
14

Exploring FPGA Switch-Blocks without
Explicitly Listing Connectivity Patterns

STEFAN NIKOLIĆ and PAOLO IENNE, École Polytechnique Fédérale de Lausanne, Switzerland

Increased lower metal resistance makes physical aspects of Field-Programmable Gate Array (FPGA)
switch-blocks more relevant than before. The need to navigate a design space where each individual
switch can have significant impact on the FPGA’s performance in turn makes automated switch-pattern
exploration techniques increasingly appealing. However, most existing exploration techniques have a
fundamental limitation—they use the CAD tools as a black box to evaluate the performance of explicitly
listed switch-patterns. Given the time needed to route a modern circuit on a single architecture, the number
of switch-patterns that can be explicitly tested quickly becomes negligible compared to the size of the design
space. This article presents a technique that removes this fundamental limitation by making the entire
design space visible to the router and letting it choose the switches to be added to the pattern, based on the
requirements of the circuits being routed. The key to preventing the router from selecting arbitrary switches
that would render the final pattern excessively large is to apply the same negotiation principle used by the
router to remove congestion, just in the opposite direction, to make the signals reach a consensus on which
switches are worthy of being included in the final switch-pattern.

CCS Concepts: • Hardware→ Programmable interconnect; Methodologies for EDA; Wire routing;

Additional Key Words and Phrases: FPGA, interconnect, switch, switch-block, switch-pattern, multiplexer,
automated exploration, optimization, design automation, algorithm, avalanche, PathFinder, router

ACM Reference format:

Stefan Nikolić and Paolo Ienne. 2024. Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity
Patterns. ACM Trans. Reconfig. Technol. Syst. 17, 1, Article 14 (February 2024), 39 pages.
https://doi.org/10.1145/3597417

1 WHY AUTOMATE SWITCH-PATTERN EXPLORATION?

When FPGA architecture research started to develop, considerable attention was given to the de-
sign of the switch-patterns used in programmable interconnect [1–3]. Typically, the goal was to
optimize some metric of routability (e.g., minimum channel width) while minimizing the number
of switches used. Most of the successful switch-patterns were invented and their effectiveness con-
firmed either experimentally [1], or by proving that they are optimal in a certain way [3]. Since
at the time the delays of connections implemented by the FPGA depended mostly on the number
of hops through the switch-blocks [4], with some notable exceptions [5], little care was given to
wiring inside the switch-block itself. Over time, a few switch-patterns emerged as dominant and
further research in the area subsided.

Authors’ address: S. Nikolić and P. Ienne, École polytechnique fédérale de Lausanne, School of Computer and Communi-
cation Sciences, CH-1015 Lausanne, Switzerland; emails: {stefan.nikolic, paolo.ienne}@epfl.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
1936-7406/2024/02-ART14 $15.00
https://doi.org/10.1145/3597417

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

https://orcid.org/0000-0002-6831-1740
https://orcid.org/0000-0002-6142-7345
https://doi.org/10.1145/3597417
https://doi.org/10.1145/3597417
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597417&domain=pdf&date_stamp=2024-02-12

14:2 S. Nikolić and P. Ienne

This has not been the case in industry, however. For instance, it has long been accepted in
academic research that the optimal fanout of all wires in a switch-block (switch-block flexibility

(Fs) [6]) is 3 [1]. It turns out that this largely underestimates the connectivity of more recent
industrial architectures, such as the 28 nm Xilinx 7-Series [7].

1.1 Troubles with Resistance

Most significant changes were brought by the latest fabrication technologies, however. For in-
stance, in the 10 nm Intel Agilex architecture, most switches are constrained to connecting wires
that start and end at the height of a single Adaptive Logic Module (ALM) [8]. This minimizes
the distances crossed at highly resistive low metal layers, which is crucial for allowing the new
architecture to achieve a significant performance increase, despite poor resistance scaling.

Each of the one-ALM-high planes contains at most two wires of each of the available lengths,
in each direction [8]. This means that creating permutation-defined switch-patterns, such as
Wilton [2], between two groups of wires of particular length is no longer even possible. Hence,
when revisiting the long-standing assumptions, it is important to go beyond reassessing which of
the major pattern families [9] or their variants [10] performs best in the scaled context.

1.2 Managing Complexity

Increased metal resistance in new technologies means that each particular switch could have
significantly different impact on the performance of the FPGA. However, significance of certain
connections that the switch-pattern must support depends on the topology of the circuits that
the architecture is intended for. Taking all these variables into account when designing a new
switch-pattern quickly becomes difficult for manual design. Furthermore, both silicon technology
and application domains continuously evolve, making it increasingly hard to develop intuition
and keep it up to date. Availability of automated exploration techniques that can take into account
all of the existing variables and constraints and easily adapt to future ones could thus be highly
important for designing next-generation FPGAs.

In this article—a significantly extended version of the original that appeared at the 31st Inter-
national Conference on Field-Programmable Logic and Applications (FPL) [11]—we introduce a
novel technique for automated switch-pattern exploration that overcomes the longstanding issue
of all prior ones: inefficient exploration of the search space based on using the routing algorithm
as a black box to assess the quality of individually listed solutions.

1.3 Scope of the Article

The goal of this article is not to suggest specific rules for constructing switch-patterns in a partic-
ular technology, such as that they should contain a certain number of switches between wires of
certain length. Rather, we propose a method that, given a fabrication technology and a set of target
circuits, could be used to automatically produce switch-patterns that will enable routing circuits of
the target set with low critical path delay. We provide ample evidence that the proposed method
is effective. For instance, we demonstrate that it can produce in 10 hours a switch-pattern that
outperforms the one produced by an alternative simulated-annealing-based approach in a com-
parable amount of time by close to 11% on geomean routed critical path delay. However, it must
be noted that its present implementation has certain limitations that make it difficult to use it for
designing interconnect for large FPGAs. As discussed at length in Section 15, the main reason is
its inability to scale up to circuit sizes that capture the trends of current industrial designs and
that would saturate the channel width of modern FPGAs [8]. Due to some orthogonal limitations
in modeling the delays of hard IPs [12], at the moment, we are also not able to target designs that
contain them.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:3

We strongly believe that these limitations are not fundamental and that they can be overcome.
The original PathFinder algorithm [13] would likely be unable to route large modern circuits in
reasonable time without subsequent enhancements such as lookaheads [14, 15] and incremental
rerouting [14, 16]. We believe that with certain enhancements (perhaps including those suggested
in Section 15), our method—entirely based on PathFinder—will also be able to cope with large
circuits. Until then, this article could be considered a proof of concept of a method that removes
what we believe to be the most fundamental barrier towards automating exploration of switch-
patterns. Constructing the exploration method around PathFinder—which is ultimately going to
use the switch-patterns that the method produces—also gives confidence about soundness of the
chosen heuristic. Nevertheless, as is often the case when designing heuristic algorithms, we cannot
give any guarantees about the optimality of the produced solutions. The method’s performance
can only be experimentally compared to the alternatives, which is what we do in this work.

2 ARTICLE OUTLINE

The rest of the article is organized as follows: In Section 3, we give a brief review of Island-Style

FPGAs [6] and negotiated-congestion routing [13], which form the background for the remainder of
the article. In Section 4, we review the previously proposed methods for automated switch-pattern
exploration and identify sources of their inefficiency in exploring the search space. In particular,
we argue that their main problem is explicit listing of solutions and using the router as a black
box to assess their performance. In Section 5, we proceed to briefly and intuitively introduce the
main idea of the article, which lets us overcome the aforementioned problems of the prior methods.
The proposed solution consists of (1) presenting the router with all switches that could possibly
be fabricated instead of just those that belong to some particular solution—this effectively allows
the router itself to design the switch-pattern—and (2) applying the negotiation mechanism in the
opposite direction to make the signals reach a consensus on the switch types that should enter the
final pattern. These two points are presented in more detail in Sections 7 and 8, respectively, after
the switch-pattern design problem has been formally introduced in Section 6. Some practical as-
pects of the algorithm are presented in Section 9, while first results of its application are presented
in Section 11. The algorithm is then compared in Section 13 with a simulated-annealing-based ap-
proach, inspired by prior work by Lin et al. [17]. In Section 14, we analyze different aspects of the
algorithm in an attempt to provide a better understanding of how it operates. Runtime is discussed
in detail in Section 15, followed by the final conclusions drawn in Section 16.

3 BACKGROUND

Before proceeding with introducing the main ideas of this work, we give a brief review of Island-
Style architecture and negotiated-congestion routing. Readers familiar with these concepts may
wish to skip this section.

3.1 Island-style Architecture

Figure 1 shows a portion of an Island-style FPGA. Conceptually, it consists of a regular grid of
logic clusters (CLBs), each composed of N LUTs, that are surrounded by routing channels made
up of prefabricated wires [6]. LUTs of a cluster can both take inputs from the channel wires and
drive them. This is accomplished by driving each wire by a multiplexer; some of its inputs are
provided by neighboring LUTs, while some are provided by other wires that end in its vicinity.
Conceptually, these multiplexers are assumed to be located at the intersection of a horizontal and
a vertical routing channel and are together, at one such intersection, said to form a switch-block. A
cluster and an adjacent switch-block together form a tile, which is replicated to construct an FPGA
grid. Hence, all switch-blocks throughout an FPGA are identical. In reality, wires are traced on top

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:4 S. Nikolić and P. Ienne

Fig. 1. Example of a simple Island-Style FPGA with a disjoint switch-pattern.

of the logic clusters and multiplexers of the switch-blocks are placed to their side [18]. This will
become relevant and explained in further detail in Section 6.

The switch-pattern used in all switch-blocks of Figure 1 is shown in its top-left corner. It describes
which channel wires can be connected together: a line connecting the head of a wireW i

I
to the tail

of a wireW o
I

means thatW i
I

can driveW o
I

; otherwise, there is no such posibility. In practice, this
means that one of the inputs to the multiplexer driving W o

I
is provided by W i

I
. However, we say

more generically that there exists a programmable switch between W i
I

and W o
I

. Since the switch-
pattern describes connectivity in all switch-blocks, we say that switch-blocks are instances of a
switch-pattern, or, in turn, that a switch-pattern specifies their type. Hence, we call a wire and a
switch in a switch-pattern a wire type and a switch type, respectively, while we call a wire and
a switch in one particular switch-block of a physical FPGA a wire instance and a switch instance,
respectively. This will be formalized further in Section 6.

3.2 Placement and Routing

In a step of the FPGA CAD flow called placement, LUTs of the circuit being implemented on an
FPGA are assigned a physical location on the FPGA grid [6]. Those LUTs that end up in the same
cluster are said to have been packed together. Sometimes, packing constitutes a separate step in
the CAD flow [16]. Once placement is complete, physical locations of both endpoints of every
edge of the circuit being implemented on an FPGA are known and fixed. It is the duty of the router

to connect these endpoints together by forming appropriate paths from wire instances connected
by switch instances. Paths implementing edges with different tail nodes (different nets) must not
intersect in a legal routing solution, as that would constitute a short circuit. When two or more
such paths do intersect on a wire u, u is said to be congested [6]. The number of different nets
using a wire u is typically called the occupancy of u, O (u) [6]. We can then express the magnitude
of congestion on u as C (u) = O (u) − 1, since every wire can legally carry one signal.

3.3 Negotiated-congestion Routing

Congestion negotiation was first introduced by McMurchie and Ebeling in their seminal ar-
ticle, which presented the PathFinder routing algorithm [13]. Likely the most popular open

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:5

ALGORITHM 1: Simplified PathFinder [6, 13]
Input: G = (V , E)—rr-graph, Ec ⊆ V ×V —all connections to be routed; Output: A routing tree of each signal

1: function congestion_cost(u, s) � computes the congestion cost of node u when routing signal s
2: if u ∈ RT (s) then return 0 � if u is already used by one connection of s , it can freely be used by another

3: return b (u) × (1 + pf ac ×O (u)) × (1 + hf ac ×Ch (u)) � otherwise, account for congestion

4: for u ∈ V do
5: O (u) = 0; Ch (u) = 0 � set occupancy and historical congestion of all nodes to 0
6: if (∃v ∈ V) ((u, v) ∈ Ec) then
7: RT (u) = {u } � initialize the routing tree of each signal

8: i = 0; pf ac = pinit
f ac

9: do
10: if i ≥ max_iter then return UNROUTABLE � no congestion-free routing was found in max_iter iterations

11: for s ∈ {u ∈ V : (∃v ∈ V) ((u, v) ∈ Ec) } do � all signals are ripped up and rerouted in each iteration;
12: � modern incremental routers deviate from this [16]
13: for u ∈ RT (s) do
14: O (u) = O (u) − 1 � reduce the occupancy of all nodes used by the signal s that is ripped up

15: RT (s) = {s }; O (s) = O (s) + 1 � rip up the signal
16: for t ∈ V : (s, t) ∈ Ec do
17: P = shortest_path(s, t, ∀u ∈ V : conд (u) = congestion_cost(u, s)) � (re)route the connection s → t
18: for u ∈ P do
19: if ¬(u ∈ RT (s)) then
20: O (u) = O (u) + 1 � increase the occupancy of all nodes not already used by the signal s

21: RT (s) = RT (s) ∪ P � add the connection route to the routing tree of s

22: for u ∈ V do
23: Ch (u) = Ch (u) +max(0, O (u) − 1) � update historical congestion

24: i = i + 1
25: pf ac = pf ac × pmul t

f ac
� increase the penalty of using occupied nodes; pmul t

f ac
> 1 (1.3 is default in VPR [16])

26: while ∃u ∈ V : O (u) > 1 � finish if there is no congestion
27: return ∀RT � return all routing trees

implementation of PathFinder is VPR, first developed by Betz and Rose [19], which introduced
several refinements to the original algorithm. Only a simplified review of congestion negotiation
is given in this section, focusing on aspects most relevant to this work. The reader should refer to
the works of McMurchie and Ebeling [13], Betz et al. [6], and Murray et al. [16] for an in-depth
discussion.

