
37

Detailed Placement for Dedicated LUT-Level FPGA

Interconnect

STEFAN NIKOLIĆ, École Polytechnique Fédérale de Lausanne

GRACE ZGHEIB, Intel Corporation

PAOLO IENNE, École Polytechnique Fédérale de Lausanne

In this work, we develop timing-driven CAD support for FPGA architectures with direct connections between
LUTs. We do so by proposing an efficient ILP-based detailed placer, which moves a carefully selected subset
of LUTs from their original positions, so that connections of the user circuit can be appropriately aligned
with the direct connections of the FPGA, reducing the circuit’s critical path delay. We discuss various aspects
of making such an approach practicable, from efficient formulation of the integer programs themselves, to
appropriate selection of the movable nodes. These careful considerations enable simultaneous movement of
tens of LUTs with tens of candidate positions each, in a matter of minutes. In this manner, the impact of
additional connections on the critical path delay more than doubles, compared to the previously reported
results that relied solely on architecture-oblivious placement.

CCS Concepts: • Hardware→ Programmable interconnect; Placement;

Additional Key Words and Phrases: FPGA, placement, algorithm, direct connection, LUT, LP, ILP, timing-
driven

ACM Reference format:

Stefan Nikolić, Grace Zgheib, and Paolo Ienne. 2022. Detailed Placement for Dedicated LUT-Level FPGA In-
terconnect. ACM Trans. Reconfig. Technol. Syst. 15, 4, Article 37 (December 2022), 33 pages.
https://doi.org/10.1145/3501802

1 INTRODUCTION

Introducing dedicated connections between Field-Programmable Gate Array (FPGA) resources
in order to increase performance, by avoiding multiple levels of multiplexing in the programmable
routing architecture, is an old idea [6, 13]. A problem in exploring such architectures is that there
could be two different causes for failing to achieve the anticipated effect of the additional con-
nections. One could, for instance, expect that a cascade of Look-Up Tables (LUTs) is reasonably
useful in reducing the critical path delay of a typical circuit. Failure to observe any benefit could
lead to a guess that the CAD tools do not provide adequate support for such cascades. Before dedi-
cating effort to envisioning new algorithms, it would be useful to know that the problem does not
lie in the simplicity of the cascade itself, because, for instance, it cannot cover multiple fanouts or
fanins. Unfortunately, without an optimal algorithm for putting the cascades to use, one cannot

Authors’ addresses: S. Nikolić and P. Ienne, École Polytechnique Fédérale de Lausanne, Station 14, CH-1015 Lausanne,
Switzerland; emails: {stefan.nikolic, paolo.ienne}@epfl.ch; G. Zgheib, Intel Corporation, 101 Innovation Drive, 95134 San
Jose, California; email: grace.zgheib@intel.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1936-7406/2022/12-ART37 $15.00
https://doi.org/10.1145/3501802

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

https://doi.org/10.1145/3501802
mailto:permissions@acm.org
https://doi.org/10.1145/3501802
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3501802&domain=pdf&date_stamp=2022-12-09

37:2 S. Nikolić et al.

Fig. 1. Influence of movement freedom on delay minimization. Arrows depict a subset of connections of the
or1200 circuit, placed by standard VPR, on the architecture of Figure 2. The blue arrows mark the connections
that are successfully implemented as direct after appropriately moving their endpoint LUTs, while those that
remain programmable are shown in orange. In the left figure, LUTs can only move within their respective
cluster (indicated by the light green region depicting the allowed positions for the central LUT shown in dark
green), while in the right, they can also move to the adjacent clusters, resulting in a 900 ps smaller delay.

be sure which of these two potential sources led to the unexpected result. In other words, a lack of
good algorithms makes it hard to assess the quality of the architectures, while the lack of a good
architecture makes it hard to assess the quality of the algorithms.

In our previous work, however, we showed that there exists at least one architecture, which
profits from the additional connections even if no special CAD tools are used to map circuits
onto them [26]. The only CAD flow modification used to demonstrate the effectiveness of this
architecture consisted of shuffling the LUTs within their respective clusters, to align them with the
endpoints of the direct connections, after the circuit has been placed. This changes the perspective
considerably, because it is no longer a question of which architecture with fast connections is
useful, but if its usefulness can be increased by application of CAD tools that are aware of the
existence of the fast connections.

Intuitively, one would expect that the latter question is easier to resolve than the former one and
this is what inspired the present work. Before diving into details, it is useful to quantify our hopes.
Previous work reports a 3% improvement of the average critical path delay of a subset of VTR

circuits [18, 26]. If the delays of all the connections between the LUTs were reduced to the average
of the delays of the direct connections in the proposed architecture, the improvement would rise
to about 19%. This is clearly not achievable, but it shows that there is likely a fairly big margin
for improvement. A more illustrative example is given in Figure 1. Each cell represents one 60-
input cluster of 10 6-LUTs. The architecture also contains a number of direct connections between
individual LUTs, shown in Figure 2. The arrows show a subset of connections of the or1200 circuit
placed on this architecture by standard VPR [18], oblivious of existence of the direct connections,
with a resulting postplacement delay of 13 ns. Moving the LUTs within their respective clusters,
in an attempt to improve this delay by aligning the connections depicted by arrows with the direct
connections of the architecture, produces the figure on the left. The blue connections are the ones
successfully aligned, resulting in a delay of 12.57 ns. Allowing the LUTs to move to the adjacent
clusters as well produces the situation on the right, with the delay of 11.67 ns. These numbers were
produced by actual optimization, as described in the following sections, and clearly demonstrate
the benefits of moving LUTs across clusters.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:3

Fig. 2. The target architecture [26]. The other endpoint of each direct connection is labeled as L.O .D, where
L ∈ (0, 9) is the index of the LUT in its cluster, O ∈ {N ,S,E,W } is the connection orientation with respect to
the shown cluster, and D the distance to the other cluster. In general, diagonal connections are also allowed,
but are not present in this architecture.

