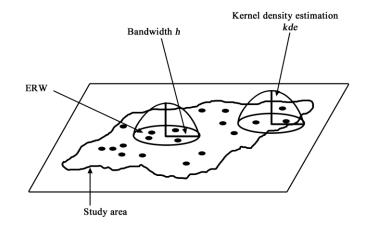
Requirements for visualising explosive remnants of war data

- > Requirements are sometimes contradictory
 - > Precise enough maps to show contamination
 - Obfuscated enough not to show too much
 - → Flexibility. Keep control over the level of detail that users want to show

Methodology

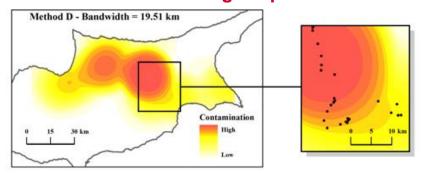
> 6 mapping methods

> Evaluation of each methods against previous requirements

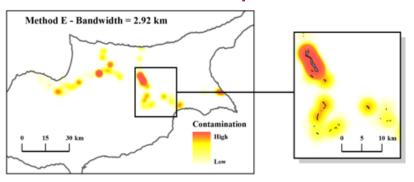

> Validation by end-users

Focus on the two kernel methods

 Customization of kernel density estimation bandwidth: Average Distance to K-th Nearest Neighbour


> ... K is adjustable by the end user = parameter allowing users to keep control over the level of detail of maps

Results with the two kernel-based methods


Customized KDE (applied to points) fits better the original patterns

Non customized KDE

Customized KDE (applied to polygons) even better. Local hotspots are shown

SERWIS RASTER GENERATOR Generates a smoothed image showing Open, Active and Current Hazards IMSMA 1. Choose Hazard Status 2. Choose Hazard Area Size State which status current hazards have: Choose one field for status Choose one field for size Area Size Active No O Yes Status Calculated Area Closed No O Yes Calculated Size Ongoing O Yes No Open O Yes No 3. Choose and state Hazard Type State hazard type: Choose one field for type Туре Indude Intended Land Use No O Yes Mine Action AreaType No Type of Hazardous Area BAC No O Yes CHA No O Yes DA No O Yes DHA No O Yes Mine Field No Yes O Yes 5. Enter Additional Information Country/Region: Date of creation: Hazard as Name of the contact: Organization: Address: Little detailed Much detailed E-mail: 6. Generate Raster File Help

Prototype for the KDEbased methods

Selection of data to be visualized

Cursor for end users to define the level of detail of the kernel map

To what extent can GIS improve visualization of contamination?

- > To a large extent, provided that a complete cartographic framework be supplied
- > Different methods Different scales Different user groups
- > We explained pros and cons of each method
- > Recommendations (can be extended/adjusted to users' specific needs)
- > Lacroix, Herzog, Eriksson, Weibel (2013). *Methods for Visualizing the Explosive Remnants of War* Applied Geography, 41:179-194

Target audience	Global level	Sub-continental level	National level	Sub-national level	Municipality level
Users outside the core MA domain	Method E (polygons)	Method E (polygons) Clusters	T I I I	 	
Directors of national MA authorities	 	 	Method D (points) Choropleth maps	Method D (points) Choropleth maps	
Operations officers	 	 	Method D (points) Clusters	Method D (points) (Clusters)	One-to-one dot maps
Database administrators	 	 	 	 	One-to-one dot maps

Thank you