

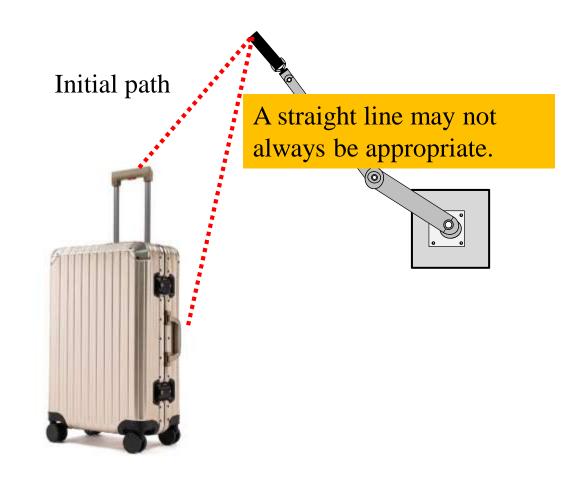
PART II

COUPLING AND MODULATING CONTROLLERS

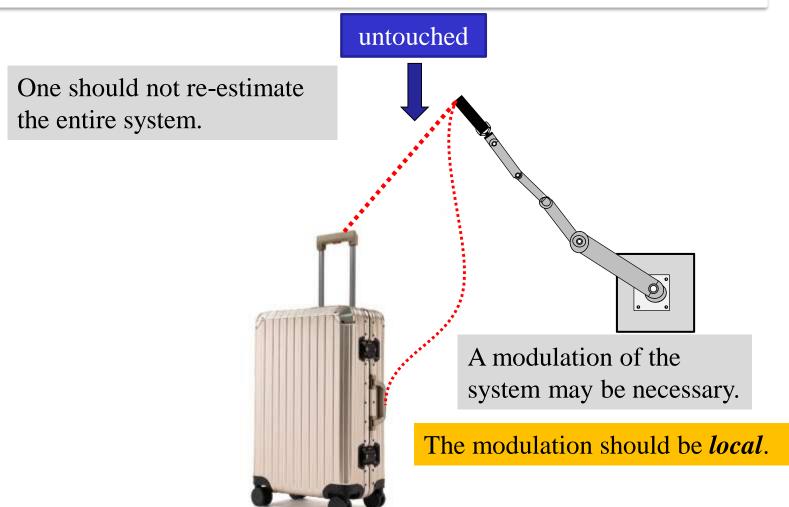
Chapter 8
Adapting and Modulating an Existing Control Law

1

Adapting a controller

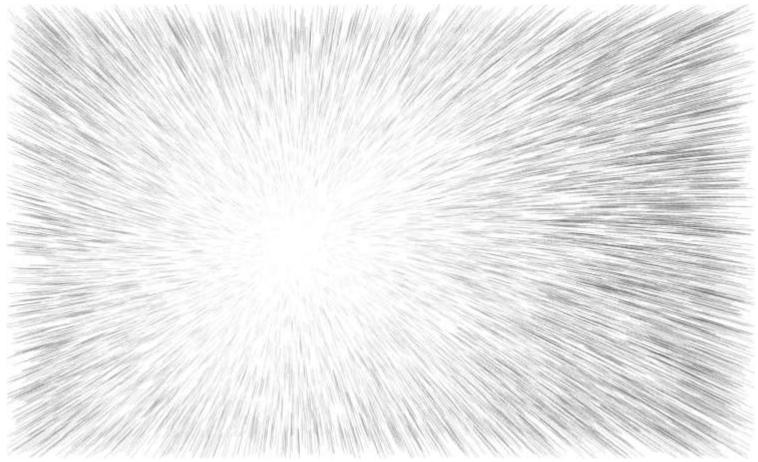


Adapting a controller



Initial – Nominal DS

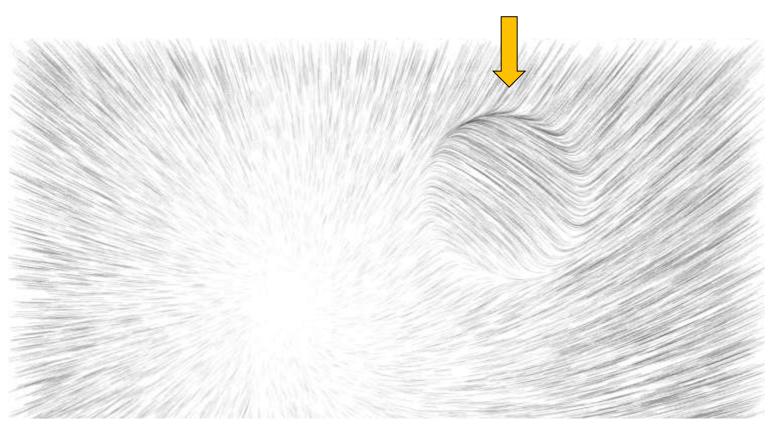
Start with an initial DS $\dot{x} = f(x)$ with attractor $\dot{x}^* = f(x^*) = 0$.



We will call this the nominal DS

DS after Local Modulation

Generate a *local* modulation



How can we modulate the DS while preserving the stability properties?

Modulation – Theoretical Approach

Idea:

Modulate the original DS in such a way that the new DS:

- remains a first order DS,
- preserves asymptotic stability at its attractor x^* , ?
- has still a single attractor.

Which properties do we need for *M* to satisfy the other two requirements?

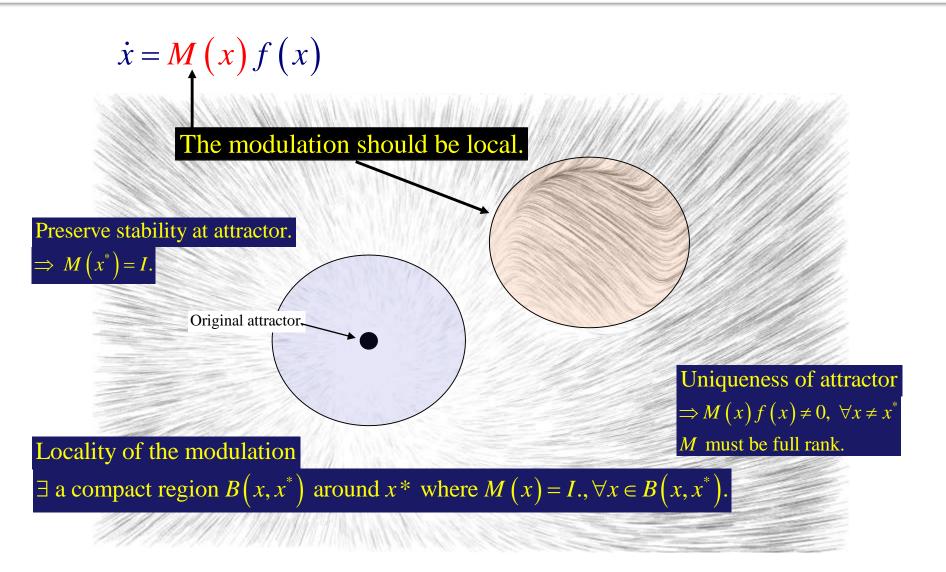
The modulated dynamics is given by:

$$\dot{x} = M(x) f(x)$$
, $M(x) \in \mathbb{R}^{N \times N}$

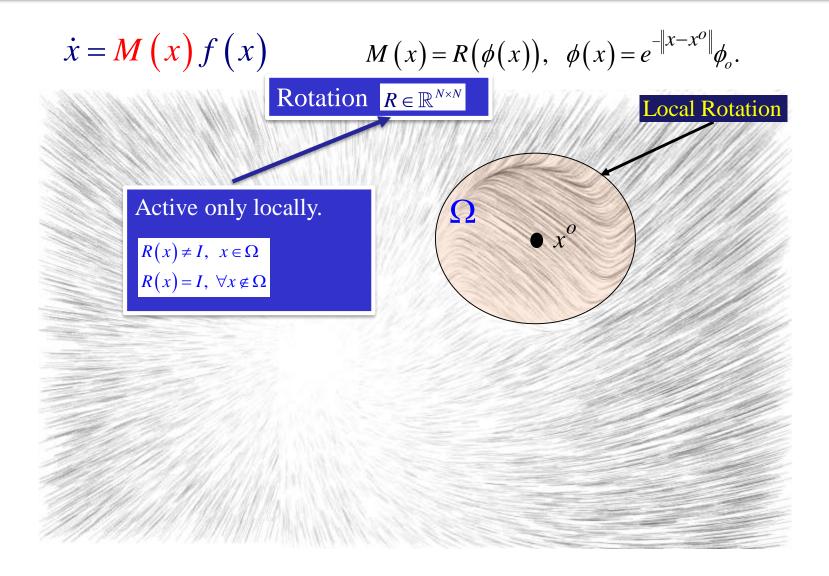
Does this satisfy our three desiderata?