A negotiated-congestion router operates on the so called routing-resource graph (rr-graph).
In an rr-graph, each wire and each pin (endpoint of one of the circuit’s edges after placement) is
represented by a node, while each switch is represented by an edge [13]. A simplified version of
PathFinder is shown in Algorithm 1. The algorithm proceeds iteratively by routing all connections
of a circuit using the shortest path in the rr-graph between their respective endpoints (fixed during
placement). This is designated by the loop starting at line 11, while the shortest-path search itself
is performed on line 17. All signals are routed independently and hence their paths can intersect.
As mentioned before, this constitutes a short circuit and must be avoided. The key to this lies in
how PathFinder assigns costs to each rr-graph node. Namely, each node u has a base cost, b (u),
which determines how preferable it would be for any signal to use it, if congestion is entirely
ignored. There are many ways to compute b (u), some of which are discussed by Murray et al. [16].
This base cost is then multiplied by a product [6] of two additional costs: one directly related
to present occupancy, O (u) [13] and another directly related to historical congestion, Ch (u) [13].
Computation of this congestion cost is performed on line 3. Occupancy is updated on lines 14 and 20:
Whenever a signal’s routing tree is ripped up, occupancy of all of the nodes of the tree is reduced
by one; whenever an rr-graph node is added to a signal’s routing tree, its occupancy is increased
by one [6]. Finally, historical congestion of each node is updated on line 23 [6].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:6 S. Nikolić and P. Ienne

Because of the dependence of the cost of each node on its current occupancy, even though each
signal is routed independently, it is motivated to deviate from its preferred path as determined by
the base costs and avoid using the nodes already in use by other signals. Deviation from preferred
paths happens only gradually, however: initially, the present occupancy coefficient pf ac is made
very small [16] and increases exponentially with iterations (line 25); additionally, historical con-
gestion is zero at first, but gradually increases, driving signals away from repeatedly congested
areas [13]. Finally, to make the router timing driven, an additional term is added to the cost of
each node:

cost (u)
�
�
�
�
�(s,t)

= crit (s, t) × t (u) + (1 − crit (s, t)) × conд(u). (1)

Here, t (u) is the intrinsic delay of the node u, while crit (s, t) is the timing criticality of the con-
nection (s, t) of the circuit [13]. The first term attempts to route more critical connections through
faster wires, whereas for others, the second term dominates, causing them to release the congested
wires to the more critical connections.

4 INAPTNESS OF THE BLACK BOX APPROACH

In this section, we analyze some of the existing methods applied to exploring FPGA architectures
and identify their inefficiencies when applied to the problem of designing switch-patterns. Most
of the conclusions about what constitutes a good FPGA architecture reached in the past 30 years
came from applying a variant of the following approach:

(1) Select an architectural parameter p, the influence of which is to be assessed, and fix a range
P for it.

(2) For every value in P , create an architectural model with p taking that value, run the CAD
flow on a number of preselected benchmark circuits, and record some performance metrics
(e.g., critical path delay and area).

(3) Choose the value (or a value range) of p, which optimizes the performance metrics.

For instance, optimal ranges of Look-Up Table (LUT) [20] and cluster [21] sizes were discovered
in this manner. Given that LUT area increases exponentially with input count and that the size
of a crossbar with fixed sparsity increases roughly quadratically with cluster size, it is not sur-
prising that this parameter-sweeping approach was highly successful: Reasonable ranges of these
parameters are very small and can easily be exhaustively explored.

4.1 How Large Is the Switch-pattern Search Space?

To better illustrate why a brute-force exploration approach cannot be applied to designing switch-
patterns, let us first try to make a quick assessment of how large the search space for switch-
patterns could be. Let there be 10 wires exiting a switch-block from one side and 30 entering it on
the three remaining sides. Assuming that each multiplexer driving an exiting wire should be able

to select from 6 incoming wires, there are
(

30
6

)10
∼ 1057 ways to form the pattern. This includes

many pathological cases, where, e.g., some wires have no fanout, as well as isomorphic duplicates,
but, among the 10 wires per side, it is likely that most will be of different lengths or coming from
neighboring planes [8]. Such a large space clearly cannot be exhaustively explored. In fact, most of
the well-known switch-patterns from the past, such as Disjoint [1], Wilton [2], and Universal [3],
did not come from exploration at all, but from manual design. This is in stark contrast with the
aforementioned experiments that revealed, e.g., the optimal LUT size ranges.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:7

Fig. 2. An example of using the router as a “black box in the loop” to drive iterative switch-pattern improve-
ment. At each iteration, a modification of the switch-pattern is proposed and a complete architecture model
is generated. The performance metrics obtained from the router are used to decide on accepting the proposed
modification. (Based on an approach proposed by Lin et al. [17].)

4.2 Black Box in the Loop

A step towards more efficient exploration of the switch-pattern search space is to iteratively im-
prove a starting pattern based on postrouting performance metrics. This approach—illustrated in
Figure 2—has been successfully used by Lin et al. [17] and subsequently by Shi et al. [22]. Start-
ing from some, perhaps arbitrary, switch-pattern, a search engine—typically based on simulated
annealing—proposes a modification that is then evaluated by the router on a preselected set of
benchmark circuits. Performance metrics obtained from the router are then used to decide on
whether to accept the proposed modifications. While the exploration is no longer brute-force, it is
important to note that the algorithm still explicitly constructs a pattern and then uses the router as
a complete black box, merely to obtain the performance metrics. In this article, we argue that this
is, on one hand, a fundamental limitation and, on the other hand, completely unnecessary. Given
that routing a modern circuit even with a state-of-the-art router can easily take minutes, if not
hours [16], the number of modifications that can be evaluated in this manner is rather limited.

4.3 Proxy Oracles

To speed up the evaluation process, which is the bottleneck of the black-box-in-the-loop approach,
some authors have attempted to substitute the router for a proxy oracle that tries to predict the
score that the router would output, in a fraction of the time. An example of such an approach was
proposed by Petelin and Betz [23]. Although appealing, proxy oracles can only reduce exploration
time by a constant factor; evaluating each switch-pattern might be significantly faster, but the
number of switch-patterns that have to be explicitly listed to cover any sizeable fraction of the
search space remains prohibitively large. Another downside is that while it is possible to assess
how closely oracles mimic the router on a limited set of test architectures, it is difficult to claim that
they appropriately approximate the router for all architectures that may occur during the course
of the exploration. Failure to do so could silently lead the search astray.

An interesting approach to proxy design was also introduced by Lemieux and Lewis [24].
Namely, they first limited the set of switch-patterns to be explored to those that can be described
using permutation functions [24]. Then they conjectured that a certain characteristic of a switch-
pattern that can be quickly measured (diversity) has an important influence on its routability. In-
stead of optimizing the performance metrics obtained from the router or some proxy trying to
mimic it, they used this characteristic as the maximization objective. Given the fast computation
of the objective and a search space significantly reduced by the initial constraints, it was possible
to find solutions maximizing the chosen objective using randomized and even brute-force search.
While such an approach can help to understand which characteristics lead to highly routable
switch-patterns, proposing the characteristics is left to the human designer. Similarly, constrain-
ing the search space a priori can be very useful for allowing it to be searched in practice, but it
is often difficult to make sure that the imposed constraints do not exclude promising solutions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:8 S. Nikolić and P. Ienne

Fig. 3. Architecture of Figure 1, but with all possible switches between channel wires. One of the main
downsides of the disjoint switch-pattern identified in prior work was the lack of a possibility to switch
between different tracks in a channel [2]. If track changes are needed for implementing a circuit, the router
will be able to determine it in the architecture model that holds all possible switches.

For instance, permutation functions as defined by Lemieux and Lewis assume that each incoming
wire has exactly one target at each of the three remaining sides of the switch-block. However, some
newer industrial architectures do not meet this constraint [7].

Instead of proposing another method to bring down routing time and enable exploration of more
points of the search space, we propose a method that altogether removes the need to explore indi-
vidual points. While we believe that this is an important step towards scalable automated switch-
pattern design, as we have already mentioned, for the reasons discussed at length in Section 15,
the proposed method does not fully achieve this goal yet.

5 MAIN IDEA

Before diving into technical details, including a formal definition of the switch-pattern design
problem, let us first briefly explain the main idea behind the proposed approach.

5.1 Implicit Search Space Representation

The particular switch-pattern of Figure 1 is known as subset or disjoint [1]. Given this switch-
pattern, the shortest path through the channel wires that connects a source in tile (7, 13) to a sink
in tile (11, 15) could be the one depicted in red in the figure. Figure 3 shows the same portion of
almost the same simple FPGA architecture, with one major difference: Instead of the switch-blocks
containing switches corresponding to the disjoint switch-pattern, they contain all switches that
could potentially be fabricated. When routing the same signal from tile (7, 13) to tile (11, 15), it is
possible that the router discovers that changing tracks is beneficial to avoid congestion, as depicted
by the shortest path in the figure. Note that if the router sees all switches that could be fabricated,
then there is no need for a designer to guess that track changing is useful and construct a switch-
pattern that allows it, nor is there a need for some randomized exploration process to propose a
modification that enables track changes; the router itself can select the appropriate switches and
reap the benefits of track changing where they exist. In other words, presenting the router with
the entire search space embedded in the rr-graph lets it explore this space on its own, alleviating

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:9

Fig. 4. Illustration of definitions. A switch-block (SB) is defined at the level of one LUT in one tile. All switch-
blocks are identical, apart from those at the edges of a cluster, where inputs from neighboring tiles are
omitted.

the need to explicitly construct switch-patterns during automated exploration and thus removing
the aforementioned scalability issues.

5.2 Negotiating Switch Types

Without any constraints, the router is free to use different switch types in different switch-blocks,
while the switch-pattern that is fabricated must be common to all. Hence, it is crucial to be able to
find a minimal set of switch types that allows all connections to be appropriately realized in every
tile. In negotiated-congestion routers, evolving congestion costs allow the signals of a circuit to
negotiate which ones will deviate from their respective shortest paths and spread to less congested
wire instances (Section 3.3). As will be described in greater detail in Section 8, we use the same
principle of evolving costs, only applied in reverse, to allow the signals of a circuit to negotiate
which ones will deviate from their respective shortest paths and concentrate on a minimal set of
switch types that will enter the final pattern.

6 PROBLEM DEFINITION

Let us now precisely define the problem tackled in the rest of the article. Since our goal is
to design switch-patterns, we assume that the rest of the routing architecture—namely, the
connection-block, the intracluster interconnect, and the wires in the routing channels—is given
and fixed. We have already provided an informal definition of a switch-pattern and a switch-block
in Section 3. However, as we already mentioned there, instead of the channel wires surrounding
the logic clusters, they are actually traced above them [18]. This is illustrated in Figure 4; for the
sake of clarity, only horizontal wires going right are shown. In the most recent FPGA architectures,
designed for scaled technologies for which this work is the most relevant, channels are composed
in such a way that the same number of wires of the same length and direction start and end
in the vicinity of each LUT in a tile [8]. This is also illustrated in Figure 4, where next to each
LUT, wires H1Ra, H1Rb, and H2Ra start. These three wires, replicated at the height of every LUT
together with the corresponding ones running leftward, give a combined effective channel width

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:10 S. Nikolić and P. Ienne

OLDI A wire type with orientation O ∈ {H ,V }, standing for horizontal and vertical, respectively; length L ∈ N
corresponding to the number of tiles between its start and end; direction D ∈ {L,R,U ,D}, standing for left,

right, up, and down, respectively; and index I ∈ [a..z]. In Figure 4, H2Ra designates a horizontal wire going

two tiles to the right.

WTXxYyLl A wire instance of typeWT , starting at LUT l ∈ [0,N), in tile (x ,y). Constant N stands for cluster size. In

Figure 4, H2RaX17Y31L1 is a wire of type H2Ra, starting at LUT 1 of tile (17, 31).

(W i
I
→W o

I
) A switch instance providing a programmable connection between wire instancesW i

I
andW o

I
. In Figure 4,

(H1RaX18Y31L4→ H1RbX19Y31L3) provides a connection from the end of the H1Ra wire starting at LUT 4

of tile (18, 31) and the H1Rb wire starting at LUT 3 of tile (19, 31).

(W i
T
→W o

T
,d (l i , lo)) A switch type providing a connection between wires of typeW i

T
andW o

T
, with the distance between their

LUTs equal to d (l i , lo). In Figure 4, (H1Ra→ H1Rb, -1) is the switch type of the previous switch instance

example.

SB (x ,y, l) Switch-block. The set of all switch instances driven by wire instances ending at LUT l of tile (x ,y). The

switch-block for (x ,y, l) = (19, 31, 3) is indicated in Figure 4.