In this article, we investigate the impact of dedicated placement on performance of architectures
with direct connections between LUTs. Its original version appeared at the 30th International Con-

ference on Field-Programmable Logic and Applications (FPL) [27] and introduced a dedicated detailed
placement algorithm targeting FPGA architectures with such direct connections, combining iter-
ative solving of Linear Programs (LPs) to select nodes that should be moved from their original
positions determined by a general placer oblivious of the direct connections, and Integer Linear

Programs (ILPs) to appropriately position them. The main technical novelty that this extended
version of the article brings is a greatly simplified and improved main algorithm that orchestrates
the construction and solving of different LPs and ILPs. This includes a mechanism to more tightly
couple the LPs and the ILPs together. Besides that, we introduce new experiments and present
various aspects of optimizing the problem formulation, which have not been previously discussed.
Finally, we give a broad overview of higher-level decisions that led to the proposed approach on
dedicated placement for architectures with direct connections between LUTs. The choices we took
while designing the algorithm are illustrated by numerous examples and compared with possible
alternatives.

The rest of the article is organized as follows. In Section 2, we describe the architecture class tar-
geted by the developed algorithm. We describe the high-level aspects of the problem at hand and
why we chose to approach it as detailed placement in Section 3. A review of prior work on detailed
placement algorithms, for FPGAs and ASICs alike, is given in Section 4. By analyzing the down-
sides of the existing solutions, we arrive at the one proposed in this article, which is to split the
problem into LP-based selection of movable nodes, followed by their ILP-based placement. These
two stages of the algorithm are presented in Sections 5 and 6, respectively. The complete algorithm
is presented in Section 7, while the various optimizations that we apply to its constituent parts are
presented in Section 8. Experimental results are presented in Section 9 and final conclusions drawn
in Section 10.

2 TARGET ARCHITECTURES

In this work, we target FPGA architectures that have dedicated fast connections between individual
pairs of LUTs. Such architectures have been extensively explored in our previous work [26]. An
example architecture—the best one found in that previous study—which we are going to use for the
majority of the subsequent experiments is shown in Figure 2. It illustrates a very important feature
of this architecture class, without which the placement approach presented in this article would
not be practicable. Namely, each of the dedicated connections adds potential for implementing
a certain connection of a user circuit in a faster manner, skipping the various multiplexers of
the programmable interconnect (see Figure 4), but in doing so, it strictly increases the number
of ways in which the user connection can be implemented. This is because the output of each
LUT has access to the programmable interconnect and each LUT input pin driven by a direct

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:4 S. Nikolić et al.

Fig. 3. Position of the proposed detailed placement algorithm in a typical FPGA CAD flow.

connection can still be accessed from the programmable interconnect, through the small additional
decoupling multiplexers (Figure 2). This somewhat reduces the potential performance gain that
the dedicated connections bring, compared to what it would be if they were to directly access the
LUT pins, without passing through additional levels of multiplexing. However, it guarantees that
every legal implementation of a circuit on the underlying FPGA architecture without the dedicated
interconnect will also be legal for the architecture augmented with the direct connections.

3 GENERAL APPROACH

We tackle the problem of placement for FPGA architectures with direct connections between LUTs
by constructing a detailed placement algorithm which (1) selects a minimal subset of LUTs that
allows the desired critical path delay reduction to be obtained by implementing some of the connec-
tions incident to the selected LUTs as direct; then (2) solves an ILP to determine the new positions
of the selected LUTs such that the critical path delay is actually improved. Technical details of
these two steps are explained in Sections 5 and 6, respectively, while their relation to the existing
work on detailed placement algorithms is presented in Section 4.

In this section, we attempt to give a higher level view of the important decisions that formed
our approach to the problem. Notably, we answer the question of why a placement algorithm is
imperative in the first place, why it is necessary to move individual LUTs, and why we opted for
a detailed placer which acts upon an already constructed placement oblivious of the existence of
the direct connections between LUTs. The position of the proposed algorithm in the overall CAD
flow is shown in Figure 3.

This section also includes a discussion of why arguably the most obvious solution to the place-
ment problem from an academic standpoint—using simulated annealing—is not particularly well
suited to the situation when the purpose of doing a placement is targeted implementation of critical
connections of the circuit by direct connections of the FPGA.

3.1 Is this not a Routing Problem?

The purpose of this work is to develop adequate CAD support for FPGA architectures equipped
with optional direct connections between LUTs, so that these fast dedicated connections may be
used to implement the most critical connections of the user’s circuit and increase its performance.
In a standard FPGA-CAD flow [1] (Figure 3), it is typically the router, which determines the ex-
act path through the programmable interconnect that will implement a particular connection of
the circuit, once its endpoints have been fixed during placement. This is the case illustrated in
Figure 4(a).

Given that our goal is to determine if some connections of the circuit can be profitably routed
by the direct connections of the FPGA, a question could be raised if it is actually a routing and not
a placement algorithm that is required. Similarly to the carry chains [19], the direct connections
of the FPGA have uniquely defined endpoints. Hence, if a circuit connection (A,B) is to be imple-
mented using a direct connection between points f and д,A (respectively, B) must be aligned with
f (respectively д) during placement; otherwise there will be no way of accessing this particular
direct connection. This is illustrated in Figure 4(b).