The matrix M above should not be confused with the metric M of contraction theory introduced in Lecture 3.

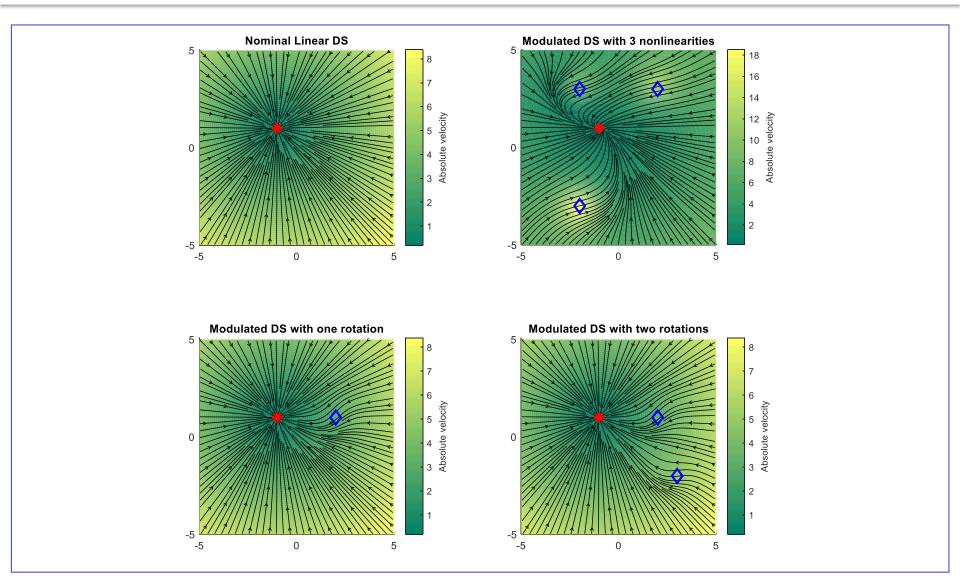
DS after Local Modulation



DS after Local Modulation



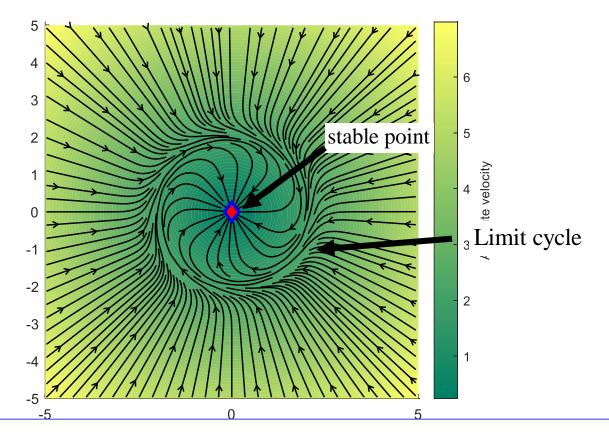
Modulation – Local Rotations - Examples



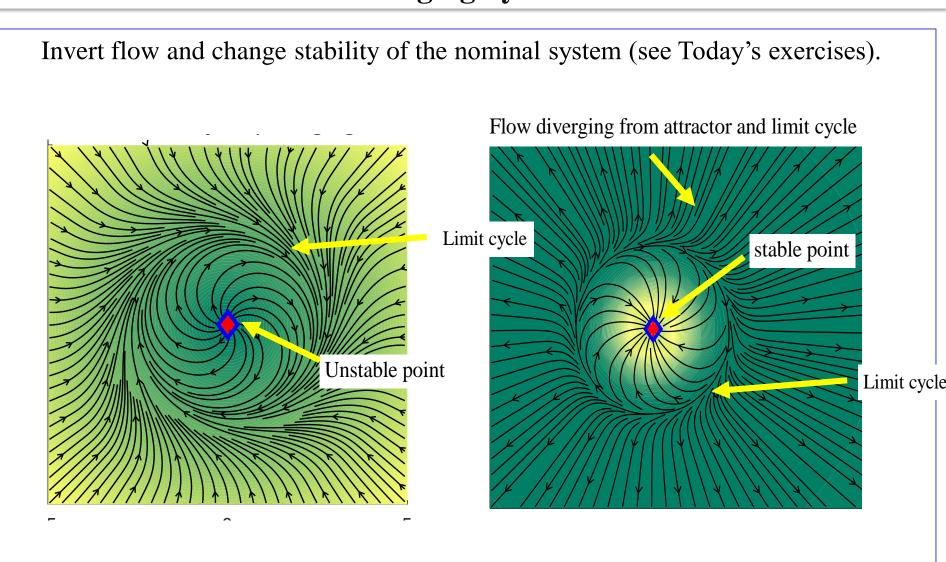
Modulation – Rotation Leading to a Limit Cycle

Modulations can be used to generate **new properties** for the DS

$$M = \begin{bmatrix} \cos(\gamma\theta) & -\sin(\gamma\theta) \\ \sin(\gamma\theta) & \cos(\gamma\theta) \end{bmatrix}, \qquad \gamma(x, x^{o}) = e^{-\frac{1}{\sigma^{2}}(\|x\| - r)^{2}}, \quad \sigma > 0.$$

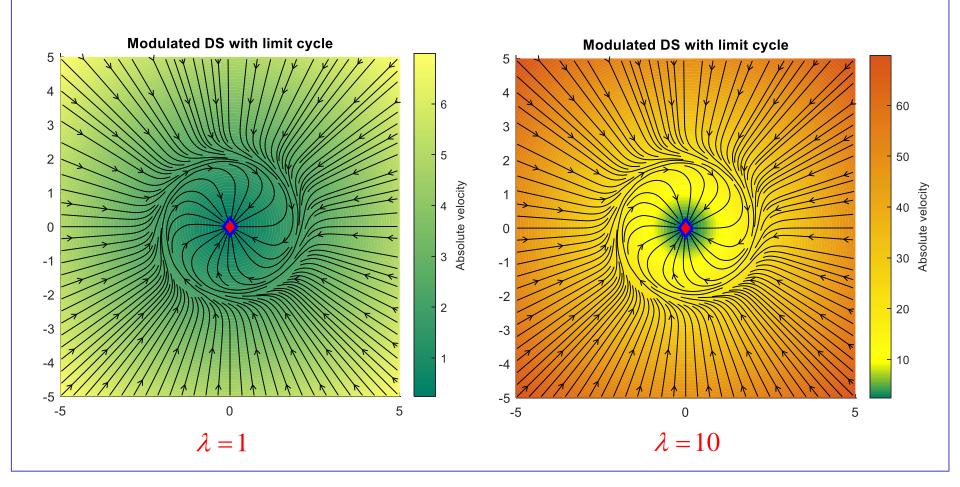


Diverging Systems



Modulation - Scaling

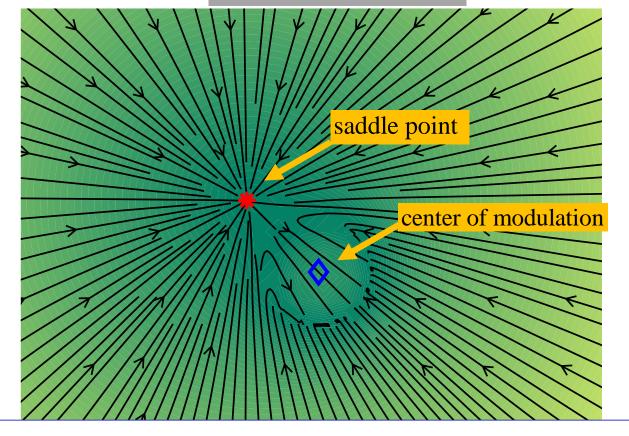
Multiplicative term in front of the modulation will increase/decrease the speed of the DS but will not modify the type of dynamics. $\dot{x}=\lambda M(x)f(x)$, $\lambda \in \mathbb{R}$.