SP (x ,y, l) Local switch-pattern. SP (x ,y, l) = {(W i
T
→W o

T
, lo − l i) : (WTXxYyLl

i →WTXxYyLl
o) ∈ SB (x ,y, l)}.

V A set of available wire types.

E = V ×V × (−N ,N) A set of all switch types that could exist in any local switch-pattern. Constant N stands for cluster size.

of 8 × 2 × (1 + 1 + 2) = 64—same as if the horizontal channel was composed of 16 H1R and 8 H2R
wires specified under “Monolithic indexing.”

In such an architecture, each wire type can be defined by its length, direction, and index within
the LUT-height (plane). Then, each wire instance can be defined by specifying its type along with
coordinates of the tile and index of the LUT at which it originates. Similarly, a switch type can be
defined by specifying the types of wires that it connects, along with the offset between their respec-
tive LUTs. Since, in scaled technologies, loading wires at non-terminal tiles damages performance
too much and is thus no longer practiced [8], there is no need to specify the offset between the
origin tiles of the two wires connected by a switch type—it is assumed in the length and direction
of the driving wire.

This way of defining switch-patterns is very practical, since due to high resistance of lower
layers of metal in scaled technologies, it is not feasible for switches to span a large number of
LUTs. Let us now formalize these concepts that we draw from the bundles and planes of Agilex [8]
by introducing some notation that we will use throughout the article:

Definition 1 (Switch-Pattern). Ea ⊆ E, such that for each (x ,y, l) in the FPGA, SP (x ,y, l) = Ea .

Definition 2 (Usage, Denoted as U (e)). The number of switch-blocks in the FPGA in which the
switch type e is used to route at least one connection of the given circuit.

Now, we can define the problem itself:

Task 1 (Switch-pattern Exploration). Given a set of switch types E and a set of circuits of interest
C , find the switch pattern Ea ⊆ E, such that all circuits in C can be routed and their critical path
delays minimized.

7 BASIC ALGORITHM

As mentioned in Section 5, our proposed method relies on implicitly representing the entire switch-
pattern search space by embedding it in the rr-graph. It then simply observes the usage statistics
of the different switch types across all switch-blocks and in all circuits used in exploration and
constructs the pattern from the most-used ones. This is more precisely defined by Algorithm 2. All
switch types that can be fabricated are added to the rr-graph on line 1. Initially, the switch-pattern
Ea is empty and all switch types are allowed to enter it (line 2). The algorithm then proceeds
iteratively, first routing the benchmark circuits chosen for the exploration using PathFinder on

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:11

line 4 (see Algorithm 1) and then adding to the pattern on line 6 all of the switch types with usage
1/θ of the maximum over all that are not already in the pattern. Here, the adoption threshold, θ ,
is a parameter. Upon growing the switch-pattern, costs of all added switch types are reset to 0 on
line 7, because once a switch type has been marked for fabrication, it can be used by the router for
free in subsequent iterations of the algorithm—using it no longer implies any increase in pattern
size. The algorithm stops when the router no longer uses any switch types that are not already
in the pattern. We note here that once a switch type enters the pattern, it is never removed from
it. It may be beneficial to revisit this in future work, but it guarantees that the algorithm always
converges: In the worst case, all possible switch types are taken (Ea = E). Preventing this situation
will be the main focus of the next section. We first further discuss the algorithm’s general structure.

7.1 Benefits of Iteration

In principle, usage statistics obtained from a single run of the router could already provide valuable
information about which switch types would be useful in the switch-pattern. In fact, prior research
has successfully relied on usage to design novel interconnect architectures [25]. Nevertheless, there
are two important benefits of progressively growing the switch-pattern. First, after each run of the
router, some switch types will have a significantly higher usage than others and can thus be clearly
deemed useful. An example of this is illustrated by the orange curve of Figure 7. Once these switch
types are adopted at a lower cost (note the small initial cost used on line 1 to distinguish switch
types not yet in the pattern), though, it may happen that more signals will use them instead of other
switch types, thus leading to minimization of the entire pattern. Second, in between iterations,
physical optimization of the switch-block can be performed by changing the positions of different
multiplexers, depending on which switch types were added to the pattern. Similarly, up-to-date
implications on delay and area increase of choosing each switch type can be presented to the router
in the subsequent iterations. We will discuss this in more detail in Section 9.1.2.

7.2 Shortcomings of Uncompressed Usage Statistics

The idea of constructing the switch-pattern from the post-routing usage statistics relies on the
intuition that the router itself will be able to best determine which switch types are useful for
routing the given circuits. However, since it greedily routes each connection of the circuit using
a shortest path in the rr-graph (line 17 of Algorithm 1), independent of others, by default, it has
no incentive to maximize the number of common switch types between the routes of different
nets, which would lead to minimizing the switch-pattern size. Before suggesting a remedy to this
problem, let us first illustrate it on an example. Figure 5 depicts three different nets being routed
through three different switch-blocks (note the different tile coordinates). As all three nets can
arbitrarily choose the switch instances they take, for they all seem equally good, it is possible that

ALGORITHM 2: Simple Greedy
Input: θ ∈ R+—switch adoption threshold; Output: switch-pattern

1: Add all e ∈ E to the rr-graph at cost ε ∈ R+ � represent in the rr-graph all switch types that can be fabricated
2: Ea = { }, Ep = E � at the beginning, no switch type is in the pattern to be fabricated
3: do
4: Route the chosen benchmark circuits
5: Umax =max ({U (e) : e ∈ Ep }) � find the maximum usage among all switch types not yet in the pattern
6: Ea = Ea ∪ {e ∈ Ep : U (e) ≥ Umax /θ } � extend the pattern by all switch types with usage ≥ 1/θ of the max.
7: Set cost of all e ∈ Ea to 0 � switch types already in the pattern can be used for free in subsequent iterations
8: Ep = E \ Ea � switch types already in the pattern cannot be added again
9: while ∃e ∈ Ep : U (e) > 0 � if the router used only switch types already in the pattern, stop

10: return Ea

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:12 S. Nikolić and P. Ienne

Fig. 5. An example of usage spreading over multiple switch types. Colored arrows mark the paths chosen
by the router for three different nets passing through three different switch-blocks in three different regions
of the FPGA. Each net uses an instance of a switch of a different type, even though this may not have been
necessary. As a result, a switch-pattern common to all three switch-blocks would need to contain all three
switch types even if one would have sufficed.

Fig. 6. Inversely relating switch instance cost to its type’s usage across all switch-blocks motivates nets to
concentrate on the same switch types. Current usage of each switch type at the time of routing of each net
is depicted next to the corresponding edge.

usage is spread equally among the three switch types. On arriving at line 6, Algorithm 2 has to
accept all of them. In other words, there is no way to know if all three switch types are essential for
routing the circuit, or the router used all of them equally often simply because it had no incentive
to do otherwise.

8 TURNING PATHFINDER UPSIDE-DOWN

In this section, we introduce a remedy to the above problem: using the principles of congestion

negotiation [13] to make the nets reach a consensus on which switch types are really important
for routing a given circuit.

8.1 Avalanche Costs

Figure 6 shows the same routing process as Figure 5 with one important difference: Switch in-
stance costs are no longer constant, but inversely related to their type’s usage, indicated on the
corresponding edge. For the first net that is routed, nothing changes: It still sees the same cost
at all three switch instances and freely chooses one of them. The second net, however, sees the
switch instance of the type already used by the first net as cheaper, due to the inverse relationship
between cost and usage. Hence, it is inclined to choose that same switch type. By the time the
router starts processing the third net, the relative cost of (H2Rb→H2Ra, +0) becomes still smaller,
so it is even more inclined to use it. In subsequent iterations, the router will rip up and reroute
nets, leading some of them to choose switch types that have in the meantime become cheaper than
the ones they chose in the previous iterations when the cost differences among switch types may
have not been as pronounced. This will create an avalanche effect, where the positive feedback
keeps reducing the cost of switch types with large usage, increasing their usage even more. Thus,
the evolving costs enable the nets to reach a consensus on which switch types are important for
implementing the given circuit.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:13

Fig. 7. Concentration effect achieved by the avalanche costs. Usage of the 100 most used switch types, out
of the 564 available in one particular experiment, is shown for the case when avalanche costs are enabled
and disabled, respectively. The area under the two curves is not identical, as switch type concentration also
changes the total number of wires used for routing.

Fig. 8. Too much concentration on switch types can lead to congestion on wire instances. As the cost of
using occupied wires (indicated byO > 0) rises over time (through exponential increase of pf ac [6]), at some
point, a net will choose a less-used switch type. Eventually, the two effects balance out, producing a legal
routing with a minimized number of switch types.

Figure 7 shows a concrete example of how the avalanche costs concentrate bulk of the usage in
a limited subset of the available switch types, suppressing the long tail of others with moderate
and low usage. It is interesting to note that if, for example, the cost of the switch type (H1La →
H1Lb,+0) drops significantly below the cost of (H2La→H2La,+0), then more noncritical nets may
choose to use four H1L wires instead of two H2La wires, thus increasing the total usage compared
to the situation where the cost differences did not exist. This effect causes the area under the blue
curve of Figure 7 to be larger than that under the orange curve.

8.2 Negotiating Both Congestion and Switch Presence

In Section 3.3, we have seen that PathFinder gradually increases the cost of congested wire in-

stances, pushing the nets towards a consensus on which ones will deviate from their desired paths,
to spread congestion to other wires and eventually eliminate it [13]—making the same instance

choices as other nets is penalized.
Inversely relating the cost of switch types to usage in avalanche costs makes the principle act

in the opposite direction, causing a consensus on concentration, instead of spreading—making the
same type choices as other nets is rewarded.

Let us see through the example of Figure 8 how these two directions of the same princi-
ple naturally act together. At routing iteration i, net 3 may choose to take the switch instance

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:14 S. Nikolić and P. Ienne

(H2RbX7Y13L1→ H2RaX9Y13L1), as it is cheaper because its type, (H2Rb→ H2Ra, +0), is already
used by net 1. This causes congestion on wire H2RaX9Y13L1 already in use by net 2. However, in the
subsequent iteration,pf ac will be increased by a factor ofpmult

f ac
> 1 (line 25 of Algorithm 1), in turn

increasing the cost of congestion on any wire instance (line 3 of Algorithm 1). Hence, even though
the switch instance (H2RbX7Y13L1 → H2RaX9Y13L1) will still be cheaper than (H2RbX7Y13L1
→ H2RbX9Y13L1) in the next iteration, the router will choose the latter to avoid congestion on
H2RaX9Y13L1.

8.2.1 Can Congestion Elimination Be Guaranteed? To guarantee that avalanche costs will never
prevent congestion resolution, we must ensure that this tipping point when penalization of con-
gestion on wire instances surpasses the reward of concentration on switch types always occurs.
Given that congestion penalization is not bounded from above, due to the exponential increase
of pf ac (line 25 of Algorithm 1), it suffices to ensure that the difference between the maximum
and the minimum switch instance cost (which constitutes the maximum switch type concentra-
tion reward) is bounded. As we will see in Section 8.3, we make the maximum switch instance
cost—corresponding to unused switch types—constant, while we prohibit the avalanche costs from
dropping below zero. Hence, the above requirement is satisfied and avalanche costs do not prevent
congestion from being eliminated, though they may increase the number of iterations (line 9 of
Algorithm 1) needed to achieve this. Further details on this problem will be provided in Section 15).

8.2.2 Is Congestion Elimination Always Necessary? When PathFinder is being used for imple-
menting a circuit on an existing FPGA (its usual intended use), it is necessary to eliminate all
congestion—otherwise, the routing is illegal. However, here, we are not using PathFinder to imple-
ment a circuit on an existing FPGA but to design a new switch-pattern by observing which switch
types are most useful for routing the circuits selected for the exploration. This may become ap-
parent long before congestion is fully eliminated. Especially in the early iterations of Algorithm 2,
switch types that once surpass the adoption threshold are unlikely to drop below it again. As dis-
cussed further in Section 15, stopping PathFinder at this point could be used to greatly speed up
the exploration process.

8.3 Functional Form of Avalanche Costs

As discussed in Section 8.1, avalanche costs should be high for switch types that are unused and
drop in proportion with usage of the particular type. Additionally, not to prevent congestion res-
olution, they must be bounded from both below and above. To satisfy these criteria, we use a
functional form similar to congestion costs of PathFinder (Section 3.3):

a(u) =max (0, s (u) − (ap ×U (u) + ah ×Uh (u))). (2)

The s (u) term in Equation (2) is the starting cost assigned to the given switch type, which is also
its maximum cost. Parameter ap determines how quickly the avalanche cost drops as a function of
the current usage of the switch type,U (u), while ah determines how quickly it drops as a function
of its cumulative historical usage, Uh (u).

Usage tracking is completely analogous to occupancy tracking of Section 3, andU (u) is updated
each time a net is routed (lines 14 and 20 of Algorithm 1). Similarly, historical usage tracking is
completely analogous to historical congestion tracking, and Uh (u) is updated at the end of each
routing iteration (line 23 of Algorithm 1). The main difference, however, is that unlike the occu-
pancy trackers that are bound to individual nodes of the rr-graph (individual wire instances), the
usage trackersU (u) andUh (u) are shared between all nodes representing instances of switches of
the same type. This allows for communicating switch type choices to nets using entirely different

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:15

switch-blocks (Figure 6) and eventually reaching a consensus on which switch types will enter the
pattern that is common to them all.