Unlike the case of carry chains, timing criticality of a set of connections between LUTs
cannot be readily ascertained in the synthesis phase. At the same time, the number of possible

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:5

Fig. 4. Importance of placement for using direct connections. Which wires and multiplexers will implement
a connection of the circuit using programmable interconnect (a) can be determined at route time. However,
whether it is possible to use a particular direct connection of the FPGA instead is fully determined by the
placement of the two endpoint LUTs of the circuit’s connection (b).

topologies that the direct connections between LUTs can support vastly surpasses the columnar
cascade of the carry chains. For these reasons, strategies such as a priori locking blocks together
and moving them in unison during placement [19] would be too constraining for the problem at
hand; not only could such a strategy fail to maximize the benefit of using direct connections but
it could even damage circuit’s performance, by prematurely fixing relative positions of a group of
LUTs.

3.2 Necessity of Placing Individual LUTs

Treating individual LUTs as movable objects during placement can result in superior place-
ment quality [3], and some modern placement algorithms demonstrate that this is practicable at
scale [17]. However, a typical FPGA-CAD flow includes a packing stage before the actual place-
ment [1], which groups LUTs together so that each group can be implemented by a logic cluster of
the FPGA. Then, these clusters, instead of LUTs, become movable objects in the placement process,
greatly reducing the time needed to complete it [4].

To actually use the direct connections of the FPGA, the endpoint LUTs of a circuit’s connec-
tion must be aligned with the endpoint LUTs of a direct connection. This is often impossible to
achieve by moving entire clusters of LUTs, as Figure 5 illustrates. Our goal is to optimize the criti-
cal path delay of a circuit, which often requires implementing a small but precisely selected subset
of the circuit’s connections using the direct connections of the FPGA, and this can be met only by
appropriately placing individual LUTs and not clusters.

Hence, for the currently popular cluster sizes of about 10 LUTs, the problem we are facing
could involve up to an order of magnitude more movable objects with an order of magnitude more
candidate positions than what is usually tackled by a placer that follows a packing stage.

3.3 Global, Detailed, or Combined Placer?

General FPGA placers are very effective in optimizing the critical path delay of a circuit. To illus-
trate this, we measure the critical path delays of the subset of VTR circuits for which we previ-
ously computed the potential average critical path delay improvement due to direct connections
(Section 1) at two instants of the VPR’s placement process: (1) the very beginning—that is, when all

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:6 S. Nikolić et al.

Fig. 5. Necessity of placing individual LUTs. Figure 5(a) and (b) respectively shows a portion of a circuit
and a simple FPGA architecture on which it is to be implemented. Two alternative cluster placements are
shown in Figure 5(c) and (d), both assuming {A}, {B,C} for the initial packing of LUTs into clusters. Each
cluster is represented by a vertical column of three LUTs, designated by the label of the circuit’s LUT that it
implements, or LUT0–2 when left unoccupied. The architecture’s direct connections are depicted in blue: dark
when used, light when unused. With this initial packing of LUTs, at most one connection of the circuit may
be implemented using the direct connections of the FPGA, when only entire clusters are placed. If individual
LUTs are able to move independently during placement, however, the outcome in Figure 5(e) can be obtained,
with both connections of the circuit implemented as direct and its critical path optimized.

clusters are placed randomly and (2) at the end, when simulated annealing converges. The relative
delays are plotted in Figure 6. On average, they improve by almost 45%.

The average additional improvement over that achieved by VPR, obtainable through the im-
plementation of connections between LUTs as direct, lies in the interval between 3%—the value
confirmed in our previous work—and 19%—the upper bound presented in Section 1. This means
that the final combined improvement over the initial random placement will fall somewhere in
the orange strip of Figure 6. Whatever the actually obtained value of improvement due to direct
connections may be, it is clear that it will be dwarfed by the improvement initially achieved by
the general placer. Hence, it is meaningful to neglect the impact of direct connections on critical
path delay, until the critical path delay itself is reduced sufficiently for this additional optimization
to become important. This enables gains in runtime, by allowing the initial part of the placement
process to be performed at the cluster level.

3.4 Direct Connections at Low Temperature

Let us for the moment stay in the framework of simulated annealing used by VPR. An obvious
solution to the problem of individual LUT placement that would partially mitigate the runtime
increase would be to perform cluster placement until a certain temperature level, continuing with
placement of individual LUTs afterwards, until convergence.

3.4.1 Runtime Surge Persists. This approach has two issues, however. The first one is that it
would not really resolve the problem of runtime surge. To illustrate this, we plot in Figure 7 the
evolution of the postplacement critical path delay over temperature update iterations during a
placement of the blob_merge circuit. The orange line indicates the point where the critical path

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:7

Fig. 6. Critical path delay improvement due to
placement. The figure shows the relative critical
path delay improvement achieved by VPR at the end
of the placement process, compared to the initial
random placement of a subset of VTR benchmarks.
A highly optimistic estimate of the average poten-
tial additional delay reduction due to usage of di-
rect connections of the target FPGA from Figure 2
(Section 1) is superimposed in orange.

Fig. 7. Postplacement critical path delay evolu-
tion as a function of temperature update itera-
tion while placing the blob_merge circuit. The or-
ange line depicts the critical path delay, which
is 5% worse than the one obtained at the end of
VPR’s placement process. To achieve this final 5%
improvement—roughly comparable to what one
could realistically expect from appropriately us-
ing direct connections—a significant portion of
iterations is used.

delay is 5% larger than the final postplacement critical path delay that VPR was able to achieve.
This value was chosen as a reasonable estimate of what impact direct connections could have.