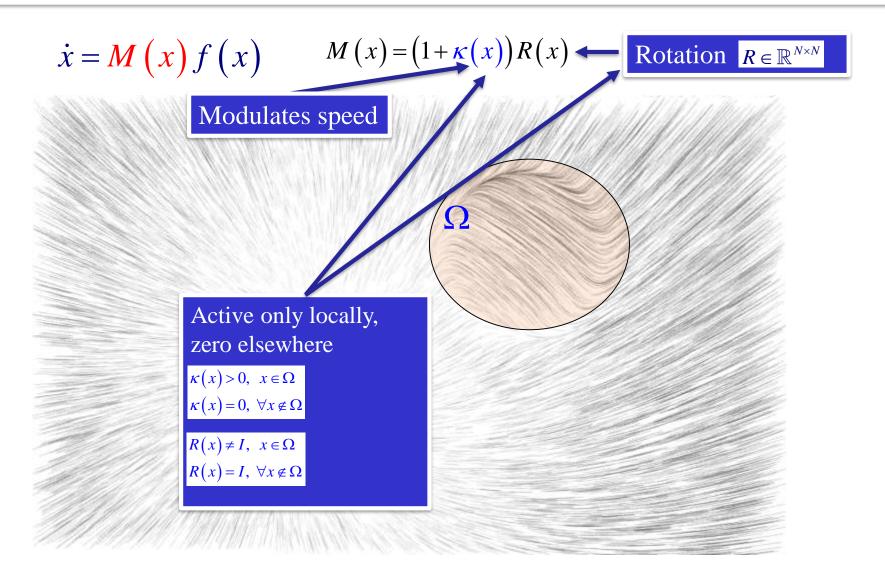
Modulation – Other Properties

Modulations can be used to generate **new properties** for the DS

$$M = \begin{bmatrix} 1 - 2\gamma(x, x^{o}) & 0 \\ 0 & 1 - 2\gamma(x, x^{o}) \end{bmatrix}, \qquad \gamma(x, x^{o}) = e^{-\frac{1}{\sigma^{2}} \left\|x - x^{o}\right\|}, \quad \sigma > 0.$$
ERRATUM: book, section 8.1.1



Parameterization of the modulation



Parameterization of the modulation

The modulation function can rotate and speed up the dynamics locally.

$$M(x) = (1 + \kappa(x))R(x)$$
 Rotation

Direction / axes can be learned from data

Modulates the speed

Speed and region of activation can be learned from data.

In 2D, a rotation is defined solely by an angle ϕ , $R(\phi) = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}$.

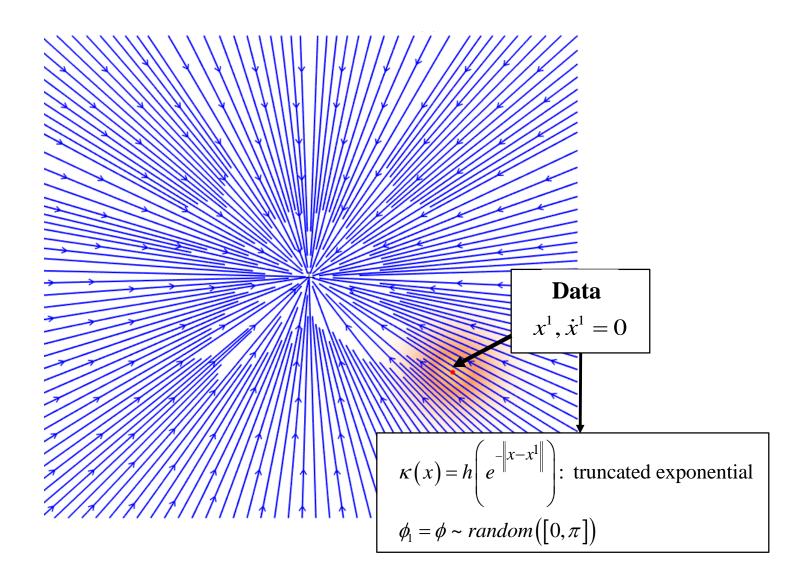
In 3D, a rotation $R(\phi, \mu_R)$ is defined by an angle ϕ around a vector μ_R .

The modulation function is hence parameterized as:

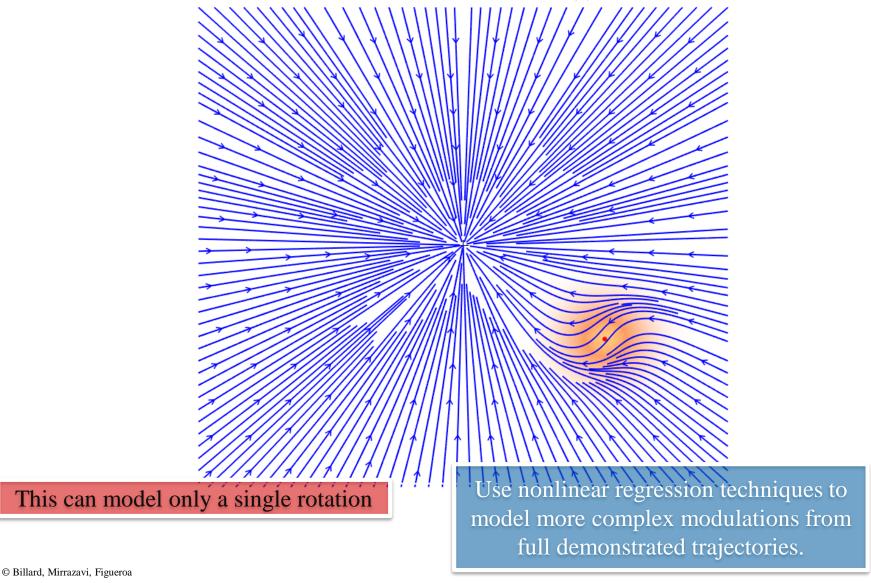
$$M(x;\Theta = \{\phi, \mu_R, \kappa\}) = (1 + \kappa(x; X, \dot{X}))R(\phi(x; X), \mu_R(x; X)), \quad X, \dot{X} : data for learning$$

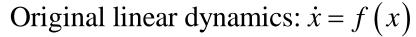
Learning the modulation

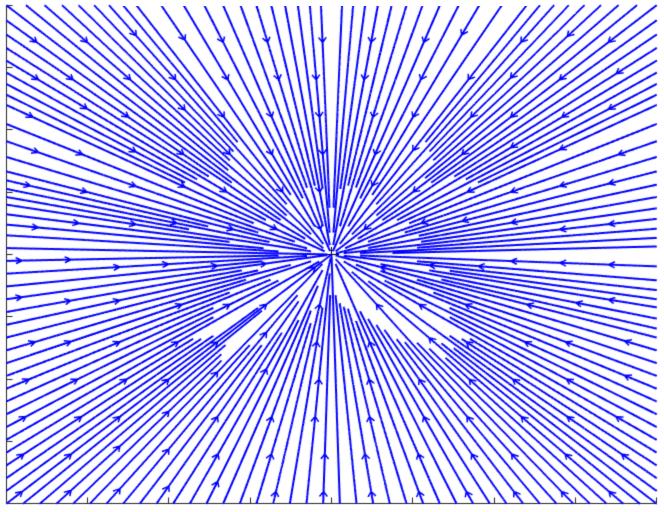
Example – generated a rotation around a single demonstrated point