We note here that there are many other functions that would satisfy the requirement of
avalanche costs dropping in proportion with switch type usage and being bounded from both sides.
Adding together the present and historical usage terms as in Equation (2) has a benefit of providing
a relatively easy way of tuning the coefficients. This will be discussed in Section 14.1. It also has
a downside, compared to the analogous product used in the congestion costs of PathFinder: The
historical term quickly dominates. This may lead to a reduced capacity for driving nets to common
switch types. Aside from multiplying the two terms or making ap
 aq , a possible remedy for this
could be to update the historical usage using an exponential decay, giving higher importance to
more recent history. Nevertheless, investigating the effectiveness of functional forms other than
the one of Equation (2) goes beyond the scope of the present work.

8.4 A Note on Implementation

Most implementations of PathFinder, including the one in VTR-8 [16] that we use in this work,
assign weights only to the nodes of the rr-graph. To retain the existing data structures, we simply
split each edge that represents a potential switch instance by an additional node and assign the
appropriate avalanche cost to this node. In particular, we compute the congestion cost of these
virtual nodes as follows:

conд(u) = b (u) = a(u). (3)

Splitting edges with additional nodes doubles the total edge count in the rr-graph and drastically
increases its node count. As will be discussed in Section 15, this has a significant impact on the
exploration time. However, implementational effort needed to adapt VTR’s algorithms to accept
both node and edge weights went beyond the scope of this work.

8.5 Respecting the Critical Paths

A good switch-pattern must enable the router to properly optimize the critical path of each cir-
cuit of interest. Hence, during the pattern search, critical connections must be able to route even
through switch types with otherwise low usage. Critical path delay of a typical circuit is on the
order of 10−9. In our experiments, we have determined that the starting avalanche cost is best set
to the same order, or larger, even up to 10−7. Under those circumstances, linearly scaling avalanche
costs by (1−crit), like congestion costs in Equation (1), would not give enough freedom to the crit-
ical paths to choose switch types with low usage; switch cost variations would simply overshadow
the timing optimization.

Another problem with linear scaling is that somewhat critical (e.g., criticality 0.5) nets are given
unfair advantage in choosing switches compared to nets that are just slightly less critical. While
exponentiating the criticality can help mitigate this second problem, it further worsens the first,
as shown by the blue, orange, and green curves of Figure 9.

To provide a solution to both problems, we designed a function represented by the red curve of
Figure 9. The curve shows a relatively wide, flat range of very small values close to criticality of 1,
which allows for the critical paths to actually be optimized. At the same time, there is a steep rise
in the value of the function as criticality drops, which prevents the nets with comparatively low
criticality from unnecessarily increasing the number of used switch types.

The combined timing and avalanche cost assigned to a node splitting an edge that represents a
potential switch is

cost (u)
�
�
�
�
�(i, j)

= t (u) + e

(
ln (sc /s)

max _cr it β
×cr it (i, j)β

)
× a(u). (4)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:16 S. Nikolić and P. Ienne

Fig. 9. Comparison of functions for criticality-scaling of avalanche costs (generalizations of Equation (1)).
The proposed function of Equation (4) (solid red line) allows for precise tuning of the avalanche cost that
the most critical nets perceive, so the timing requirements are sufficient to motivate them to use switch
types with otherwise low usage. It also creates a relatively flat region of low avalanche cost for a wider range
of high criticalities, necessary for actually optimizing the critical path delay, given that the timing analysis
during routing is done only infrequently. A relatively steep rise in cost ensues once the criticality drops bellow
the cut-off point, which is needed to discourage noncritical nets from increasing the switch-pattern size. The
function of Equation (1) and its exponentiated versions [16] lack these features (dashed lines).

Here, sc is a parameter determining the perceived avalanche cost of a potential switch when rout-
ing the most critical possible net, with criticalitymax_crit (a standard parameter of VPR [16]), and
β is a criticality exponent used to tune the selectivity of the function. Approximate delay contribu-
tion of the switch to the wire that is driving it is represented by the term t (u), modeled as described
in Section 9.1. We do not scale it by criticality of the net being routed, because all nets—regardless
of their criticality—should be aware of the implications of including a switch type in the pattern.

9 COMPLETING THE ALGORITHM

The complete algorithm is almost identical to Algorithm 2, apart from the fact that routing on
line 4 is performed using a modified version of VTR 8 [16], which incorporates the avalanche
costs of Section 8. Another difference is that if there are switch types that got their avalanche cost
reduced to zero in the current iteration, then all of them are selected and the usage-threshold-based
selection of line 6 is skipped. Nodes representing instances of the selected switch types are removed
from the rr-graph and their neighbors are connected directly. This is conceptually equivalent to
resetting their costs to 0 (line 7) but has a practical benefit of reducing the size of the rr-graph.

9.1 Conveying Physical Information

Apart from the delays of the routing wires, necessary for proper timing optimization, the router
must be aware of the implications on the architecture’s performance of using switches of a type
that is not yet in the pattern. Before each iteration of the algorithm, we run a physical modeling
and optimization flow to provide this data for the modified switch-pattern. The impact that using
each potential switch has on performance generally depends on which other potential switches are
also used. However, if the adoption threshold θ (Section 7) is sufficiently small to prevent adoption
of too many switches between reevaluations of the physical model of the switch-block, then the
simple approach of only informing the router about the impact of each switch in isolation, through
the t (u) term of Equation (4), should suffice.

9.1.1 Modeling Flow. To extract delays of the channel wires, we rely on a modeling flow de-
veloped in our previous work [12]. The flow assumes a floorplan similar to that of the Stratix
FPGAs [18], where LUTs are stacked on top of each other, while the routing multiplexers are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:17

Fig. 10. Floorplan construction. Not drawn to scale.

arranged in columns padded to their left. Figure 10 depicts one such floorplan. The crossbar mul-
tiplexers are placed immediately next to the LUTs, followed by the connection-block multiplexers,
and then finally the switch-block ones. Each multiplexer column is filled from the bottom up, until
its height matches the height of the adjacent LUT. Only then a new column is started. Placement
of multiplexers next to each LUT is identical.

9.1.2 Multiplexer Position Optimization. Precise positions of all multiplexers allow for accurate
modeling of intra-switch-block wiring (depicted in blue in Figure 10, for one source channel wire),
which in turn allows for correctly taking into account the influence of this wiring on the delay
of the channel wires. However, as the pattern evolves during the course of the avalanche search,
positions of multiplexers in the tile floorplan may become suboptimal. In our previous work, mul-
tiplexers were stacked in a fixed order, derived from their input count [12]. Now, we adapt the
order to the changing connectivity by performing a quick anneal of the stacking order. All moves
represent swaps of two randomly selected multiplexers in the order, upon which a new floorplan is
generated. For the cost function, we use a combination of the total intra-switch-block wirelength
and a timing cost computed as a product of approximate routing wire delay and its exponentiated
criticality extracted from the last routing run, summed over all routing wires. This cost function
was adopted from VPR’s timing-driven placer [26]. During multiplexer position optimization and
routing wire delay measurement, only those switch types that have already been adopted to the
final switch-pattern are considered.

Routing wire delays reported to the router for the next iteration of the pattern search are ob-
tained directly from SPICE simulations [12]. However, annealing uses approximate delays obtained
from a polynomial fitted to a set of SPICE simulations, which relates the total length of the intra-
switch-block wiring that a routing wire drives to the increase in its delay. Output of the same
model is used to set the timing costs of the potential switches during routing.

9.2 Preventing Overspecialization

To prevent the resulting pattern from being specialized to a particular placement, we replace the
circuits using a different placement seed at the start of each iteration of the search algorithm (just
before line 4 of Algorithm 2).

Line 4 of Algorithm 2 does not specify how multiple circuits are routed before measuring the
usage statistics needed for deciding which switch types are added to the pattern. Two possible

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:18 S. Nikolić and P. Ienne

Fig. 11. To enable joint negotiation of switch-presence among multiple circuits, we route them
simultaneously.

ways of doing this will be presented in detail in subsequent sections. Namely, in Section 12, a
switch-pattern is first obtained by performing the exploration on a set of circuits C1 and is then
used as a starting point for a continued exploration on a set of circuits C2. This can be highly
beneficial to reducing the runtime of exploration on large circuits, as discussed later, but it has
a downside of giving preference to circuits from C1 in deciding which switch types should enter
the pattern. An alternative approach, presented in Section 14.2, is to route multiple circuits inde-
pendently in parallel on line 4, combining the usage statistics observed on each of them before
proceeding to switch type selection. While this avoids the problem of a priori favoring one set
of circuits, it suffers from the usage spreading problem of Figure 5: introducing avalanche costs
enabled nets passing through switch-blocks in different regions of the FPGA to negotiate which
common switch types they will use; however, if the three nets in the example of Figure 5 belong
to three independently routed circuits, then this negotiation is no longer possible and they may
again end up using different switch types even if a common one would have sufficed.

Note that these problems do not exist in the black-box-in-the-loop approach (Section 4), since
in that case all circuits are routed on one and the same switch-pattern. To prevent the problems
in the context of avalanche search as well, here, we simply route multiple circuits simultaneously,
allowing their nets to jointly negotiate the presence of different switch types. The implementa-
tional details of this are illustrated in Figure 11. First, each circuit used in the exploration is packed
and placed independently on the smallest FPGA that can fit it, as determined by VPR [6], with
its logical width and height adjusted to make the physical ones roughly equal [12]. Then, a new
large FPGA is created, so its height equals the maximum height of all individual FPGAs and its
width equals the sum of the widths of all individual FPGAs. The smaller individual FPGAs are
placed on this larger one, much like if it were a passive interposer, but without any connections
between dies. The packing and placement of each circuit are transferred to their respective iso-
lated region on the new FPGA and assigned their own set of clock domains. The netlists are then
merged and routed simultaneously, allowing them to share avalanche costs. Since different circuits
are placed in isolated regions with no connectivity between them, nets of one circuit cannot cause

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:19

Table 1. Properties of the Different Patterns; Manual and Manual Annealed Will Be
Discussed in Section 13

avalanche greedy truncated greedy manual [12] manual annealed
#iterations 36 228 54 10,000 moves
#switch types 78 438 78 180 210
average→ fi fo t[ps] fi fo t[ps] fi fo t[ps] fi fo t[ps] fi fo t[ps]
H1 5 3 13.9 31 25 23.1 6 3 13.2 10 10 16.0 13 13 19.6
H2 5 4 16.8 28 28 31.6 5 5 18.1 11 11 21.3 14 11 24.1
H4 4 7 27.4 21 27 43.2 4 6 25.7 11 11 30.8 16 12 32.1
H6 5 5 35.7 19 25 59.6 2 6 35.7 11 11 43.1 9 13 47.3
V1 7 6 21.8 38 31 35.5 8 7 22.1 12 12 24.6 14 15 29.2
V4 2 5 70.1 12 27 97.5 1 4 67.0 13 13 74.3 13 15 86.8
W(tile) 6,792 nm 8,904 nm 6,816 nm 7,464 nm 7,488 nm
CPD 1.38 ns 1.71 ns 1.38 ns 1.46 ns 1.55 ns

congestion in others. Similarly, since each clock domain is individually optimized, timing charac-
teristics of each circuit are preserved.

10 EXPERIMENTAL SETUP

All experiments are performed on an architecture with eight 6-LUTs in the cluster and a channel
composition reminiscent of that of Agilex, but for the longest wires [8]: 2×H1, H2, H4, H6, 2×V1,
V4. These wires are repeated for each LUT of the cluster, leading to an equivalent width of a
horizontal channel equal to 2× 8× (1+ 1+ 2+ 4+ 6) = 224 and an equivalent width of the vertical
channel equal to 2×8× (1+1+4) = 96. As mentioned in Section 6, wires are only allowed to drive
other wires from their end tile. Without loss of generality, we consider only switch types with
LUT offset ∈ {−1, 0, 1} (Section 6) and prohibit switch types to a target wire going in the direction
from which the driving one came [7]. This results in 564 available switch types. The connection-
blocks and crossbars generated by the physical modeling flow are kept constant in all experiments,
while delays are extracted from a 4-nm technology model [12]. Avalanche parameters are set as
described in Section 14.1.

11 EFFECTIVENESS OF AVALANCHE COSTS

In this section, we assess the effectiveness of the proposed avalanche search method against the
simple greedy algorithm of Section 7. Instead of introducing explicit ε costs without a physical
meaning to the greedy algorithm, we use the timing costs of the switches equally visible to all
nets, regardless of criticality (Equation (4)). Search was performed by simultaneously routing the
alu4, ex5p, and tseng circuits. The switch adoption threshold θ was set to 1.1 for both algorithms.
Final assessment of performance was done on all MCNC circuits, but for the pin-bound dsip, des,
and bigkey. We note that the results reported here differ slightly from the ones reported in the
original paper [11], because in the original paper, periodic rip-up did not affect all uncongested
connections, leading to some missed opportunities for increased concentration. With periodic rip-
up fully enabled (Section 15.3), a more compact pattern with better delay was obtained, at the
expense of lower routability. This will be addressed in Section 12.

