

Learning Control Laws

Stable Estimator of Dynamical Systems (SEDS)

Global Asymptotic Stability of Autonomous Dynamical System (DS)

Lyapunov's Theorem for Global Asymptotic Stability

Theorem: A DS is *globally asymptotically stable* at $x^* \in \mathbb{R}^N$ iff there exists a Lyapunov candidate function $V(x): \mathbb{R}^N \to \mathbb{R}^N$ that is radially unbounded; i.e. $V(x) \to \infty$ as $||x|| \to \infty$, \mathcal{C}^1 and satisfies the following conditions:

(I)
$$V(\boldsymbol{x}^*) = 0$$
, (II) $V(\boldsymbol{x}) > 0 \ \forall \ \boldsymbol{x} \in \mathbb{R}^N \setminus \boldsymbol{x} = \boldsymbol{x}^*$
(III) $\dot{V}(\boldsymbol{x}^*) = 0$, (IV) $\dot{V}(\boldsymbol{x}) < 0 \ \forall \ \boldsymbol{x} \in \mathbb{R}^N \setminus \boldsymbol{x} = \boldsymbol{x}^*$
 $\dot{V}(\boldsymbol{x}) = \frac{\partial V}{\partial \boldsymbol{x}} \mathbf{f}(\boldsymbol{x}) < 0$

Lyapunov Function V(x) f(x) x_2 x_2 x_1

V should be non-increasing along all trajectories of f(x)

Lyapunov Function ~ Energy-like Function

Global Asymptotic Stability of **Autonomous Dynamical System (DS)**

Lyapunov's Theorem for Global Asymptotic **Stability**

Theorem A DS is globally asymptotically stable at $x^* \in \mathbb{R}^N$ iff there exists a Lyapunov candidate function $V(x): \mathbb{R}^N \to \mathbb{R}$ \mathcal{C}^1 that is radially unbounded; i.e. $V(x) \to \infty$ as $||x|| \Rightarrow \infty$ and satisfies the following conditions:

(I)
$$V(\boldsymbol{x}^*) = 0$$
, (II) $V(\boldsymbol{x}) > 0 \ \forall \ \boldsymbol{x} \in \mathbb{R}^N \setminus \boldsymbol{x} = \boldsymbol{x}^*$
(III) $\dot{V}(\boldsymbol{x}^*) = 0$, (IV) $\dot{V}(\boldsymbol{x}) < 0 \ \forall \ \boldsymbol{x} \in \mathbb{R}^N \setminus \boldsymbol{x} = \boldsymbol{x}^*$
 $\dot{V}(\boldsymbol{x}) = \frac{\partial V}{\partial \boldsymbol{x}} \mathbf{f}(\boldsymbol{x}) < 0$

V should be non-increasing along all trajectories of f(x)

Level Sets of Lyapunov Function

Stability of a Linear Autonomous Dynamical System (DS)

Stability of non-linear DS

What if f(x) is non-linear?

- Not easy to assess whether the system is stable.
- Traditionally, the following has been done:
 - local linearization;
 - numerical estimation of stability;
 - analytical solution in special cases.

Stable Estimator of Dynamical Systems (SEDS)

Khansari-Zadeh, S.M. and Billard, A., 2011. Learning stable nonlinear dynamical systems with gaussian mixture models. *IEEE Transactions on Robotics*, 27(5), pp.943-957.

Mohi Khansari

Stable Estimator of Dynamical Systems (SEDS)

How to model this non-linear dynamical system?

SEDS starting point

 T_m : Length of each trajectory

Start with sampled trajectories from a nonlinear DS

SEDS model

Model the data with a probabilistic model: $p(\dot{x}, x; \Theta)$

Θ: Model's parameters

$$p(\dot{x}, x; \Theta) = \sum_{k=1}^{K} \pi_k \cdot p(\dot{x}, x; \mu^k, \Sigma^k), \quad \text{with } p(\dot{x}, x; \mu^k, \Sigma^k) = N(\mu^k, \Sigma^k), \quad 0 < \pi_k \le 1$$

 $\Theta = \left\{ \pi_k, \mu^k, \Sigma^k \right\}_{k=1}^K$: priors, means and covariance matrices of the *K* Gauss functions

SEDS model

Nonlinearity comes from

$$\gamma_k(x) = \frac{\pi_k \cdot p(x; \mu_x^k, \Sigma_x^k)}{\sum_{k=1}^K \alpha_k \cdot p(x; \mu_x^k, \Sigma_x^k)}$$