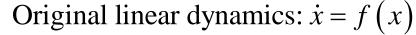


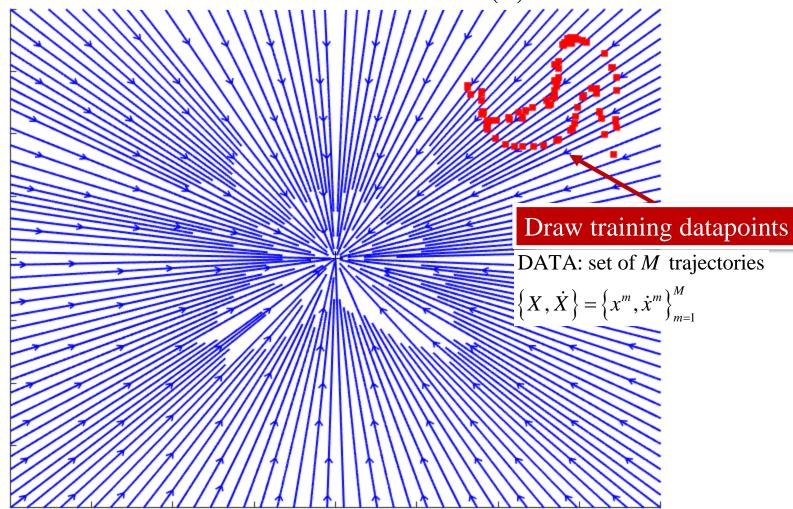
Example – learning a rotation around a single point

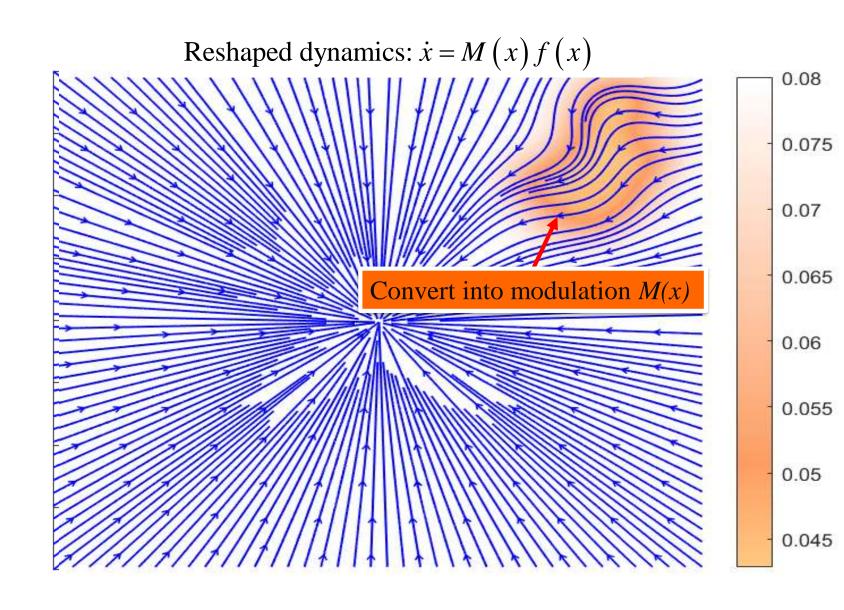












Learning a Modulation (2D example)

General formulation

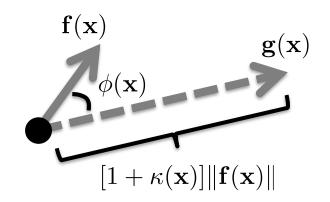
$$\dot{\mathbf{x}} = \mathbf{g}(\mathbf{x}) = \mathbf{M}(\mathbf{x})\mathbf{f}(\mathbf{x})$$

xRobot's state $\mathbf{R}(\mathbf{x})$ Rotation Matrix $[\kappa(x)]$ Scaling factor

Modulation composed of a scaling and rotation:

$$\mathbf{M}(\mathbf{x}) = [1 + \kappa(\mathbf{x})]\mathbf{R}(\mathbf{x})$$

$$\mathbf{R}(\mathbf{x}) = \begin{bmatrix} \cos(\phi(\mathbf{x})) & -\sin(\phi(\mathbf{x})) \\ \sin(\phi(\mathbf{x})) & \cos(\phi(\mathbf{x})) \end{bmatrix}$$



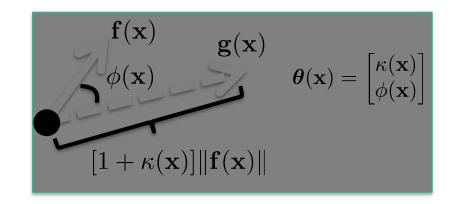
Define the parameter vector:

$$\boldsymbol{\theta}(\mathbf{x}) = \begin{bmatrix} \kappa(\mathbf{x}) \\ \phi(\mathbf{x}) \end{bmatrix}$$

For dimension >2, the parameter vector is expanded by parameters describing the rotation set.

 $\phi_{m} = \frac{\operatorname{acos}\left(\left\langle \dot{x}^{m}, {}^{o}\dot{x}^{m}\right\rangle\right)}{\left\|\dot{x}^{m}\right\|\left\|{}^{o}\dot{x}^{m}\right\|}$

From Trajectory Data to Reshaping Parameters



xRobot's state $\mathbf{R}(\mathbf{x})$ Rotation Matrix $[\kappa(x)]$ Scaling factor x_m Orignal data-points x_m^o New data-points

Trajectory data

$$\left\{ \boldsymbol{\mathcal{X}}^{m}, \dot{\boldsymbol{\mathcal{X}}}^{m} \right\}_{m=1}^{M}$$

Nominal vel.

$${}^{o}\dot{x}^{m}=f\left(x^{m}\right)$$

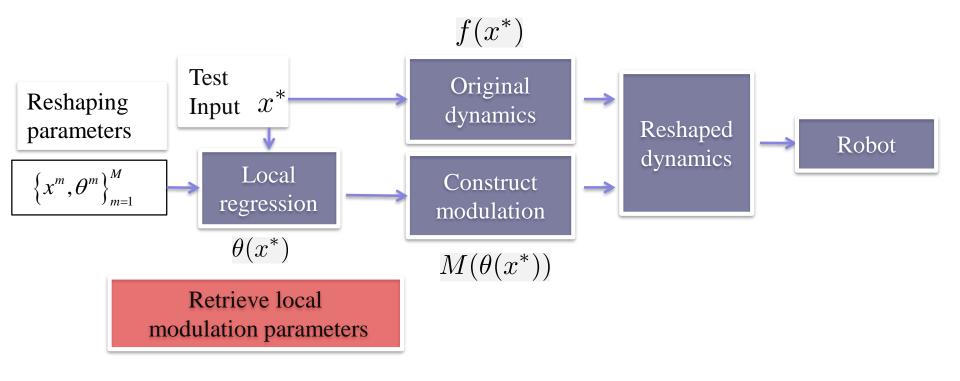
Nominal pos.

$$\left\{ {}^{o}\chi^{m}\right\} _{m=1}^{M}$$

Reshaping parameters

$$\left\{x^m,\theta^m\right\}_{m=1}^M$$

Learning and Using the Reshaped Dynamics



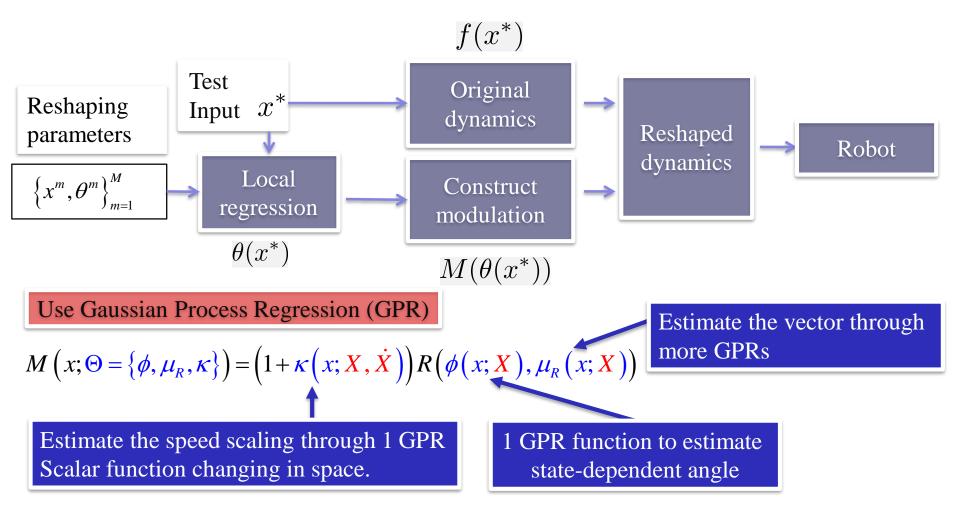
Pseudo-Code for Converting Data into Modulation Parameters

Algorithm 8.1 Procedure for converting 2D or 3D trajectory data to modulation data.