11.1 Direct Comparison with Greedy

Avalanche search converged after 36 iterations, accumulating 78 switch types, while greedy search
converged only after 228 iterations, accepting 438 switch types (Table 1). This demonstrates that
projected delay contributions of individual switch types alone are insufficient to deter the router
from using them. The large number of switch types in the greedy pattern resulted in both a large
increase of the tile width and the average fanin and fanout of channel wires. This in turn led to a
large increase of average wire delays and the routed critical path delay (Table 1).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:20 S. Nikolić and P. Ienne

Fig. 12. Adjacency of wire types: avalanche (a) and truncated greedy (b). Entries with no number are prohib-
ited by construction. Rows correspond to drivers and columns to targets.

11.2 Comparison with Truncated Greedy

To better assess the differences in the choices made by the two search methods, we truncated the
greedy pattern after the 54th iteration when the pattern also contained 78 switch types. The exact
distribution of fanouts and fanins enables a tighter packing of the multiplexers of the avalanche
pattern, leading to a slightly lower tile width. Fanouts and fanins still predominantly determine
the wire delays, however, which are very close between the two patterns and, on average, slightly
lower for the truncated greedy (Table 1).

11.2.1 Adjacency. Adjacency between different wire types is illustrated in Figure 12. Avalanche
search resulted in more varied connectivity between wire types of different lengths. This can be
seen by observing that, e.g., the fanouts of H1Ra and H1Rb are complementary in the avalanche
pattern, whereas they have two switch types in common in the truncated greedy. Similarly, fanouts
of V1Ua and V1Ub share three switch types in the avalanche pattern, whereas they share eight out
of nine switch types in the greedy pattern. This suggests that the greedy search selects multiple
switch types between the same lengths of wires, commonly connected by the router, where only
a subset of them would suffice. As a result, with the same number of switch types, fewer different
wire lengths can be connected.

11.2.2 Grid Distances. Consequences of selecting multiple switch types between the same wire
lengths, instead of introducing more variety, can be seen in Figure 13. Each entry of the matrices
represents the minimum number of distinct channel wires needed to connect the center of the
grid to the particular target, normalized by the minimum number of wires that would be needed
if all switch types were available in the pattern. The avalanche pattern is closer to being optimal
in this respect. This is also reflected on the minimum delay distances, relative to an unrealistic
fully connected pattern that disregards the impact of switch load on wire delay (Figure 14). The
relative inefficiency in connecting to the distant targets at the bottom of the grid was influenced
by performing the search on small circuits requiring very small FPGAs. In a production setting,
larger circuits should be used. We will discuss this further in Section 14.5.2.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:21

Fig. 13. Hop-distances from the center of the FPGA to other tiles, normalized by the distances computed on
a pattern containing all allowed switch types. Dark green is best.

Fig. 14. Percentage increase of the delay needed to reach other tiles from the center, compared to a hypo-
thetical switch-pattern containing all allowed switch types with no impact on wire delay. Dark blue is best.

11.2.3 Routed Delays. Despite the qualitative differences between the avalanche and the trun-
cated greedy pattern, they are largely equivalent in terms of the routed critical path delays
(Figure 15). This could be due to the MCNC circuits imposing low stress on the routing archi-
tecture, making it easy to meet timing requirements. Another reason could lie in their large logic
depth, which, combined with oversimplified intracluster interconnect [8], may make the delays
inside the cluster dominant.

11.2.4 Routability. To see how the two patterns compare under increased stress, we generate
10 synthetic circuits with about 10,000 LUTs using Gnl [27]. The Rent’s exponent was set to 0.7—
the maximum used in the ISPD’16 routability driven placement contest [28]. We take the distribu-
tion of different LUT sizes in the circuits from Hutton et al. [29]. Then, we place the circuits on

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:22 S. Nikolić and P. Ienne

Fig. 15. Routed delays for the avalanche and the truncated greedy pattern.

Table 2. Percentage of Congested rr-graph Nodes after 300 VPR Routing Iterations on Gnl Circuits

circuit 1 2 3 4 5 6 7 8 9 10
avalanche 0.906% 0.274% 0% 0.521% 0.323% 0.187% 0.149% 0.262% 0.040% 0.002%
trunc. greedy 1.061% 0.632% 0.484% 1.340% 0.597% 1.175% 0.982% 0.509% 0.275% 0.984%

Table 3. Number of VPR Iterations Needed to Route Each of the 10 Gnl Circuits

circuit 1 2 3 4 5 6 7 8 9 10
Gnl-extended avalanche 142 61 27 106 26 55 46 55 30 82

architectures based on the two switch-patterns and attempt to route them with a limit of 300 iter-
ations. We neglect timing optimization, since the circuits are synthetic.

Table 2 shows the percentage of congested rr-graph nodes at the end of the 300 routing iterations
for each circuit. The pattern obtained through avalanche search managed to legally route one of the
10 circuits, while no circuit was routable on the greedy pattern. The difference in the percentage of
remaining congested nodes also showcases the higher routability of the switch-pattern obtained
through avalanche search. Nevertheless, not being able to route 9 out of 10 circuits is not acceptable
for any meaningful pattern. We describe a remedy to this in the next section.

12 MULTI-STAGE SEARCH

In Section 11.2.4, we have seen that searching for a pattern on a set of benchmark circuits that
has a lower connectivity demand than some circuits for which the final architecture is intended
can result in those more complex circuits failing to route. However, switch types needed by the
simpler circuits are most likely also needed by the more complex ones. Hence, running the search
on the smaller circuits first and using the resulting pattern to initialize the search on more complex
circuits is a reasonable way to reduce the search runtime. We demonstrate that in this section
by presenting the results of continuing the search from the pattern of Figure 12(a) on the Gnl
benchmarks described in Section 11.2.4.

12.1 Convergence

In each iteration, 1 of the 10 Gnl circuits was routed to derive usage statistics, and the circuits were
changed between iterations in a round-robin fashion. This additional run converged after three
search iterations, adding six more switch types to the pattern. On this extended pattern, all 10 Gnl
circuits routed successfully in less than 300 router iterations (Table 3). Instead of running 39 search
iterations on the more complex circuits, which take about 7× more time to route, it was possible
to run the majority of these iterations on the smaller circuits, drastically reducing the runtime.
We will discuss runtime in more detail in Section 15. Here, we would just like to note that even

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:23

Fig. 16. Pattern obtained after continuing the avalanche search on the Gnl benchmarks of Section 11.2.4.

though the 10,000-LUT benchmarks are still rather small and running the entire search on them
in a production setting would certainly be feasible, scaling the search to large modern circuits that
can take several hours to route even in absence of avalanche costs could be more difficult without
adopting this approach of gradually increasing the complexity of the used circuits.

12.2 Pattern Changes

The final pattern obtained after the additional search run on the Gnl benchmarks is shown in
Figure 16(a), with switch types added on top of the pattern of Figure 12(a) highlighted in red. It
is interesting to note that besides providing access to V4Da that results in significant reduction in
hop count needed to reach cells below the center (Figure 16(b)), the new pattern also adds more
options to switch between different LUT-heights (entries with a value of 2; see Figure 4). This may
suggest that a few such inter-plane connections greatly help to reduce congestion, as mentioned
by Chromczak et al. [8].

The 8% increase of the pattern size led to a slight increase of the wire delays. This caused the
geomean routed critical path delay of the MCNC benchmarks to rise by 0.6% to 1.39 ns.

13 COMPARISON WITH SIMULATED ANNEALING

In Section 14, we analyze in more detail various aspects of the avalanche search algorithm. How-
ever, before delving into details, we first compare avalanche search to a method inspired by previ-
ous work. Namely, Lin et al. successfully used simulated annealing for simultaneously optimizing
channel composition and the switch-pattern [17]. In this section, we investigate how a similar
method compares with the proposed avalanche search.

13.1 Initial Pattern

We initialize the search with the default pattern produced by the physical modeling flow [12],
which represents our best effort at manually capturing inter-wire-type connectivity of a modern
tapless architecture [7], with the constraint dictated by the high resistance of the lower metal
layers that bulk of this connectivity is contained within wires starting and ending at the same
LUT-height [8]. The initial pattern contains 180 switch types organized as shown in Figure 17(a).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:24 S. Nikolić and P. Ienne

Fig. 17. Adjacency of wire types: initial manually designed pattern [12] (a) and its annealed version (b).

The optimal hop-distances that it achieves are not sufficient to counter the wire delay increase due
to a high load (Table 1). As a result, the geomean routed delay is 5.8% larger than for the avalanche
pattern (Table 1).

13.2 Setup

We use two very simple moves generated with equal probability: including or removing one of the
564 considered switch types. The self-normalizing two-term cost function of Marquardt et al. [26]
is used, with tile area and the geomean routed critical path delay of the circuits used in the search
taken for the two terms, with equal contribution:

Δcost = 0.5
ΔA(tile)

prev. A(tile)
+ 0.5

Δgeom. rtd. crit. path delay

prev. geom. rtd. crit. path delay
. (5)

To save runtime, wire delays are measured only when the switch-pattern differs from that of the
previously measured architecture in at least five switch types, while floorplan is optimized only
on temperature change. The same three MCNC circuits driving the avalanche search of Section 11
are used again. The initial temperature is set to 0.02 and we perform 100 temperature changes, at
the rate of 0.95, with 100 moves per temperature.

13.3 Results

Including or removing a single switch from the pattern most often has little influence on the crit-
ical path delay, or tile area, which only dramatically changes with a change in the number of
columns needed to fit the multiplexers (Figure 10). This makes convergence of the optimization
difficult, as visible in Figure 18. In the present experiment, 30 new switches were added, while both
adjacency regularity (Figure 17(b)) and hop-distance optimality were broken. The increased wire
delays (Table 1) further increased the geomean routed delay by about 6%.

We conjecture that for Lin et al. annealing the switch-pattern proved valuable as during the
optimization of the channel composition—likely causing larger and easier to capture changes in
performance—the switch-pattern grew increasingly inappropriate for the new composition and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:25

Fig. 18. Convergence of the simulated annealing optimization.

annealing it was just sufficient to rectify that. If applied to one fixed channel composition, then
success of the method seems less obvious.

Of course, we do not claim that simulated annealing, or any other general optimization method,
cannot be made to work for switch-pattern exploration if extensive engineering of the cost function
and move generation is performed. Nevertheless, much like the original PathFinder removed the
need for elaborate ad hoc heuristics of early FPGA routers [30], we believe that our avalanche
search method—essentially relying on the same principles as PathFinder—removes the need for
similarly elaborate heuristics to explore interconnect architectures.

14 ANALYSIS OF SOME FURTHER ASPECTS OF AVALANCHE SEARCH

In this section, we present results of several additional experiments that aim to increase the un-
derstanding of how avalanche search functions and what is the impact of different elements of the
algorithm. Unless stated otherwise, experimental setup of Section 10 was used in all experiments.

14.1 Parameters

The functional form of the avalanche costs (Equation (2)) involves three parameters: the starting
avalanche cost, s (u), and the two parameters dictating the rate of cost decrease with respect to
usage, ap and ah . For the search method to be effective, these parameters must be assigned rea-
sonable values. In this section, we present results of several experiments intended to help the
understanding of the impact of parameter tuning on the effectiveness of the algorithm. We also
give some remarks on how to choose good parameter values. Because different switch types are
already distinguished by their timing cost, we chose to fix all s (u) to a single parameter s .

14.1.1 Adaptive Tuning. The rate at which avalanche cost should drop with respect to usage
depends fundamentally on the actual usage values attained during routing: A single fixed drop
rate could be too high if many nets naturally tend to use the same switch types, whereas it could
be too low if the number of nets that do so is very small. This depends on the size and structure
of the circuits being routed, making it difficult to choose a single value for ap and ah .

To resolve this issue, we first record the maximum usage during the first routing iteration, when
the avalanche costs are temporarily reset to zero, much like VPR typically neglects congestion in
the first iteration [16]. This allows all nets to initially choose the timing-optimal resources. Let the
maximum recorded usage be M1

U . We compute ap and ah as:

ap = ah =
s

M1
U
× (iter_to_zero + 1)

. (6)

In other words, ap and ah are set to the value required for the avalanche cost to be reduced to zero
in iter_to_zero ∈ N routing iterations, assuming a sustained usage of M1

U . Thus, we fix both ap

and ah using a single metaparameter with a much more graspable meaning. Once computed in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:26 S. Nikolić and P. Ienne

Fig. 19. Dependence of concentration on avalanche parameters. The top graph of figure (a) shows the num-
ber of congested nodes in the rr-graph after each iteration of the router in the first iteration of the search
algorithm for iter_to_zero set to 25 and various starting avalanche costs. The middle graph shows the cor-
responding maximum usage, while the bottom one shows the number of switches with usage ≥ 0.05× the
current maximum. Graphs of figure (b) are analogous to those of figure (a) for the starting avalanche cost
fixed at 10−9 and iter_to_zero ∈ {5, 10, 15, 25, 50}.

the first iteration of Algorithm 2, ap and ah do not change until the end of the search. Benefits of
independently setting ap and ah are still to be investigated.

14.1.2 Starting Cost. Figure 19(a) shows the effect of various starting costs on concentration
and congestion resolving when simultaneously routing the alu4, ex5p, and tseng MCNC cir-
cuits [31], with iter_to_zero = 25. In the first graph, we see that all explored values of s cause
a rise in the number of congested nodes that disappears once congestion is penalized sufficiently
for nets to move to switch types with lower usage and higher avalanche cost. Larger values of s
lead to higher peaks of congestion occurring later in the routing process.