As Figure 7 shows, a large portion of the temperature update iterations is spent on this final
5% delay reduction. Let us optimistically assume for the moment that, with some tuning of the
exit criteria, the process would be able to end in 60 iterations. This would mean that about a third
of the time would be spent on the final 5% of the delay reduction and this would be the time
when placement of individual LUTs would have to be performed if the direct connections are to
be used appropriately. Given that a typical number of moves per iteration depends on the number
of movable objects with Θ(n4/3) [1], a tenfold increase in the number of movable objects when
switching from placing clusters to placing LUTs would increase this third of the runtime almost
22×, increasing the overall time about 8×. Since runtimes of simulated-annealing-based placers are
already not competitive by today’s standards [29], this would likely be prohibitive in a production
setting.

3.4.2 Difficulties in Utilizing Direct Connections. The much more significant issue with this ap-
proach is its inaptness for the problem of aligning endpoints of circuit connections with the direct
connections of the FPGA. As an illustration, let us take a look at Figure 8. In the top part of the
figure, a portion of an FPGA without any direct connections is shown, with a pair of LUTs that
eventually need to be connected. For the sake of simplicity, let us assume that the delay of the im-
plemented connection is some function of the Manhattan distance between the clusters in which
the two endpoint LUTs reside at the given instant of the placement process (dM in Figure 8). Let us
also assume that each move performed by the placer is a swap of two randomly selected LUTs [1].
Each move will be reflected on the cost function, allowing the optimization to favor moves that
improve it, as the temperature of the anneal decreases.

The bottom of Figure 8 depicts the same architecture augmented with one type of direct connec-
tions. To appropriately model the impact that this has on the delay of the implemented connection

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:8 S. Nikolić et al.

Fig. 8. Difficulty of appropriately utilizing direct connections with simulated-annealing-based placement.
To implement a circuit connection as direct, both of its endpoints must be aligned with the endpoints of
the direct connection. This is not easy to achieve using the standard moves of swapping pairs of randomly
selected objects [1]. Once a connection is implemented as direct, changing it back to programmable would
be expensive, which could lead to suboptimal usage of scarce direct connections.

of the circuit, we must introduce a discontinuity in the cost function. Namely, if A and B are po-
sitioned at LUT1, two clusters apart horizontally, the direct connection may be used, resulting in
a dramatic drop in delay. In all other cases, the delay is the same as it would have been in the
original architecture without direct connections. This is illustrated by the formula at the bottom
of Figure 8, with cluster (u).x (cluster (u).y) designating the x− (y−) coordinate of the cluster in
which the nodeu resides andu �→ LUT1 describing the fact thatu is placed at LUT1 of its respective
cluster. Let us assume that a move of B was generated, resulting in the placement in the middle of
the figure. In order for the LUTs to be properly aligned with the endpoints of the direct connection,
a move bringing A to LUT1 of its current cluster must be generated. If this happens, the sudden
drop in cost function will make it unlikely for the connection to be broken again, provided that
the temperature is low enough.

This illustrates two important issues: (1) if one endpoint of a circuit connection is aligned with
an endpoint of a direct connection of the FPGA (B in the middle placement above), there are no
guarantees that the other endpoint will be appropriately moved to complete the implementation of
the circuit connection as direct, before the first endpoint moves again; and (2) once a connection is
implemented as direct, unless the temperature is high, it is unlikely that it will move back to being
programmable, which may prevent another, more critical connection of the circuit from using the
particular direct connection of the FPGA.

While both of these issues could perhaps be partially mitigated by clever engineering of the
cost function and adoption of directed moves [30], it is evident that an approach better suited
to the landscape created by the direct connections would be highly beneficial. Needless to say,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:9

appropriately capturing the discontinuities of the direct connections in other popular frameworks
for large-scale placement, such as analytical [22], would be difficult as well.

Adopting a detailed placement approach can resolve most of the above issues. This amounts
to starting from a general placement produced by a placer, which is unaware of the existence
of the direct connections and then strategically repositioning some of the nodes to improve the
critical path delay through appropriate use of the fast direct connections. Another benefit of this
approach is that it can be largely oblivious to which general placement algorithm is used to produce
the starting placement. This would have been much more difficult if the direct connections were
not strictly increasing the flexibility of the interconnect, as discussed in Section 2. Of course, the
starting general placement does impact the ability of the detailed placer to improve the critical
path delay. A more detailed discussion of this issue is given in Section 9.2.3.

4 PRIOR WORK ON DETAILED PLACERS

There is an abundance of published work introducing detailed placers, both for FPGAs and
ASICs [2, 8, 9, 15, 16, 23, 24]. Most of them operate on a sliding-window principle, where a fixed
region of the chip is selected for optimization and then iteratively changed by sliding the window
that determines it [20]. One basic distinction between the various algorithms is how they optimize
inside the window. Some of them rely on heuristics [8, 15], while others use exact optimization
methods, such as ILP [2, 16], SAT [24], or SMT [23]. The virtue of heuristics lies in their scala-
bility, which allows them to target larger windows at once, possibly increasing the improvement
margin. Exact methods are usually not as scalable, so they are confined to smaller windows, with
possibly smaller improvement margin, but are guaranteed to actually meet it. We take a different
approach to selecting which portion of the circuit will be optimized and describe it in more details
in Section 5. In this section, we analyze the existing approaches to provide motivation for intro-
ducing the proposed one. We also express the reasoning that led us to decide on using ILP as the
optimization technique.