Require: Trajectory data $\{x^m, \dot{x}^m\}_{m=1}^M$

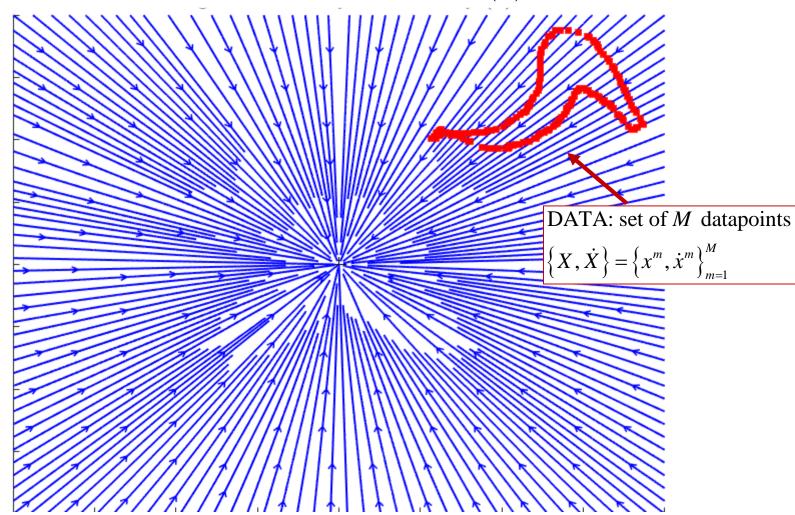
- 1: for $m = 1 \rightarrow M$ do
- Compute nominal velocity: ${}^{o}\dot{x}^{m} = f(x^{m})$
- Compute rotation vector (3D only): $\mu^m = \frac{\dot{x}^m \times {}^o \dot{x}^m}{\|\dot{x}^m\| \|{}^o \dot{x}^m\|}$ 3:
- Compute rotation angle: $\phi^m = \arccos \frac{\dot{x}^{m^T o} \dot{x}^m}{\|\dot{x}^m\| \|o \dot{x}^m\|}$
- Compute scaling: $\kappa_m = \frac{\|\dot{x}^m\|}{\|o_{\dot{x}^m}\|} 1$
- $3D: \theta^m = [\phi^m \mu^m, \kappa^m], \quad 2D: \theta^m = [\phi^m, \kappa^m]$
- 7: end for
- 8: **return** Modulation data $\{x^m, \theta^m\}_{m=1}^M$

Learning and Using the Reshaped Dynamics



Gaussian Process Regression (GPR) for Learning the Modulation

Original linear dynamics: $\dot{x} = f(x)$



Gaussian Process Regression (GPR) for Learning the Modulation

GPR model: $\dot{x} = \sum_{i=1}^{M} \alpha_i k\left(x, x^i\right)$ $k(x, x') = \sigma_f e^{\frac{\|x - x'\|}{2l}}$ with $\alpha = \left[K(X, X) + \sigma_n^2 I\right]^{-1} \begin{bmatrix} \dot{x}^1 \\ \dots \\ \dot{x}^M \end{bmatrix}$

Gram matrix:
$$K(X, X) = \begin{bmatrix} k(x^1, x^1) & k(x^1, x^2) & \dots & k(x^1, x^M) \\ \vdots & & & & \\ k(x^M, x^1) & k(x^M, x^2) & \dots \end{bmatrix}$$



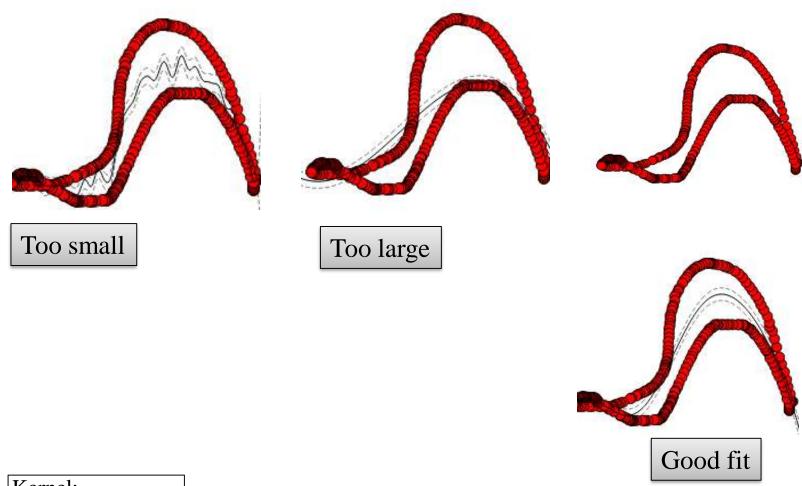
Hyperparameters

l > 0: lengthscale parameter ~ kernel width - controls tightness of the fit.

 $\sigma_{\rm f} > 0$: scales the kernel to the range of values of the output.

 $\sigma_n > 0$: noise parameter - controls tolerance on fit imprecision.

Lengthscale parameter

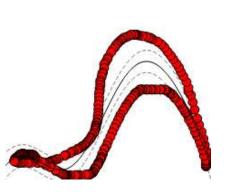


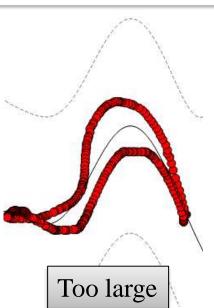
Kernel:

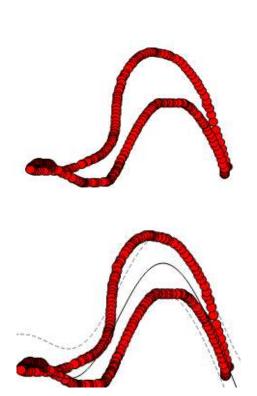
$$k(x,x') = \sigma_f e^{-\frac{\|x-x'\|}{2l}}$$

l > 0: controls tightness of the fit.