Gaussian Mixture Regression:

$$\dot{x} = \sum_{k=1}^{K} \gamma_k \left(x \right) \left(\underbrace{\sum_{\dot{x}x}^{k} \left(\sum_{xx}^{k} \right)^{-1} x}_{A^k} + \underbrace{\left(\mu_{\dot{x}}^{k} - \sum_{\dot{x}x}^{k} \left(\sum_{xx}^{k} \right)^{-1} \mu_{x}^{k} \right)}_{b^k} \right) = \sum_{k=1}^{K} \gamma_k \left(x \right) \left(A^k + b^k \right)$$

K linear DS

$$= \sum_{k=1}^{K} \gamma_k (x) (A^k + b^k)$$

SEDS as a mixture of linear DS

$$-\dot{x} = \sum_{k=1}^{K} \gamma_k (x) (A^k + b^k)$$

Conditions for SEDS stability

Model is parameterized only by the A^k matrices and b^k vectors.

Need to guarantee stability at the attractor x^* .

Parametrization of SEDS

Two possible objective functions:

- a) Maximum likelihood \rightarrow fits at best the entire density
- b) Mean-square error \rightarrow fits at best the state space trajectories and velocities

Optimization of SEDS

Maximum likelihood

$$\min_{\Theta_{\text{GMR}}} J(\Theta_{\text{GMR}}) = -\frac{1}{L} \sum_{m=1}^{M} \sum_{t=0}^{T_m} \log p\left(x^{t,m}, \dot{x}^{t,m} | \Theta_{\text{GMR}}\right)$$

Mean-square error

$$\min_{\Theta_{\text{GMR}}} J(\Theta_{\text{GMR}}) = \frac{1}{2L} \sum_{m=1}^{M} \sum_{t=0}^{T_m} \|f(x^{t,m}) - \dot{x}^{t,m}\|^2.$$

Set of constraints

$$(\mathbf{a}) b^k = -A^k x^*$$

$$\mathbf{(b)}\,A^k + \left(A^k\right)^T \prec 0$$

(c)
$$\sum^{k} > 0$$

$$(\mathbf{d}) \ 0 < \pi_k \le 1$$

(e)
$$\sum_{k=1}^{K} \pi_k = 1$$
,

Nonlinear optimization

(c)
$$\sum_{k} > 0$$
 $\forall k = 1, ..., K$ $\sum_{k} = \begin{bmatrix} \Sigma_{xx} & \Sigma_{x\dot{x}} \\ \Sigma_{\dot{x}x} & \Sigma_{\dot{x}\dot{x}} \end{bmatrix}$

Learning and adaptive control for robots

Hyperparameter and pre-selections for SEDS

Prior to training SEDS, the user must make a number of choices that will influence the quality of the learned model.

The choices are:

- Type of objective function
 - → This will affect the placement of the Gauss functions.
- Number of Gauss functions
 - → This can be automated by using the Bayesian Information Criterion (BIC) BIC finds a balance between improved quality of the fit and increase in number of parameters.

Learning and adaptive control for robots

Kinesthetic teaching

Learning and adaptive control for robots

Learning and adaptive control for robots

Reproduction

Learning and adaptive control for robots

(b) Velocity profile for the saucer task

(c) Velocity profile for the cup task

SEDS Summary

- Automatically estimate *globally asymptotically stable* dynamical systems from sampled trajectories
- Extension of Gaussian Mixture Model
 - Uses same objective function (maximum likelihood)
 - Add new set of constraints to enforce stability
- Stability is guaranteed through Lyapunov stability constraints
 - Assumes a quadratic Lyapunov function
- High accuracy for a large number of nonlinear dynamics
- Limitations:
 - Non convex optimization
 - Poor accuracy for highly nonlinear dynamics (high curvature)

Extensions to SEDS

Approach	Stability ensured via
SEDS (Constrained-GMR) [1]	QLF (Lyapunov)
Tau-SEDS (SEDS-extension) [2]	Complex (Lyapunov) Function + Diffeomorphic Transformation
CDSP (SEDS-extension) [3]	Partial Contraction Theory
LPV-DS (GMM-based) [4]	P-QLF (Lyapunov)

[1] S. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on, 27(5):943–957, Oct 2011.

[2] K. Neumann and A. Billard. Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robotics and Autonomous Systems. 2015 [3] H. Ravichandar, I. Salehi and A. Dani. Learning partially contracting dynamical systems from demonstrations.

In Proc. of the 1st Conference on Robot Learning (CoRL). Nov. 2017.

[4] Figueroa N., and Billard, A. A physically-consistent Bayesian non-parametric Mixture Model for dynamical system learning. In Proc. of the 2nd Conference on Robot Learning. Oct 2018.