4.1 Movable Node Selection

The sliding-window approach to guiding local optimization is illustrated in Figure 9. One obvious
downside of this approach is that it gives little control over which edges of the circuit’s timing
graph may suffer a change in delay as a result of moving the nodes inside the window. These
edges are highlighted in red in Figure 9.

Detailed placers that iteratively optimize edges of the critical path itself, thus avoiding this prob-
lem, have also been proposed [9]. Such an approach naturally alleviates the potentially artificial
spatial constraints imposed by the sliding windows, as illustrated in Figure 10(a). However, opti-
mizing only one simple path at a time may not be sufficient to actually decrease the critical path
delay. Hence, we adopt a related, but much more powerful approach, which selects a number of
edges whose timing should be improved, regardless of their location in the timing graph, such that
optimizing them maximizes the final critical path delay reduction. It then considers the endpoint
nodes of the selected edges movable, regardless of the location of these nodes on the FPGA grid. An
example of applying this method, described in Section 5, on the same circuit used to demonstrate
the previous two approaches is shown in Figure 10(b). Clearly, the selected edges form a more com-
plex topology in the timing graph than a simple path, while the movable nodes are distributed over
a larger set of clusters than in either of the two previously described methods. Another example
of spatial distribution of movable nodes obtained by the method proposed in Section 5 is shown
in Figure 1. Given that each cell represents a cluster of 10 LUTs, that is, 10 potentially movable
objects, a sliding-window approach would likely be limited to not more than a few cells in width
and height [20].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:10 S. Nikolić et al.

Fig. 9. Sliding-window-based movable node selection [20]. The figure shows two different positions of a 3×3
cluster sliding window, on a portion of an FPGA containing a placement of the blob_merge circuit. All nodes
inside the window are considered movable. Red edges in the timing graph of the circuit, shown on the left,
connect different movable nodes. Clearly, the method gives little control over which edges may have their
delays improved as a result of the moves.

4.2 Movement Freedom

A sliding-window-based selection method typically assumes that each node in the window can
move anywhere within the window, as illustrated in Figure 11(a). We take a similar approach by
allowing each movable node to move anywhere within a square of half-width W , centered at its
original cluster. This is illustrated in Figure 11(b).

The fact that the sliding-window-based movable node selection assumes all nodes within the
window to be movable has one important benefit: the subsequent optimization can guarantee that
there are no overlaps between nodes. While the method that we use also guarantees that at the end
of the optimization there will be no overlaps between the movable nodes, it leaves a possibility for
a movable node to overlap with a stationary one, within its movement region. Such overlaps are
only removed in a final postprocessing step, discussed in Section 7.2. The rationale is that if the set
of movable nodes is appropriately selected, the benefit of optimally positioning them would most
of the time far outweigh the penalty suffered from suboptimally moving some other, less critical
nodes standing in their way. If all nodes within the movement regions of the originally selected
movable nodes (Figure 11(b)) were to be considered movable at the same time, the problem would
quickly become impractically large, unless the number of originally selected movable nodes is
itself severely restricted.

4.3 Choice of the Optimization Method

Direct connections are very sparse in a typical architecture considered here, thus requiring a high
level of precision in placing the LUTs if the right connections of the circuit are to be aligned with
them. As we have seen in Section 3.4, this leaves heuristics with less space for doing a good-enough
job at various points in the circuit that would accumulate to a large net improvement than they

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:11

Fig. 10. Movable node selection techniques without spatial constraints. Figure 10(a) shows the results of
deeming the nodes on a critical path of the circuit movable [9], for the same example previously shown in
Figure 9. Figure 10(b) shows results of applying the method introduced in Section 5. This method also imposes
no constraints on the spatial distribution of movable nodes, but it enables optimization of subgraphs of the
timing graph of arbitrary complexity, maximizing the chance that the critical path delay is actually reduced
once the selected nodes are moved. We note again that only a portion of the FPGA is shown in the figure;
the movable nodes are in fact not in the corner.

could have had if the direct connections were a more abundant resource. For this reason, instead
of attempting to design elaborate heuristics, we choose the exact approach. In particular, we opt
for ILP, as it allows straightforward modeling of the timing information. Yet, we formulate the
placement problem itself in a way that can be easily converted to SAT.

The necessity to precisely position individual LUTs increases the potential number of movable
nodes as well as candidate locations for each of them by an order of magnitude when compared
to the classical problem of placing entire clusters [9]. However, as we will see shortly, it is exactly
the sparsity of the dedicated interconnect that will help us resolve this problem, by enabling more
efficient ILP formulations than in the case of general detailed placement [24].

5 THE LP-BASED NODE SELECTOR

The first step in our placement flow is to determine the LUTs that will be moved from their initial
positions. This problem is fundamentally linked to determining which connections of the circuit
should have their delays reduced so that the reduction of the critical path delay is maximized.

5.1 Which Connections Should be Improved?

Let T be the critical path delay that should be met after the detailed placement. Our goal is to
select a minimal number of edges of the circuit’s timing graph, which should have their delays
improved by their endpoint nodes being aligned with the endpoints of the direct connections of
the FPGA, such that the postplacement critical path delay is reduced belowT . The rationale is that
the fewer edges there are to be improved, the fewer nodes will need to be moved and more likely

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:12 S. Nikolić et al.

Fig. 11. Movement freedom of movable nodes. Figure 11(a) represents a portion of the FPGA with a sliding
window of 3 × 3 clusters used to select the movable nodes. Inside this window, all nodes are movable and
each of them can be placed anywhere in the window. Figure 11(b) shows the approach we take in this work.
Only a subset of nodes in each square region of the FPGA is selected for movement. Each of them can be
placed at any position inside a square of half-widthW , centered at its original cluster.

it is that the placement method of Section 6 will be able to find a solution in the allowed runtime
budget.