Noise parameter



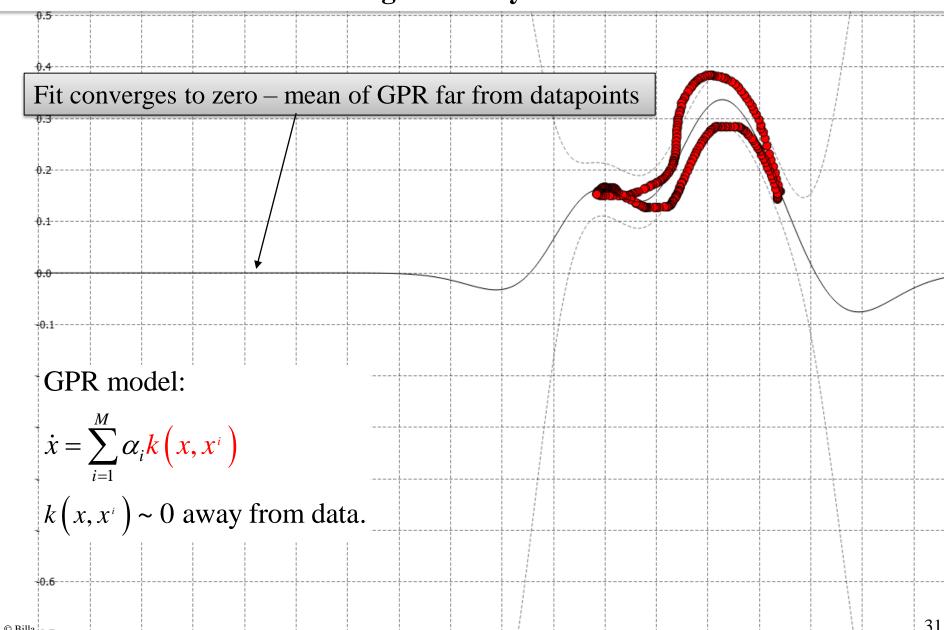




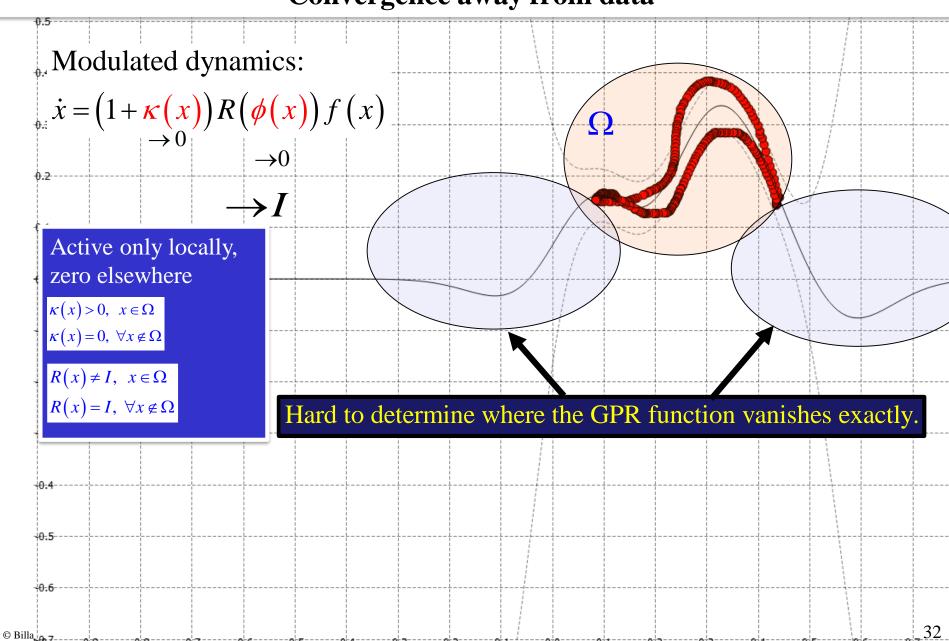
$$\dot{x} = \sum_{i=1}^{M} \alpha_{i} k(x, x^{i}), \text{ with } \alpha = \left[K(X, X) + \sigma_{n}^{2} I\right]^{-1} \begin{bmatrix} \dot{x}^{1} \\ \dots \\ \dot{x}^{M} \end{bmatrix}$$

 $\sigma_n > 0$: noise parameter - controls tolerance on fit imprecision

Convergence away from data



Convergence away from data



Forces stability away from modulation

GPR model:

$$\dot{x} = \sum_{i=1}^{M} \alpha_i k(x^*, x^i), \quad x^* : \text{query point}$$

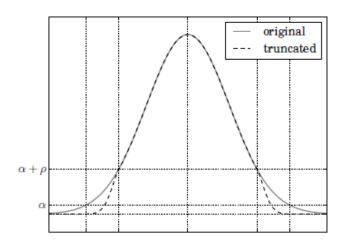
with
$$\alpha = \left[K(X,X) + \sigma_n^2 I\right]^{-1} \begin{bmatrix} \dot{x}^1 \\ \dots \\ \dot{x}^M \end{bmatrix}$$

Truncate the GPR function at fixed bounds.

Rewrite as a function of query point

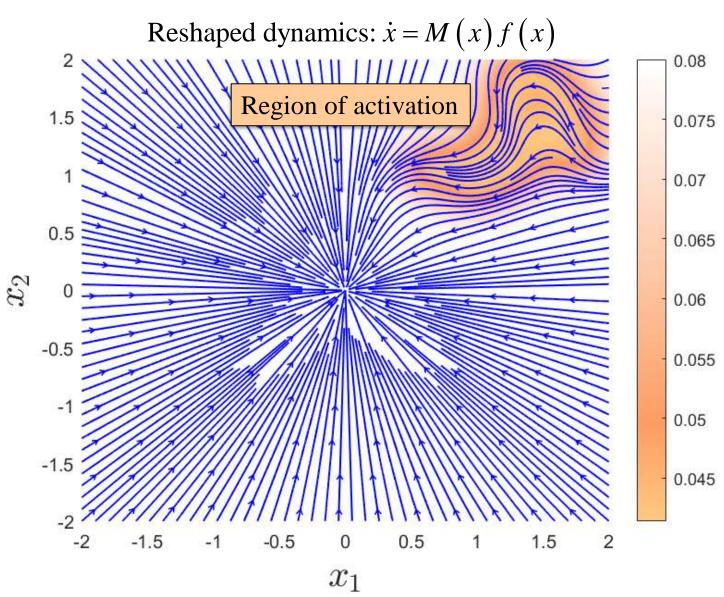
$$\dot{x} = \left[K(X,X) + \sigma_n^2 I\right]^{-1} K_{Xx^*}$$

$$\alpha(x^*)$$



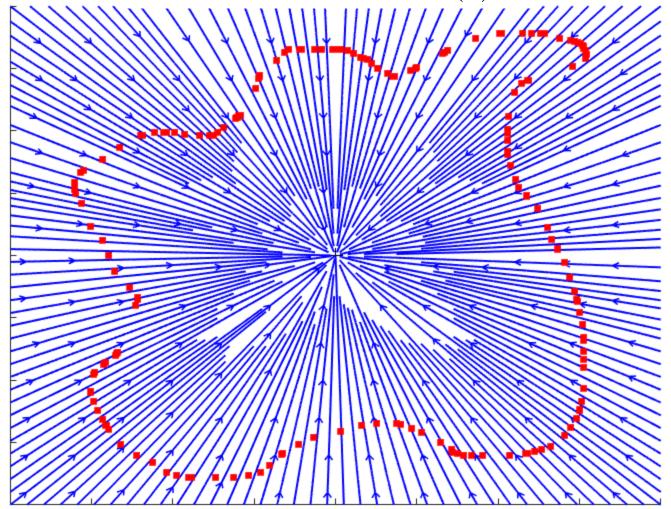
$$\alpha'(x^*) = \begin{cases} 0 & \alpha(x^*) < \underline{\alpha} \\ \frac{1}{2} \left(1 + \sin\left(\frac{2\pi(\alpha(x^*) - \underline{\alpha})}{2\rho} - \frac{\pi}{2} \right) \right) \alpha(x^*) & \underline{\alpha} \le \alpha(x^*) \le \underline{\alpha} + \rho. \\ \alpha(x^*) & \underline{\alpha} + \rho < \alpha(x^*) \end{cases}$$

Example: Modulation Learned by GPR

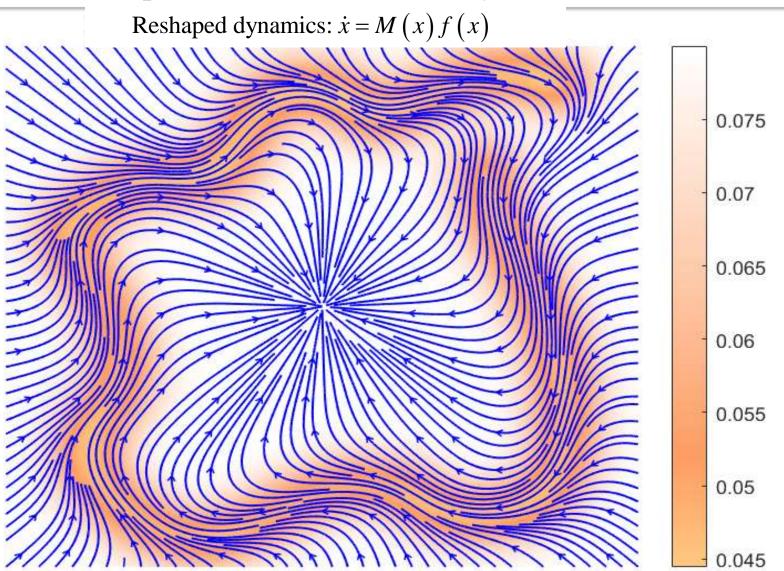


Example: Modulation Learned by GPR

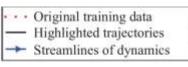
Original dynamics: $\dot{x} = f(x)$



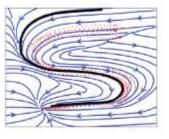
Example: Modulation Learned by GPR

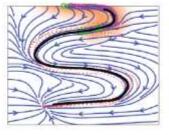


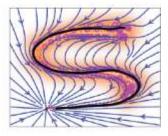
Learning and adaptive control for robots



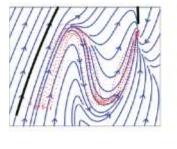
- Collected corrective data
- Selected GP data

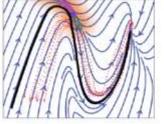


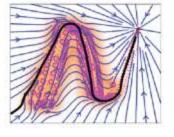




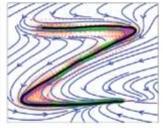
Can be used to improve SEDS fit on nonlinear trajectories.