The middle graph clearly shows the correlation between rising concentration and congestion.
Larger values of s initially make it less likely for nets to route through switch types with low usage,
leading to larger peaks of maximum usage. However, excessive concentration is not sustainable,
because it prevents congestion resolution. The overshoot for s = 10−7 depicts this clearly and
although its final maximum usage is also somewhat higher than for the other values of s , some
routing iterations are inevitably wasted. Apart from the maximum usage, the number of switch
types with significant usage (here set at ≥ 5% of the current maximum) is also illustrative. As the
bottom graph shows, all explored values of s—apart from 10−11 and 10−10, which are clearly too
low to prevent nets from using switches of types not required by other nets—lead to very similar
results in this respect, by the end of the routing process.

While larger values of s , such as 10−7, may lead to additional reduction of the obtained switch-
pattern size, in the experiments in this article, we use s = 10−9, since it provides a reasonable
tradeoff between concentration and runtime.

14.1.3 Rate of Decrease. Figure 19(b) shows the results of sweeping iter_to_zero under the setup
of Section 14.1.2, but with s fixed at 10−9. Smaller values quickly reduce the cost of switch types
that are intrinsically in high demand (usage close to M1

U), causing an early concentration and
congestion increase. Upon congestion resolution, however, different explored values converge to
very similar results. The exception is 50, which results in too slow drop in avalanche costs that

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:27

Fig. 20. Adjacency of wire types: simultaneous routing (a) and independent parallel routing (b). When routing
all circuits at once and using the total usage to evolve the avalanche costs and select the switch types to
enter the pattern, large circuits may have an unfair advantage. Routing many circuits at once may also not
be feasible due to exceeding runtime. Figure (b) shows a pattern obtained from an avalanche search where
all circuits are routed independently in parallel, with independently autotuned avalanche parameters. After
each iteration, usages are normalized for each circuit and their average is taken as a basis for switch type
selection.

does not allow the higher-usage switch types to attract nets to route through them. It appears that
a good tradeoff between concentration and runtime is given by values corresponding to about half
the total number of routing iterations taken to achieve a congestion-free routing. In all experiments
presented in this article, we use iter_to_zero = 25.

More comprehensive analyses could lead to parameter values that produce better quality solu-
tions or reduce runtime. Nevertheless, at the moment, it does not seem that avalanche search is
particularly sensitive to the values of parameters.

14.2 Circuit-level Parallelization

In Section 9.2, we proposed to route multiple circuits at once so usage information and avalanche
costs can be shared among them. The rationale was that different nets of multiple circuits can
together negotiate a more compact pattern than when routed individually. We test that hypothesis
in this section.

14.2.1 Average Normalized Usage. We run two experiments. In the first one, each circuit is
routed independently, using individually autotuned avalanche parameters. Once all circuits are
routed, the final avalanche costs of all switch types are averaged out among all circuits, while
the usages are first normalized by the total usage in the particular circuit and then averaged. In
this way, large circuits are no longer given an unfair advantage over the small ones in determining
switch type selection. The average costs and average normalized usages are then used to determine
which switch types are adopted in the pattern, as described in Section 9.

The results of this experiment are shown in Figures 20 and 21. The search relying on indepen-
dently routing the alu4, ex5p, and tseng circuits converged in 57 iterations (as opposed to 36 when
routing all circuits together) and accumulated 87 switch types (as opposed to 78 when routing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:28 S. Nikolić and P. Ienne

Fig. 21. Influence of simultaneously routing multiple circuits during pattern search on routed delays.

all circuits together). The smaller size of the pattern obtained through routing all circuits at once
demonstrates the benefit of sharing the usage and cost information between circuits during rout-
ing. However, as Figure 21 shows, the routed critical path delays on the larger pattern are only
negligibly (0.25%) larger. This means that when running avalanche search on larger modern cir-
cuits where even routing one circuit may be a challenge (see Section 15), let alone multiple of
them at the same time, combining normalized usages can be a reasonable alternative. Of course, as
an intermediate step, providing some mechanism to (periodically) pass cost information between
different parallel threads routing different circuits independently could be useful.

It is interesting to note that even though the potential dominance of the larger circuits is now
less likely, that did not improve the geomean routed delay of the three circuits used for the search;
it is in fact negligibly higher (by 0.28%).

14.2.2 Total Usage. The second experiment attempts to more closely approximate the behav-
ior of simultaneously routing all circuits, while still routing them independently. Namely, the
avalanche parameters are taken from the search that routes all circuits together and, after every
iteration of the search, the current and historical usages of each switch type are summed among
all circuits. This total usage and the costs computed from it are then used for selecting the switch
types. Hence, the only difference between this approach and routing all circuits simultaneously is
that usage information is not shared between the circuits during the search iterations.

This search converged in 51 iterations, accumulating 92 switch types. For the interest of space,
we do not show the resulting pattern, nor plot the routed delays, which are on geomean 2.63%
worse than when routing all circuits at once.

14.3 Sensitivity to Circuit Choice

One of the main advantages of benchmark-driven FPGA architecture design is that the obtained
architecture can be tailored to some extent to the circuits of interest, represented by the selected
benchmark set. However, this is also one of the main disadvantages of the approach, since if the
benchmark set does not appropriately represent the intended use of the architecture, then the
architecture will either completely fail to implement some circuits of interest or fail to do so with
appropriate performance. We have seen an instance of that already in Section 11.2.4. In this section,
we attempt to provide a deeper understanding of dependence of switch type usage statistics—
which forms the basis for the avalanche search algorithm introduced in this article—on the choice
of the circuits used to derive these statistics.

In Section 14.2, we have determined that average normalized usage is an effective metric for
choosing the switch types to adopt in the pattern. We will use it here to assess the impact of
circuit choice on usage statistics. Namely, the rationale is that the less dependent usage is on exact

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:29

Fig. 22. Maximum-usage subset overlaps with the average of all circuits. Figure (a) shows the size of the
intersection of the maximum-usage subset of each individual circuit and the same-size subset with maximum
normalized average usage over all circuits for subset sizes ranging between 1 and 100. Overlap between the
two subsets is reasonably high (line close to y = x) for all circuits, with some local variation. This variation
increases with subset size, since larger subsets capture more switch types with low usage, mostly used by
the few critical paths. Figure (b) shows the relative total usage drop if the average subset is chosen instead
of the subset determined for each circuit individually. Since the top few switches differ among the circuits,
large drops are observed for very small subset sizes. However, for subsets larger than about 10 switch types,
cumulative usage drop is consistently below 10% for all circuits.

choice of the circuits on which it is observed, the closer the observation made on any individual
circuit will be to the average computed on several circuits.

Let Sc be the set of all switch types ordered by the decreasing usage achieved on circuit c . Let Sm

be the set of all switch types ordered by the decreasing average normalized usage on a set of circuits
C . Furthermore, let Sn

c and Sn
m be the subsets of the aforementioned sets containing the first n of

their elements. As a measure of similarity between usage statistics obtained on individual circuits
from C and their average, we use the size of the intersection �

�S
n
c ∩ Sn

m
�
� for various subset sizes n.

We plot this metric for seven different individually routed MCNC circuits and n ranging between
1 and 100 in Figure 22(a). Usage statistics come from a single avalanche search iteration. For most
values of n, the curves for most circuits are close to y = x . This means that there is significant
similarity in the sets of most used switch types chosen by the router on different circuits. Hence,
the sensitivity of the search outcome to the circuits used to run it is not particularly high. However,
we can see that as n increases, most curves start moving away from y = x . This is because larger
subset sizes capture switch types with significantly lower usage, mostly catering to the needs of
the critical paths, where similarity between the circuits is lower.

Let U (S) =
∑

e ∈S U (e) be the total usage of all switch types in a set S . We have seen that a
maximum-usage subset of each circuit in Figure 22(a) significantly overlaps with the maximum-
average-usage subset. Now, we would like to quantify how large a drop in total usage each circuit

c ∈ C would experience if Sn
m is chosen for it in place of Sn

c . Figure 22(b) plots U (Sn
c)−U (Sn

m)
U (Sn

c) ×100%, for
the same circuits and values of n used in Figure 22(a). The total usage of both subsets is computed
solely with usage information of the respective circuit. For very small n, the drop is significant,
because the few most used switch types differ between circuits. However, as n increases beyond
10, total usage drop is consistently below 10%. This experiment further suggests that dependence
of the usage statistics on the circuits on which they are observed is not particularly high and that
the major differences could arise only in the long tail of switch types with low usage.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:30 S. Nikolić and P. Ienne

Fig. 23. Correlation between switch type adoption and its approximate delay.

14.4 Influence of Approximate Switch Type Delay on Adoption

As was described in Section 9.1, different switch types are differentiated in the rr-graph by a de-
lay that strives to approximate the impact of adding the particular switch type to the pattern on
loading the wire that is driving it. While this is a way of informing the router on how expensive
it would be to add a particular switch type to the pattern, potentially motivating it to use another,
less detrimental switch type, we must confirm that the choices made by the router are not pre-
dominantly based on this delay penalty. If that were the case, then avalanche costs would become
irrelevant, as the pattern would largely be determined by the a priori assigned delays.

In Figure 23(a), we plot the correlation between switch type usage and its intrinsic delay reported
to VPR in the first iteration of the avalanche search. The x-coordinate of each point representing
a switch type is determined by its delay rank, with switch types with lower delay being closer to
the origin. The y-coordinate of each point representing a switch type is determined by its usage
rank, with higher usage being closer to the origin. Ties are broken by names.

If switch type adoption was solely dependent on switch type delay, then all points would be
along the y = x line. We can clearly see that this is not the case and that the router is capable
of escaping any potential local minima set by the preassigned delay penalties. However, there is
some correlation between delay and usage, since points are scattered more closely to the y = x
line than to y = 564−x ; this was the intention of conveying the physical information through the
approximate delays. The correlation weakens as the iterations of the avalanche search progress,
which can be seen by the larger spread away from y = x in Figure 23(b), depicting the same
situation at iteration 16. Perhaps more illustrative of this phenomenon is Figure 23(c), depicting
the maximum delay rank (i.e., the slowest) of the switch types adopted in each iteration of the
avalanche search. We can see that some of the slowest switch types are adopted towards the end
of the search. This could be because some critical path needed the particular switch types to form
a connection between wires that optimally implement it, or the particular switch type was needed
to resolve some outstanding congestion hotspot.

14.5 Routability-driven Search

In Section 8.5, we commented on the importance of allowing the router to route critical paths
with switch types that otherwise have low usage and would not be adopted in the final pattern.
We updated the node cost function in PathFinder to enable better selectivity of the critical paths
and to allow them to see the high-cost switch types with low usage as sufficiently cheap. In this
section, we inspect whether this was successful and whether the switch types that entered the
pattern of Figure 12(a) were not merely required for making it possible to route the circuits used
in the search.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:31

Fig. 24. Results of an avalanche search ignoring timing information.

To check this, we reran the search neglecting the timing information (insofar as it is not embed-
ded in the base costs of the wires that are dependent on the delay [16]) by setting the max_crit

parameter of VPR to 0. This search converged in 23 iterations, which is significantly less than the
36 that were needed when timing was considered. More importantly, only 27 switch types entered
the pattern, as opposed to 78 when timing was considered. This significantly smaller pattern is
shown in Figure 24(a). As can be expected, most of the connectivity incident to the long wires has
disappeared, because the benchmarks used in the search are small enough that their congestion
can largely be resolved while using only the short wires. Under these circumstances, long wires
serve only to enhance the speed of the implemented circuits and can thus be disregarded if tim-
ing is not of concern. For instance, H6Ra had a fanout of six in the pattern obtained with timing
considered (Figure 12(a)), whereas in this smaller pattern it has no fanout at all.

It is interesting to note that between the eight wires of length one, there are 17 switch types,
making their average fanout (Fs [6]) very close to 2, which Lemieux and Lewis have determined
to be the minimum required when two different switch-patterns are used in the FPGA grid in a
checkered fashion [32]. Additional switch types may have been chosen to compensate for the lack
of two different patterns or simply because the pattern was not fully minimized.

14.5.1 Impact on Performance. Routing results obtained on the smaller pattern are shown side-
by-side with the results of the pattern of Figure 12(a) at the bottom of Figure 24(b). The smaller
pattern does not provide enough connectivity to successfully route all MCNC circuits. For the
subset that can be routed, the geomean critical path delay is 13.86% higher than on the pattern of
Figure 12(a), despite the fact that the lower capacitive load and smaller tile area resulted in wires
being faster. This clearly demonstrates the utility of considering the critical paths when performing
the search.

There could be two main reasons why the delays are so significantly higher on the smaller
pattern: (1) pairs of wires needed to optimally implement critical connections of the circuits cannot
be connected due to the lack of the appropriate switch and (2) due to lower routability, nets need to
detour more for the congestion to be resolved. To determine which issue contributes more to delay
deterioration, we also report the lower-bound critical path delays obtained after the first iteration
of VPR at the top of Figure 24(b). Significant deterioration is present there as well, but it is less

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:32 S. Nikolić and P. Ienne

pronounced: The geomean is 4.84% higher on the smaller pattern. Hence, it is the poor routability
that is the main culprit.