Let τu,v be the initial postplacement delay of the connection e = (u,v), as determined by the
general placer. In the example of Figure 12, this is illustrated using a simple model based on Man-
hattan distance between the initial clusters of u and v , which we already saw in Section 3.4. In
practice, any model used by the general placer can be used for obtaining the initial delays. Let
us also assign to each edge e = (u,v) a variable impu,v describing how much its delay should be
improved so that the critical path delay bound is met. Then, the final delay of the edge can be ex-
pressed as tu,v = τu,v − impu,v . In order to reduce the critical path delay belowT , we need to find
an assignment of imp-variables, which will appropriately reduce the delay of each edge. We can
achieve this by solving a Linear Program (LP) of the following form, introduced by Hambrusch
and Tu [12]:

min
∑

(u,v)∈E

impu,v , (1)

s.t. tau ≤ T , ∀u ∈ V , (2)

tav ≥ tau + tu,v , ∀(u,v) ∈ E, (3)

0 ≤ impu,v ≤ Iu,v , ∀(u,v) ∈ E. (4)

Here, tau represents the arrival time of nodeu, and constraints (2)–(3) model the timing constraints
in the usual manner. Note that to actually minimize the number of edges selected for improvement,
the objective should be

min �
�

{
(u,v) ∈ E : impu,v > 0

}
�
�, (5)

but representing it would require introduction of integral variables, which would render solving
the program on the entire timing graph prohibitive.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:13

Fig. 12. Illustration of LP variables. Each edge in the timing graph of a circuit is assigned an imp-variable
determining the amount by which its delay should be improved so that the target critical path delay is met.
In order for the assignments of values to the imp-variables to reflect the restrictions on node movement,
each of the variables is bounded from above by the difference between the initial postplacement delay and
the minimum achievable delay, given the movement regions of its endpoint nodes.

The imp-variables must be nonnegative, as assigning a negative improvement to an edge with
substantial slack could allow increasing the imp-variables of many other edges without changing
the minimization objective. Representing the possibility of edges being slowed down due to node
movement, to which negative imp-variables would correspond, is not needed at this level, where
we only wish to determine which edges should be improved. This situation changes during actual
movement of nodes and hence in Section 6, we model the full range of delay values an edge can
attain.

Similarly, the minimum values that can be assigned to the t-variables should reflect the mini-
mum achievable delay for the particular edge, given the movement regions of its endpoint nodes.
Hence, the imp-variables are bounded from above by the difference between the initial postplace-
ment delay τ and the minimum delay that the edge can realistically achieve (the I -variables in
(4)), as illustrated in Figure 12. Since we are constructing a dedicated placer for architectures with
direct connections between LUTs, we assume that the starting placement is of high quality and
that the delay of each edge can only be improved if it is implemented by a direct connection. For
example, if the initial clusters of A and C in Figure 12 were one more cluster apart, horizontally,
IA,C would have been zero, forW = 1.

5.2 Determining Movable Nodes

To extract the set of movable nodes, which we denote asVm , from the solution of the above LP, we
simply introduce a threshold θ on the minimum delay improvement. Then, the set of edges, which
should be improved and are thus candidates for implementation by the direct connections of the
FPGA is Es =

{
(u,v) ∈ E : impu,v ≥ θ

}
. To actually implement these edges with direct connections,

nodes incident to them must be moved and thus enter Vm .

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:14 S. Nikolić et al.

Controlling |Vm | can be done only indirectly, by specifying the bound on the critical path delay,
T . In general, the smaller the value ofT , the more edges will have to be improved to meet it and |Vm |
will rise accordingly. The fractional nature of the imp-variables, however, allows improvement to
be spread among more edges than necessary, meaning that a more relaxed T does not necessarily
result in smaller |Vm |. We comment on this further in Section 8.1, while the explanation of choosing
the critical path delay bound is given in Section 7.

6 THE ILP-BASED PLACER

In this section, we discuss various aspects of formulating the ILP that models the movement of the
nodes selected by the process described in the previous section.

6.1 Naive ILP Formulation

Each LUT of the FPGA can be described by a triple (x ,y, i), where x and y are the coordinates of
its cluster and i the index within it. Let P (u,W) be the set of positions within the square of half-
widthW , centered at the initial cluster of a movable node u (Figure 11). Each LUT inside P (u,W)
is a candidate for placing u. To each node u ∈ Vm , we can assign the following set of variables:
xu,p ∈ {0, 1},∀p ∈ P (u,W). The variable xu,p is 1 iff nodeu is placed at positionp. The following set
of constraints describes a valid placement, where we again note that overlaps with nodes outside
Vm are removed in a postprocessing step:

∑

u ∈Vm

xu,p ≤ 1, ∀p, (6)

∑

p∈P (u,W)

xu,p = 1, ∀u . (7)

The first set of constraints prevents overlaps of movable nodes and the second makes sure that each
movable node is assigned a unique position. Let Eψ = {(u,v) ∈ E\Es : u ∈ Vm ∨v ∈ Vm } be the set
of edges, which have at least one incident movable node and are thus affected by the placement,
but have not been selected for improvement. The delay of each edge in Es ∪ Eψ is determined by
the location of its endpoints:

tu,v =
∑

pu ∈P (u,W),pv ∈P (v,W)

τpu ,pv
eu,v,pu,pv

, (8)

eu,v,pu,pv
∈ {0, 1}, ∀pu ,pv , (9)

eu,v,pu,pv
≤ xu,pu

, (10)

eu,v,pu,pv
≤ xv,pv

, (11)

eu,v,pu,pv
+ 1 ≥ xu,pu

+ xv,pv
. (12)

Here, τpu ,pv
are constants corresponding to the least delay of the connection with its endpoints

placed at pu and pv , respectively. Constraints (10)–(12) are merely one way of linearizing a product
of two binary variables [31]. With the timing graph modeled as in the selection LP (constraints (2)–
(3)), we have a complete formulation of the placement ILP. If (u, v) is an edge from Eψ , some
variables may become constants, simplifying the corresponding constraints.