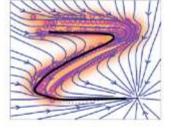


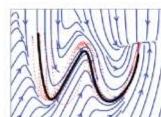


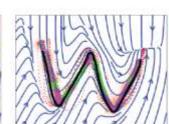


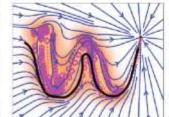




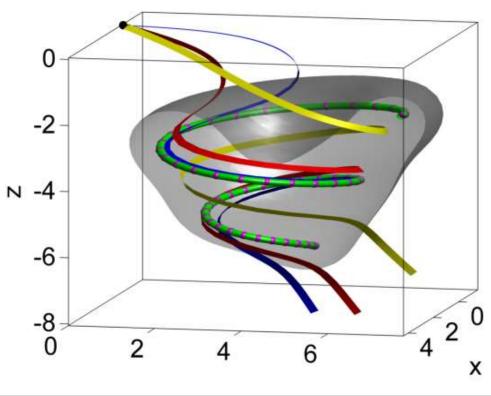






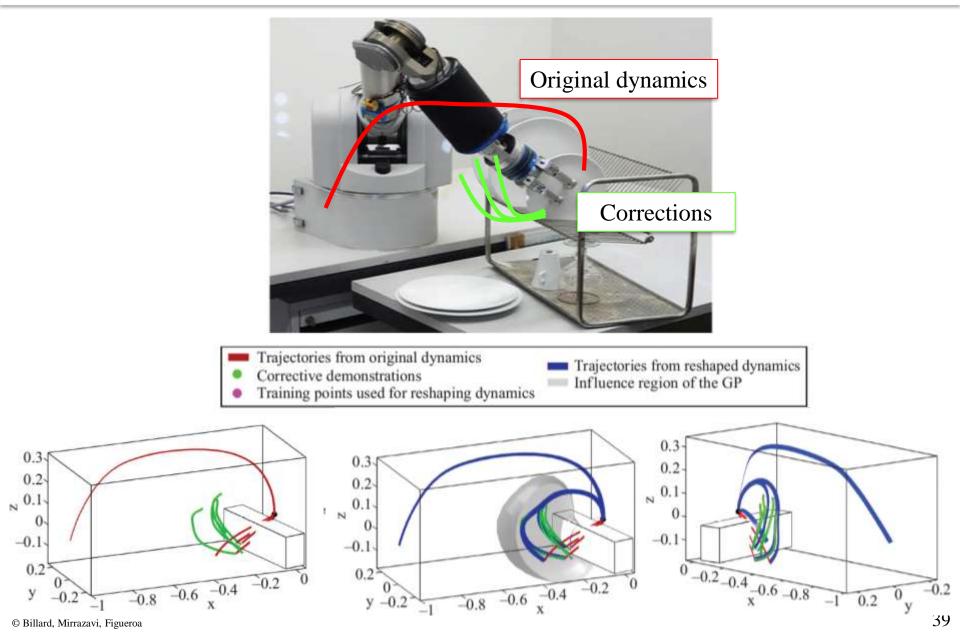


Example: 3D Modulation Learned by GPR





Example: 3D Modulation For Robot Control



Learning and adaptive control for robots

Learning an external modulation

Learning an external modulation

Until now, the modulation depends solely on the current state of the system.

$$\dot{x}=M(x)f(x)$$
.

To provide more flexibility and allow the user to control for the activation of the modulation, we make it dependent on an external signal.

$$\dot{x}=M(x,s)f(x), \quad s \in \mathbb{R}^M$$
: external input

s : could be measured by any external sensor

Stability conditions

- M(x,s) locally active
- M(x,s) is full rank
- M(x,s)f(x) is stable at x^*

How should we design M(x,s) to preserve properties of nominal DS?

Design of the modulation function

The modulation combines a state and input—dependent scaling and rotation.

$$M(x,s) = (1 + \kappa(x,s))R(x,s)$$

Parameterized by
$$\theta(x,s) = h_s(s) \left[\phi(x) \mu_R, \kappa(x) \right]$$

Rotation parameters $\phi(x): \mathbb{R}^N \to [-\pi; \pi]$

Design an state-dependent angle function: $\phi(x) = h_x(x)\phi_c$,

$$\phi_c \in [-\pi,\pi]$$

Speed scaling

$$\kappa(x): \mathbb{R}^N \to \mathbb{R}^+$$

Design of the modulation function

The modulation combines a state and input—dependent scaling and rotation.

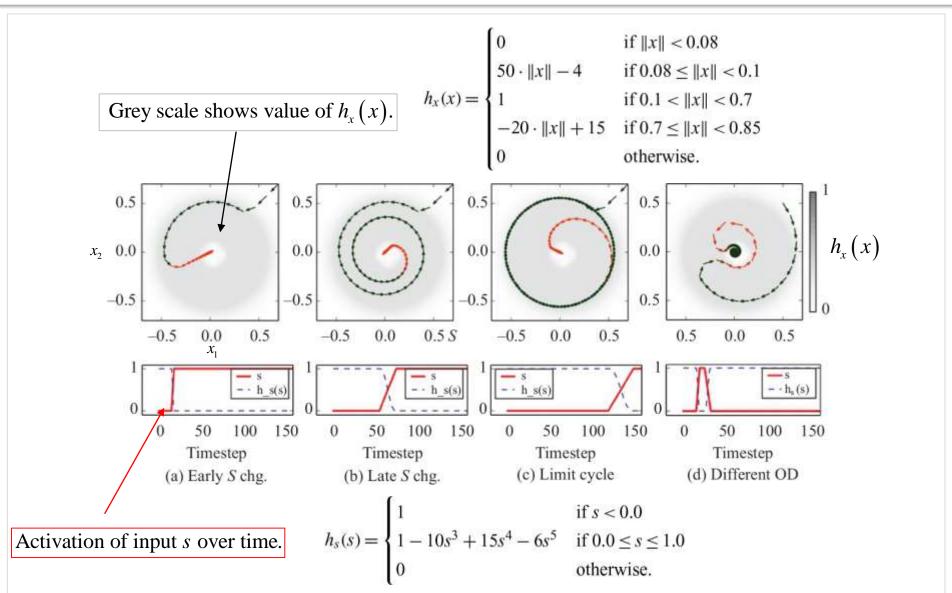
$$M(x,s) = (1 + \kappa(x,s))R(x,s)$$

Parameterized by
$$\theta(x,s) = h_s(s) \left[\phi(x) \mu_R, \kappa(x) \right]$$

 $h_s(s): \mathbb{R}^M \to [0,1]$ - determines when the modulation is active depending on external input

 h_x determines the shape of the nonlinearity: $\phi(x) = h_x(x)\phi_c$.