The question of how much freedom should be given to the critical paths to enlarge a mini-
mal routable pattern remains to be answered in future work. In this section, we demonstrated
that at least some level of freedom is highly useful, but a more optimal point may lie somewhere
in between. One possible solution would be to first find a minimal pattern that supports all of
the routability requirements, using a routability-driven search and then extend it in a subsequent
timing-driven search, until a predefined budget of additional switch types or exploration iterations
is surpassed.

14.5.2 What Do the Results Tell Us? Compaction of the switch pattern presented in this section,
which resulted in some of the longer wires being unable to connect to other channel wires, once
more points to the fact that the circuits used in the exploration are not large and complex enough
to saturate the channel capacity of a modern plane-based FPGA. As anticipated in Section 1.3, this
makes it hard to derive general rules of the sort “an FPGA implemented in a 4 nm technology
should have between 24 and 32 switches per 16 wires in a plane” from the currently available
results. Nevertheless, the compaction also demonstrates the effectiveness of the proposed explo-
ration method in minimizing the pattern size where an opportunity for that exists. This was indeed
the main intention of the article—to develop a method for automatically designing switch-patterns
that are appropriate for the conditions created by the underlying technology and the requirements
of the target circuits, even in situations when general design rules with which a human designer
is familiar no longer hold. As we have seen in Section 13, simulated annealing does not possess
this feature—at least not in the adopted implementation. Similarly, the stark difference between
the performance of the patterns obtained in routability- and timing-driven search demonstrates
the capacity of the method to select switch types important for delay optimization. Oracles that
can quickly assess routability of a given pattern but not its performance (Section 4.3) would not be
useful in this context, other than for pruning away some solutions. In the next section, we discuss
in detail the reasons why the results so far presented were limited to small circuits and suggest
possible remedies that could help in alleviating this limitation in the future.

15 RUNTIME SCALABILITY

Implicitly representing the entire search space in the rr-graph during avalanche search removes
the need to route thousands of explicitly constructed solutions. This means that increased runtime
of each routing run can be tolerated. Nevertheless, it is important to assess how large this increase
is and where it comes from, so it can be mitigated when necessary. The total routing time spent
in the single 37-iteration exploration run of Section 11 was about 5 hours. Of that, about 4.5 were
spent by the actual PathFinder extended with avalanche costs, while the remaining half an hour
was taken by lookahead computation and allocating the data structures in VPR. When combined
with SPICE simulations, rr-graph generation, packing, placement, and placement manipulation,
the entire search took about 10 hours. While this may not seem like an exceedingly long time, it
is important to give it a context: routing the same three circuits used in exploration (which have
a combined size of about 2,700 LUTs), but on an architecture containing only the final pattern,
with no switch-splitting nodes and no usage tracking, took a mere 5.5 seconds. This ∼ 80× av-
erage runtime increase per iteration is very significant. For instance, each iteration of avalanche
search gives a possibility to evaluate 80 different patterns in the black-box-in-the-loop approach,
although, as we have seen, even 10,000 moves were not sufficient for simulated-annealing-based
exploration of Section 13 to converge to results comparable to those obtained after 37 iterations
of the avalanche search (giving a budget of ∼3,000 move evaluations).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:33

What is more important, however, is that with such a large increase in routing runtime (likely to
deepen further with growing circuit size), it is infeasible to use in exploration circuits that normally
take even minutes and let alone hours or days to route. Hence, in this section, we give a detailed
analysis of the origins of this runtime increase and suggest several remedies for which we believe
that they could be successful at alleviating the problem.

15.1 Routing Graph Size

Intuitively, increasing connectivity in the rr-graph could be expected to reduce the routing time,
as a more flexible rr-graph makes it easier to eliminate congestion. This is indeed true, but only
up to a certain point: If the rr-graph already offers sufficient flexibility to eliminate congestion,
then any further increase in its size will only lead to deterioration in runtime, as it will take longer
to find a shortest path for each connection. This was observed by Moctar et al., who determined
that routing circuits on an architecture with a fully populated cluster input crossbar represented
within the rr-graph takes about 2.5× more time than routing the same circuits on an architecture
where this input crossbar is 40% populated (Figure 4 in Moctar et al. [33]). Complexity of Dijkstra’s
shortest path algorithm is Θ(|E | + |V | log |V |) [34]. Assuming that the size of these rr-graphs was
dominated by the number of edges describing the intracluster interconnect, and assuming that the
population of both architectures was sufficient to easily eliminate congestion, we could expect that
runtime is roughly linear in |E |. Indeed, the ratio between the edge counts of the fully populated
and the 40%-populated crossbars is 1/0.4 = 2.5, which corresponds to the runtime ratio observed
in the work of Moctar et al.

Since avalanche search relies on embedding the entire search space in the rr-graph (Section 5),
it is inevitable that the rr-graph used in exploration is much larger than the final one. For exam-
ple, the final rr-graph obtained from the exploration of Section 12 contained in each switch-block
16 nodes (representing the 16 channel wires originating from it) and 84 edges. The graph repre-
senting the entire design space, however, contained 16 + 564 nodes and 2 × 564 = 1,128 edges—a
36× increase in |V | and a 13× increase in |E |. Using the same rough assessment based on the com-
plexity of Dijkstra’s shortest path algorithm as above, a runtime increase between 13× and 44×
can be expected. To measure this impact, we performed an experiment where we recorded the
time taken to complete the first iteration of the inner loop of PathFinder (line 11 of Algorithm 1),
when congestion costs are neglected, in three different cases: (1) on the final pattern, (2) on an
rr-graph containing all possible switches, but without nodes to split them, and (3) on an rr-graph
with all switches split by additional nodes. The runtimes were, respectively, 1.8 s, 9.7 s, and 21.9 s,
leading to a runtime increase of 12.2× and 5.4× when additional switches are and are not split by
nodes, respectively. This suggests that the increased edge count is the dominant problem and that
providing support for weighting both nodes and edges, to avoid the need to split switches, could
lead to a ∼ 2× runtime improvement.

15.1.1 Possible Remedy: Suppressing Low-usage Switches. One way to reduce the rr-graph size
is to suppress low-usage switch types after the usage is first measured in the first iteration of
PathFinder before the avalanche costs are initialized. For example, if it is known that the size of all
multiplexers should be some fixed numberm, as is often the case in commercial architectures [7],
then selecting the intrinsically most-used k×m switch types for each multiplexer, where k is some
small constant, can lead to a drastic reduction in rr-graph size. The remaining switch types can
periodically be brought back to ensure that some of them did not become more preferable, due to
prior adoption decisions.

15.1.2 Possible Remedy: Randomized Instance Sparsification. Another orthogonal approach
could be to remove switches of a certain type from some switch-blocks but retain them in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:34 S. Nikolić and P. Ienne

others. Provided that a sufficient number of instances is available for each type, it is plausi-
ble that the collected statistics would show little change compared to the situation when each
switch type is represented in every switch-block. Removing switches from one region would likely
alter the paths in another, but the hope is that if sparsification is done in such a way as to ensure
that each multiplexer receives a sufficient number of inputs, average behavior would be similar to
representing all switches everywhere.

15.1.3 Possible Remedy: Partition, Sample, and Mix. The method of simultaneously routing mul-
tiple circuits depicted in Figure 11 may seem completely impractical following the analysis of this
section. However, it also offers a possible remedy for the problem of rr-graph size increase. Rather
than combining multiple complete circuits together on a common FPGA, placements of large cir-
cuits can be partitioned into manageable pieces, a certain subset of these pieces can be selected
through random sampling, possibly across multiple circuits, and then combined on a common
FPGA. In this way, switch types necessary for short-haul connections can be quickly determined,
before proceeding recursively, as in Section 12, to extend the pattern with others required by the
long-haul connections. Alternatively, long-haul connections passing over a particular piece could
be determined through the use of a global router and approximated in the piece by appropriate
input-to-output connections.

Besides rr-graph size increase, there are several other reasons why routing in the presence
of avalanche costs is significantly slower than the usual routing. We list them in the following
sections.

15.2 A*

FPGA routers typically use A∗ to speed up shortest path finding [16]. The idea is that when a node
u is being pushed to the heap, it could be easy to obtain a lower bound on the cost of the path
needed to reach the target t from u. Then, instead of pushing u with the known cost f needed to
reach u from the source s , it is pushed with the cost f +д, where д is the estimate for reaching the
target. If д is really a lower bound, then the algorithm will never fail to miss the shortest path. At
the same time, though, the addition of д will prevent some nodes from ever being popped from the
heap, thus drastically reducing the portion of the rr-graph that needs to be explored. The closer
the chosen lower bound to the actual cost of the remaining path is, the more effective this pruning
will be.

15.2.1 Congestion Lookahead. In case of congestion costs, the minimum value of congestion
is 0. Hence, a lower bound estimate (lookahead) can only be computed when congestion itself is
completely neglected and only base costs of routing resources are taken into account [16]. This
means that pruning will be more effective towards the beginning of the routing, because there the
actual congestion costs are closer to 0. Fortunately, the number of congested nodes generally drops
as the routing iterations progress (Figure 26), so only a relatively small portion of the rr-graph and
the circuit’s nets will be affected by the poor performance of the lookahead.

15.2.2 Avalanche Lookahead. Similarly to congestion costs, the lowest value that avalanche
costs can attain is 0. Hence, when computing a lookahead that stores the values of д in a fixed
look-up table, as is typically done by VTR-8 [16], we have to set all avalanche costs to 0; otherwise,
it would not be a true lower bound (admissible). However, contrary to congestion costs that are
(close to) 0 in the beginning of the routing process, avalanche costs drop to zero towards the end
of it. For most iterations, such a lookahead is ineffective in presence of avalanche nodes.

Let us illustrate this by the example of Figure 25, showing a portion of the rr-graph with the
source and the sink nodes designated as s and t , respectively. There are two possible paths between

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:35

Fig. 25. Example of lookahead ineffectiveness. Left figure shows a portion of the rr-graph without avalanche
nodes and a sequence of heap operations needed to find the shortest path from s to t , while the right one
shows the same portion of the graph with avalanche nodes (red), along with the corresponding heap opera-
tion sequence. Costs are annotated next to nodes. Ratios between the avalanche costs and the base costs of
the wires are realistic. Lookahead values are on the right side of the “+” signs. “Fixed Lookahead” is the usual
lookahead used by VTR [16], while “Evolving Lookahead” is the modification proposed in Section 15.2.3.

them, each composed of two wires. The path on the left, composed of the nodes u1 and u3, has a
total cost of 20e−12, when there is no congestion present, while the path on the right, composed of
u2 andu4, has a total cost of 10e−12. In absence of avalanche nodes and congestion (left figure), the
lookahead is exact and only the nodes of the shorter path get popped. Once the avalanche nodes
are inserted (right figure), their cost overshadows the admissible lookahead and nodes from both
paths need to be popped. The increase in the number of nodes along the shortest path necessarily
increases the number of pops needed to find it. However, this alone would cause an increase from
4 to 7 pops (1.75×), while the actual number of pops required to find the shortest path in the
right figure is 11 (2.75× more). The difference comes from lookahead ineffectiveness. This is only
a toy example to illustrate the mechanism of pruning. In practice, when nodes have higher out-
degrees, the difference between having an effective pruning function д and not is much higher.
For example, Swartz et al. have demonstrated that A∗ can produce a speedup of about 50× on
MCNC circuits [15]. In larger circuits with longer average paths, the impact could be even higher.
For example, as we have mentioned in the previous section, the first iteration of PathFinder when
routing one of the Gnl circuits with all avalanche nodes in place, but their cost reset to zero (making
the admissible lookahead effective), took 21.9 s. Raising the avalanche costs up to 1e − 9 increased
this time to 3,899 s—an almost 180× increase. After the first iteration of avalanche search, when
12 switch types have been adopted to the pattern, the same runtime reduced to 319 s, bringing the
lookahead ineffectiveness gap down to ∼ 15×. Once the cost of the adopted switch types drops
to zero, lookahead becomes effective for paths routed through them. Hence, it is imperative to
improve lookahead effectiveness in the initial iterations with few adopted switch types.

15.2.3 Possible Remedy: Evolving Lookaheads. One idea that could help in resolving this issue is
to store in an additional look-up table the minimum number of avalanche nodes needed to connect
a node of given type to the target tile. Then, when pushing nodes onto the heap, their cost could be
increased by the appropriate entry from this table, multiplied by the cost of the currently cheapest
avalanche node. This is illustrated on the right of Figure 25, for the astar_fac parameter multiply-
ing д set to 1.2 (VTR-8 default [16]). The proposed lookahead now finds the shortest path with
seven pops, which is the minimum in presence of switch-splitting nodes. Note that this approach
is not easily applicable to congestion lookahead, because with very high probability, some node

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:36 S. Nikolić and P. Ienne

Fig. 26. Heap operations and rip-ups during the second iteration of the avalanche search (most congested).
Bars on the sides of the graphs designate which y-axis corresponds to which curve(s) (right for the dashed,
left for the solid).

will always remain unused, thus reducing the lowest congestion cost to zero. Avalanche nodes,
however, have the highest cost when their type is unused.

Another potential advantage of avalanche costs is that they are tied to types and not instances,
unlike congestion costs. This could perhaps allow runtime improvements by increasing preprocess-
ing effort, as information would need to be stored only about relationship between the few types,
rather than the numerous instances. At any rate, for the proposed method to be truly scalable, A∗

must be made effective.