This formulation is generic and can be used to place circuits on architectures with or without
direct connections. It is also rather intuitive and well known in literature. In a very similar form,
it has been used for SAT [24] and SMT-based [23] timing-driven FPGA placement, as well as for
ILP-based wirelength-driven ASIC placement [2].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:15

The problem lies in the large number of position variables and quadratic length of delay as-
signment constraints (8) with respect to that number. Fixing W to 3—the length of the longest
connection in the architecture of Figure 2—leads to 7× 7 = 49 clusters and 490 potential positions
for each movable node. Any edge can have up to 4902 > 240,000 addends in the delay assignment
constraint (8). This is clearly an issue and we address it in the next section.

6.2 Exploiting the Sparsity of Dedicated Interconnect

Direct connections are sparse. If they were not, the width and count of the additional multiplexers
and the increased loading of LUT outputs would greatly reduce their speed, slowing down the
general routing as well. In the architecture of Figure 2, there are only 14 connections originating
in one cluster.

Let Ed (u,v) ⊆ P (u,W) × P (v,W) be the set of direct connections that can implement (cover)
the edge (u,v) ∈ Es . The exact position of a LUT matters only when an edge e ∈ Es incident to
it is being covered. In all other cases, knowing its cluster is sufficient, since placement-time delay
models of general placers rarely differentiate between different exact positions of LUTs [21], which
may be subject to change during routing, to reduce congestion [14].

Instead of listing all exact positions for all movable LUTs and inspecting which edges are covered,
we can list the edge covering possibilities and derive the LUT positions from them. LetC (u,W) be
the set of clusters within the square of half-width W , centered at the initial cluster of a movable
node u. A binary variable xu,c indicates that u is placed in cluster c ∈ C (u,W). We can now model
the edge delays as follows:

tu,v =
∑

(pu ,pv)∈Ed (u,v)

τpu ,pv
eu,v,pu,pv

+ cu,v

∑

cu ∈C (u,W),cv ∈C (v,W)

τcu ,cv
eu,v,cu ,cv

, (13)

cu,v = 1 −
∑

(pu ,pv)∈Ed (u,v)

eu,v,pu,pv
. (14)

If there is a direct connection that covers the edge (u,v) in the current subproblem, the appropri-
ate τ from the first sum will determine the delay because the coverage indicator cu,v will be 0. In
all other cases, the indicator will be 1, causing the second sum to determine the delay. The τ con-
stants in that sum are the delays between the two appropriate clusters, as modeled by the general
placer. The eu,v,cu ,cv

variables are products of the cluster position variables, linearized using con-
straints similar to constraints (10)–(12). Another level of linearlization is applied to products with
the coverage indicators. Note that constraints (13–14) are merely an ILP-encoding of a generalized
version of the delay model used in Figure 8. While the sparsity of direct connections created prob-
lems for convergence of common formulations of simulated-annealing-based placement, it allows
for compact modeling of the problem as an ILP.

The maximum length of the delay assignment constraint for W = 3 and the architecture of
Figure 2 is now 49 × 14 + 492 � 4902. The first addend corresponds to at most 49 ways to choose
the starting cluster for the direct connection and 14 ways to choose the exact direct connection
leaving it, while the second addend amounts to the number of cluster pairs that determine the
edge delay if it is implemented as programmable. Similarly, the number of exact position variables
for each node u ∈ Vm is reduced from |P (u,W) | to | ∪{u,v }∈Es

{pu : {pu ,pv } ∈ Ed (u,v)}|; that is, to
only those positions implied by covering of some edge incident to the given node.

Our model is still not complete. The linearizations (10)–(12) are of course kept, and they cause
any eu,v,pu,pv

to imply exact positions of u and v . What is missing is that each exact position
xu,p=(x,y,i) implies the corresponding cluster position xu,c=(x,y) . The following set of constraints

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:16 S. Nikolić et al.

Fig. 13. Illustration of timing graph compaction through simplification of fixed-delay subgraphs. Green
edges are selected for improvement (∈ Es) and their endpoint nodes are movable (∈ Vm). Red edges are
affected by the movement of nodes, but were not selected for improvement (∈ Eψ). The remaining edges,
shown in black, are unaffected by node movement. The graph on the right shows how the starting graph on
the left can be simplified, by excluding some of its fixed-delay subgraphs and replacing them with additional
constraining nodes, depicted as squares. Edge (m,M) is used to store the delay of the longest path in the
part of the timing graph not represented in the compacted version (G[V \V ′]).

achieves that:
xu,c=(x,y) ≥

∑

i

xu,p=(x,y,i), ∀u ∈ Vm , c ∈ C (u,W). (15)

Finally, we need to make sure that each node is assigned exactly one cluster, using constraints
similar to (7).

6.3 Delay-Based Model Compaction

Further compaction of the model can be achieved by excluding the irrelevant portions of the timing
graph. Edges could be irrelevant either because their delay does not change during placement and
they do not carry any information relevant for computing of arrival and required times of the nodes
affected by placement, or because they can never become critical, under any feasible assignment
of delays to the remaining edges.