Example of a modulation function



Application for tactile exploration

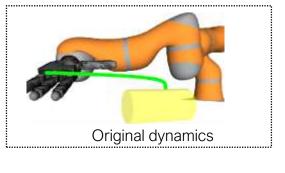
1. Original dynamics

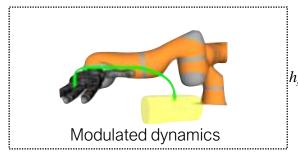
2. Learn parameterization of modulation

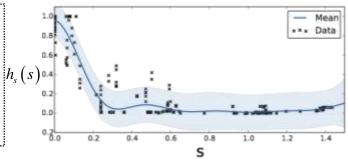
$$\theta(x,s) = h_s(s) [\phi(x) \mu_R, \kappa(x)]$$

$$h_s(s): \mathbb{R}^M \to [0,1]$$

3. Learn activation function







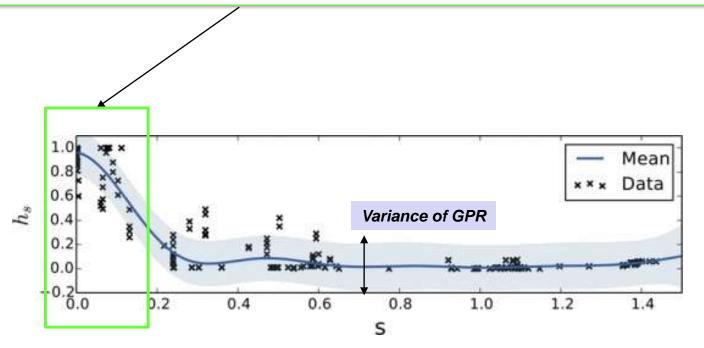
Application to tactile exploration

Scenario:

- "Blind" exploration of the space
- Each time make contact with object, localize the object and estimate its orientation
- Position the hand in the right orientation to grasp the object once certain of its location

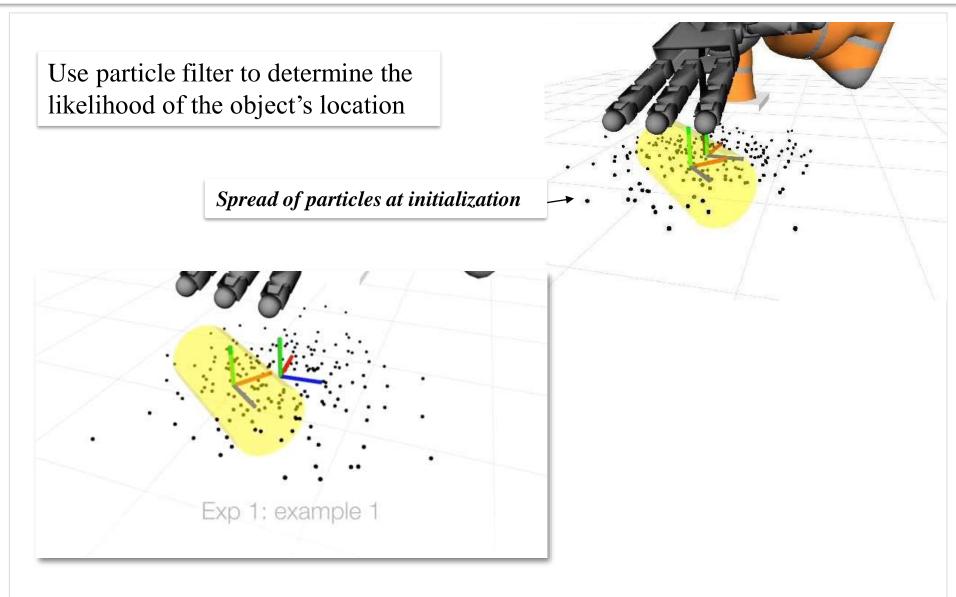
Learn modulation function of the input

The more certain the algorithm is on position of object, the larger h_s .



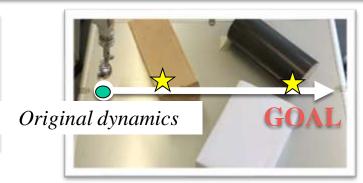
s: variance of object's position estimate

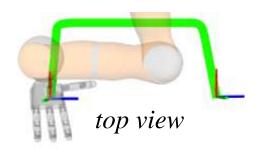
Learn modulation function of the input



Application to obstacle avoidance

- External input: collision detection
- Learn a modulation to adapt trajectory depending on collision information



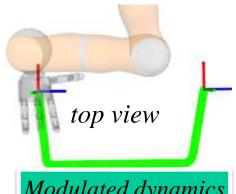


Original dynamics

External signal: s

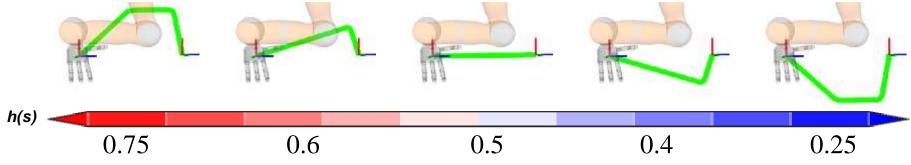
Time since last contact

Angle of last collision

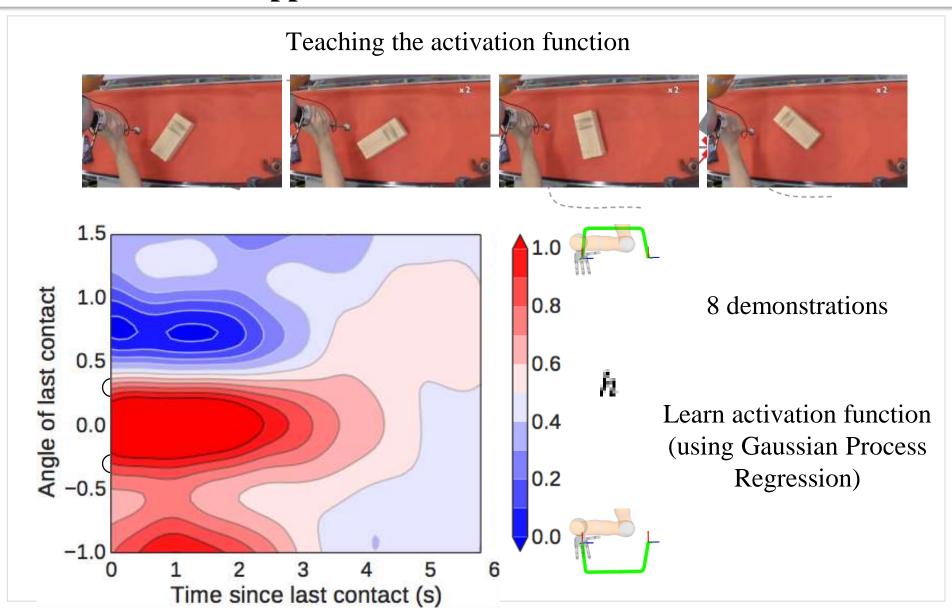


Modulated dynamics

Resulting dynamics with different values of activation

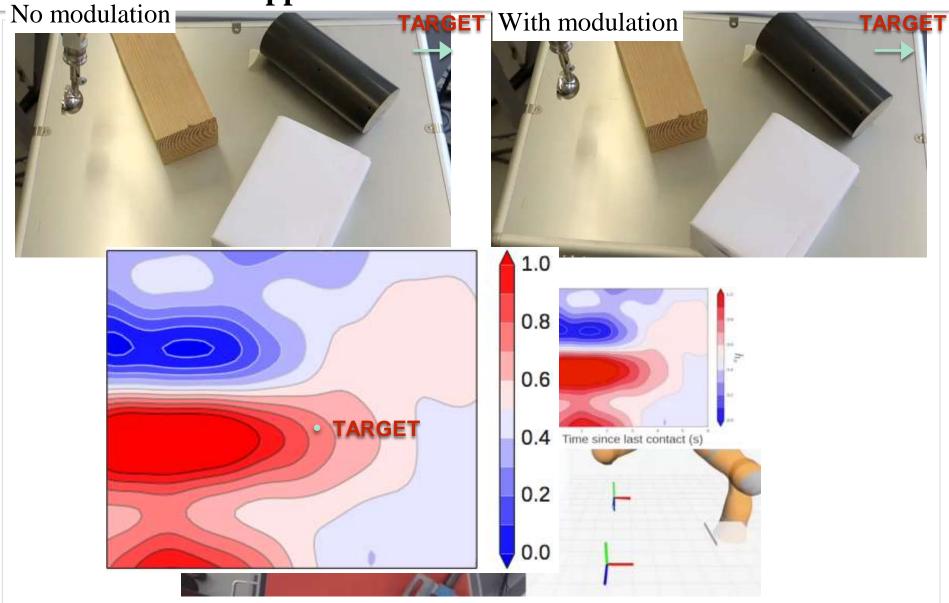


Application to obstacle avoidance



Learning and adaptive control for robots

Application to obstacle avoidance



Summary

- Introduced a closed-form modulation of DS
 - Active locally only
 - Can be activated through external input
 - o Can be designed to preserve stability properties of original DS
- The modulation can be learned from data
- The modulated system inherits DS properties:
 - o enables highly reactive motion
- Modulating a DS is advantageous:
 - Enables to shape a simple nominal (linear DS) to make it nonlinear
 - Well suited for learning from demonstration