15.3 Periodically Forcing Rip-up

Figure 26 plots rip-up and congestion statistics of routing in two extreme iterations of the
avalanche search: (1) second iteration, where the highest congestion was observed (left figure),
and (2) last iteration, where the switch-pattern has been finalized and no potential switches and in
turn no avalanche costs are present. Dashed orange and blue lines represent the number of nets and
connections, respectively, that were ripped up and rerouted in the corresponding router iteration.
We can see that in the right figure, where avalanche costs are not present, these curves almost
monotonically decrease. This comes from the incremental-rerouting capabilities of VTR 8 [16],
where only connections that use congested nodes or fail to meet timing are ripped up, contrary
to the original VPR PathFinder implementation, which ripped up all connections in every routing
iteration [6]. The corresponding curves in the figure on the left contain a number of peaks at an
increasing distance from one another, as the routing iterations progress. These peaks represent
iterations where rip-up of all connections has been forced. If this had not been done, then it would
have been possible for some switch types to be used in the initial iterations where the avalanche
cost differences were still small, without the paths using them later moving to a cheaper switch
type. This would then potentially cause some nonessential switch types to be included in the fi-
nal pattern. As the routing progresses, avalanche cost changes become smaller, so it becomes less
useful to rip up the legal connections and hence this forcing is done less frequently.

15.3.1 Possible Remedy: Path-cost Bounding. Peaks in the number of heap pushes coincide with
the forced rip-up peaks, which can be expected. However, this increase in the amount of work could
potentially be reduced. Namely, if a legal connection is being routed, then its pre-rip-up avalanche
cost is also an upper bound on the avalanche cost of the new shortest path that can implement
it, because avalanche costs are monotonically nonincreasing. This upper bound could be used for
more efficient pruning when searching for the new shortest path.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:37

15.4 Congested Nodes

The green dashed curve of Figure 26 shows the number of congested nodes in each PathFinder
iteration. In the figure on the right, we see that this curve is again almost monotonically decreasing,
with the peak being in the first iteration, which neglects congestion altogether. In the figure on the
left, however, the situation is drastically different. Since in the first PathFinder iteration avalanche
costs are also neglected, congestion is comparable to that of the first iteration in the right figure.
As soon as the avalanche costs start to be considered, they create concentration on switch types,
which drives the congestion up. This congestion starts to get resolved only after the avalanche
costs drop sufficiently for a large-enough number of switch types and at the same time, congestion
costs increase enough to outweigh the avalanche costs. This occurs roughly around the middle of
the routing run, which coincides with the intended avalanche cost reduction to zero for the most
used nodes (see Section 14.1.1). As discussed in Section 8.2.2, fully resolving congestion may not
always even be necessary and early stopping could benefit the runtime.

16 CONCLUSIONS AND FUTURE WORK

In this article, we introduced a new method for automated exploration of FPGA switch patterns,
which removes the fundamental limitation of prior techniques: necessity to explicitly list and test
numerous architectures in a place and route flow. The proposed method achieves this by lever-
aging the router itself to perform the exploration, instead of perceiving it merely as a black box
used for evaluation of explicitly listed solutions. We hope that this will open up new interesting
possibilities in the FPGA architecture domain. One of the most exciting aspects of the method
is that it represents the design space implicitly in the routing-resource graph and should thus in
principle be useful for exploring any aspect of programmable interconnect that can be represented
within an rr-graph. For example, it should be possible to use the method to simultaneously explore
intercluster and intracluster interconnect.

16.1 What Remains to Be Done?

In the current implementation, a large increase of the rr-graph size, coupled with ineffectiveness
of A∗ caused by the additional costs used for pattern minimization, quickly makes runtime on all
but very small circuits impractical. However, we strongly believe that these issues can be resolved,
and we suggested several possible remedies in Section 15. To make the method truly practical, it
is imperative that these and/or other remedies are applied in future work.

16.2 Increasing Regularity

Of similar interest is the ability to design regular patterns that may be required in commercial
architectures; for example, it may be necessary that all multiplexers have the same size [7]. It
turns out that this problem can be reduced to a completely orthogonal problem of transforming
the observed statistics into a pattern that satisfies the specified constraints. We refer the reader to
another of our papers, which introduces one solution to this problem [35].

16.3 Reducing Regularity

Finally, in certain cases it may be required to design patterns that are less regular than specified
here. For example, in an architecture implemented in an older technology, a plane division may
not be enforced and it may be possible that multiplexers close to different LUTs in the same CLB
have different input patterns. If this is the case, then simply more wire and switch types are to
be introduced, according to the monolithic indexing scheme of Figure 4. Of course, increasing the
number of switch types in such a way would increase the rr-graph size as well. We note here once

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

14:38 S. Nikolić and P. Ienne

more that the proposed method may not be as useful for older technologies, as we believe it is for
scaled ones, because in them, resistance of lower metal layers is not nearly as pronounced. Hence,
individual switches have less impact on delay and well-tested patterns developed for earlier FPGA
generations [10] are not likely to be outperformed.

In case regularity is to be reduced in the fashion of checkered architectures proposed by
Lemieux and Lewis [32], this can be easily achieved by assigning the switch-blocks in the black
tiles one set of switch types and those in the white ones a different set. This approach could be
particularly useful for exploring architectures where switch-blocks in hard-IP tiles can differ from
those in CLB tiles.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers whose constructive feedback greatly improved
the manuscript.

REFERENCES

[1] J. Rose and S. Brown. 1991. Flexibility of interconnection structures for field-programmable gate arrays. IEEE J. Solid-

state Circ. 26, 3 (1991), 277–82.
[2] Steven J. E. Wilton. 1997. Architectures and Algorithms for Field-programmable Gate Arrays with Embedded Memory.

Ph.D. Dissertation. University of Toronto.
[3] Yao-Wen Chang, D. F. Wong, and C. K. Wong. 1996. Universal switch modules for FPGA design. ACM Trans. Des.

Autom. Electron. Syst. 1, 1 (Jan. 1996), 80–101.
[4] P. Gopalakrishnan, Xin Li, and L. Pileggi. 2006. Architecture-aware FPGA placement using metric embedding. In

Proceedings of the 43rd ACM/IEEE Design Automation Conference. 460–65.
[5] Herman Schmit and Vikas Chandra. 2002. FPGA switch block layout and evaluation. In Proceedings of the ACM/SIGDA

10th International Symposium on Field-Programmable Gate Arrays. 11–18.
[6] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. 1999. Architecture and CAD for Deep-Submicron FPGAs.

Kluwer Academic Publishers.
[7] Morten B. Petersen, Stefan Nikolić, and Mirjana Stojilović. 2021. NetCracker: A peek into the routing architecture of

Xilinx 7-Series FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays.
11–22.

[8] Jeffrey Chromczak, Mark Wheeler, Charles Chiasson, Dana How, Martin Langhammer, Tim Vanderhoek, Grace
Zgheib, and Ilya Ganusov. 2020. Architectural enhancements in Intel®Agilex™FPGAs. In Proceedings of the

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 140–49.
[9] X. Tang, E. Giacomin, A. Alacchi, and P. Gaillardon. 2019. A study on switch block patterns for tileable FPGA routing

architectures. In Proceedings of the International Conference on Field-Programmable Technology (ICFPT). 247–50.
[10] Oleg Petelin and Vaughn Betz. 2016. The speed of diversity: Exploring complex FPGA routing topologies for the global

metal layer. In Proceedings of the 26th International Conference on Field Programmable Logic and Applications. 1–10.
[11] Stefan Nikolić and Paolo Ienne. 2021. Turning PathFinder upside-down: Exploring FPGA switch-blocks by negotiating

switch presence. In Proceedings of the 31st International Conference on Field-Programmable Logic and Applications.
225–33.

[12] Stefan Nikolić, Francky Catthoor, Zsolt Tőkei, and Paolo Ienne. 2021. Global is the new local: FPGA architecture
at 5nm and beyond. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
34–44.

[13] Larry McMurchie and Carl Ebeling. 1995. PathFinder: A negotiation-based performance-driven router for FPGAs. In
Proceedings of the ACM 3rd International Symposium on Field-Programmable Gate Arrays. 111–17.

[14] Carl Ebeling, Larry McMurchie, Scott A. Hauck, and Steven Burns. 1995. Placement and routing tools for the triptych
FPGA. IEEE Trans. Very Large Scale Integr. Syst. 3, 4 (Dec. 1995), 473–82.

[15] Jordan S. Swartz, Vaughn Betz, and Jonathan Rose. 1998. A fast routability-driven router for FPGAs. In Proceedings of

the ACM/SIGDA 6th International Symposium on Field Programmable Gate Arrays. 140–49.
[16] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jia Min Wang, Mohamed Eldafrawy, Jean-Philippe Legault, Eugene Sha,

Aaron G. Graham, Jean Wu, Matthew J. P. Walker, Hanqing Zeng, Panagiotis Patros, Jason Luu, Kenneth B. Kent,
and Vaughn Betz. 2020. VTR 8: High-performance CAD and customizible FPGA architecture modelling. ACM Trans.

Reconfig. Technol. Syst. 13, 2 (May 2020), 9:1–9:60.
[17] M. Lin, J. Wawrzynek, and A. E. Gamal. 2010. Exploring FPGA routing architecture stochastically. IEEE Trans. Comput.-

Aid. Des. Integr. Circ. Syst. 29, 10 (Sept. 2010), 1509–22.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

Exploring FPGA Switch-Blocks without Explicitly Listing Connectivity Patterns 14:39

[18] David Lewis, David Cashman, Mark Chan, Jeffery Chromczak, Gary Lai, Andy Lee, Tim Vanderhoek, and Haiming
Yu. 2013. Architectural enhancements in Stratix V™. In Proceedings of the ACM/SIGDA International Symposium on

Field Programmable Gate Arrays. 147–56.
[19] Vaughn Betz and Jonathan Rose. 1997. VPR: A new packing, placement and routing tool for FPGA research. In Pro-

ceedings of the 7th International Workshop on Field-Programmable Logic and Applications. 213–22.
[20] Elias Ahmed and Jonathan Rose. 2000. The effect of LUT and cluster size on deep-submicron FPGA performance and

density. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM, 3–12.
[21] Vaughn Betz and Jonathan Rose. 1998. How much logic should go in an FPGA logic block? IEEE Des. Test Comput. 15,

1 (1998), 10–15.
[22] Kaichuang Shi, Xuegong Zhou, Hao Zhou, and Lingli Wang. 2022. An optimized GIB routing architecture with bent

wires for FPGA. ACM Trans. Reconfig. Technol. Syst. 16, 1 (Dec. 2022).
[23] Oleg Petelin and Vaughn Betz. 2015. Wotan: A tool for rapid evaluation of FPGA architecture routability without

benchmarks. In Proceedings of the 25th International Conference on Field Programmable Logic and Applications. 1–4.
[24] Guy Lemieux and David Lewis. 2002. Analytical framework for switch block design. In Proceedings of the 12th Inter-

national Conference on Field-Programmable Logic and Applications. 122–31.
[25] G. Wang, S. Sivaswamy, C. Ababei, K. Bazargan, R. Kastner, and E. Bozorgzadeh. 2006. Statistical analysis and design

of HARP FPGAs. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 25, 10 (2006), 2088–102.
[26] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. 2000. Timing-driven placement for FPGAs. In Proceedings of

the ACM/SIGDA 8th International Symposium on Field Programmable Gate Arrays. 203–13.
[27] Dirk Stroobandt, Jo Depreitere, and Jan Van Campenhout. 1999. Generating new benchmark designs using a multi-

terminal net model. Integration 27, 2 (1999), 113–29.
[28] Stephen Yang, Aman Gayasen, Chandra Mulpuri, Sainath Reddy, and Rajat Aggarwal. 2016. Routability-driven FPGA

placement contest. In Proceedings of the International Symposium on Physical Design. 139–43.
[29] Michael D. Hutton, Jay Schleicher, David M. Lewis, Bruce Pedersen, Richard Yuan, Sinan Kaptanoglu, Gregg Baeck-

ler, Boris Ratchev, Ketan Padalia, Mark Bourgeault, Andy Lee, Henry Kim, and Rahul Saini. 2004. Improving FPGA
performance and area using an adaptive logic module. In Proceedings of the 14th International Conference on Field

Programmable Logic and Application. Springer, 135–44.
[30] S. Brown and G. Lemieux. 1993. A detailed router for allocating wire segments in FPGAs. In Proceedings of the

ACM/SIGDA Physical Design Workshop. 215–26.
[31] Saeyang Yang. 1991. Logic Synthesis and Optimization Benchmarks User Guide, Version 3.0. Technical Report. Micro-

electronics Center of North Carolina.
[32] Guy Lemieux and David Lewis. 2004. Design of Interconnection Networks for Programmable Logic. Kluwer Academic

Publishers, USA.
[33] Yehdhih Ould Mohammed Moctar, Guy Lemieux, and Philip Brisk. 2012. Routing algorithms for FPGAs with sparse

intra-cluster routing crossbars. In Proceedings of the 22nd International Conference on Field Programmable Logic and

Applications (FPL’12). 91–98.
[34] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third

Edition (3rd ed.). The MIT Press.
[35] Stefan Nikolić and Paolo Ienne. 2023. Regularity matters: Designing practical FPGA switch-blocks. In Proceedings of

the ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 99–109.

Received 10 June 2022; revised 11 February 2023; accepted 4 May 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 14. Publication date: February 2024.