6.3.1 Simplification of Fixed-Delay Subgraphs. An example of simplification of the fixed-delay
subgraphs is shown in Figure 13, where the graphs are constructed merely for the purpose of illus-
tration and have no further meaning. Edges selected for improvement (Es), and the nodes incident
to them (Vm) are shown in green, while other edges whose delay may change as nodes move (Eψ) as
well as the stationary nodes incident to them are shown in red. For sufficient timing information
to be represented, all colored nodes from the graph in the figure are kept in its compacted ver-
sion. Node 14 must also be kept, as it informs the solver that there is an alternative path between
nodes 11 and 18, which may at some point become the determining factor for the arrival time of
node 18. If that happens, no more effort should be spent on trying to further decrease this arrival
time, by decreasing the delay of edge (15, 17). Instead, an attempt to optimize other edges should
be made.

Let us now take a look at node 13. Since none of the movable nodes is reachable from it, it cannot
affect the arrival time of any of them. It can, however, affect their required time and it is important

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:17

to represent this correctly in the compacted graph, as otherwise, critical subgraphs may be left out
of optimization. To do this, it is not necessary to include any nodes from the transitive fanout of
13, because all the delays in it are unaffected by repositioning of the movable nodes. Instead, we
can introduce an additional node, labeled as d in Figure 13, and connect it to 11 by an edge with a
delay equal to the delay of the edge between 11 and 13 (fixed throughout the placement as neither
11 nor 13 are movable) increased by the difference between the original critical path delay and
the required time of 13. This increase represents the total delay of the downstream portion of the
graph unaffected by the movement of nodes.

A similar approach can be applied to, e.g., node 3, but with its arrival time being relevant to
represent the fixed delay of the upstream portion of the graph. This can be generalized as follows:

(1) Find all nodes V ′ ∈ V , which can both reach and are reachable from nodes in Vm .
(2) For each v added to V ′ in step 1 and each u : (u,v) ∈ E, if u was not added to V ′ in step 1,

add a new node n to V ′ and connect v to it by an edge with delay tn,v = tu,v + tau , where
tau is the arrival time of u.

(3) For each u added to V ′ in step 1 and each v : (u,v) ∈ E, if v was not added to V ′ in step 1,
add a new node n toV ′ and connect it to u by an edge with delay tu,n = tu,v +T − trv , where
trv is the required time of v and T the original critical path delay.

Finally, we need to add another edge to the compacted graph which will represent the critical
path delay of the portion of the original graph which was excluded from its compacted version.
Otherwise, it may appear to the solver that the critical path delay can be reduced more than what is
actually possible. This edge is labeled as (m,M) in Figure 13. Although the toy example of Figure 13
fails to illustrate it, given that |Es | typically does not exceed a few tens or perhaps a few hundred,
the above technique can provide great reduction in the size of the timing graph.

In principle, it would suffice to include additional nodes only for the most constraining parents/
children, in steps 2 and 3, but savings from this would not be very high, so we do not do that in our
implementation. Similarly, the path 11 → 14 → 18 could be replaced by a single edge connecting
nodes 11 and 18 and carrying the delay of the entire path. While this approach could result in
significant further compaction, generalizing it to subgraphs with more complex connectivity is
not as straightforward, so we chose to stay with the simple procedure described above.

6.3.2 Filtering Slow Edges. A lower bound on critical path delay achievable by solving the place-
ment ILP can be easily computed from the solution of the selection LP (Section 5). The maximum
delay of each edge can be easily computed by considering the allowed positions of its endpoint
nodes. We annotate the timing graph with these maximum delays and compute the slacks of all
edges, given the lower bound on the critical path delay. All edges which have a positive slack are
guaranteed not to be critical for any valid solution of the ILP and can thus be safely removed from
the timing graph.

6.3.3 Filtering Slow Position-Pairs. Another very straightforward compaction method that we
use is to compute the slacks of all edges on a timing graph annotated with the minimum achievable
delay for each edge and then remove all eu,v,pu,pv

(eu,v,cu ,cv
) position pairs for which τpu ,pv

(τcu ,cv
)

exceeds the minimum delay of (u,v) increased by its slack.

7 THE COMPLETE ALGORITHM

In this section, we combine together the two stages of the placement flow, presented in Sections 5
and 6, and introduce a postprocessing step that removes overlaps between the movable and the
stationary nodes.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:18 S. Nikolić et al.

ALGORITHM 1: Detailed Placer
1: Tincumbent ← Tstar t

2: gapincumbent ← ∞
3: Tlow ← get_lower_bound()
4: Thiдh ← Tstar t

5: while Thiдh −Tlow > T
min
δ

do

6: Ttarдet ← (Tlow +Thiдh)/2
7: movable, TLP ← lp_select_movable_nodes(Ttarдet)
8: status, placement, TI LP , gap←

ilp_place_nodes(movable, TLP ≤ T ≤ Tincumbent , Tlb =

TLP − 2Tmin
δ

)
9: if (TI LP < Tincumbent) ∨ ((TI LP = Tincumbent) ∧ (gap <

gapincumbent))
10: update_incumbent(TI LP , gap, placement)
11: if (gap < 1) ∨ (status = infeas)
12: Thiдh ← Ttarдet

13: else

14: Tlow ← Ttarдet

15: legalize(incumbent)

7.1 Composing the Detailed Placer

We use a simple binary search to minimize the target critical path delay specified when selecting
the movable nodes (Section 5). The lower bound of the search range is determined by performing
a timing analysis on the timing graph of the circuit with the delay of each edge replaced by the
minimum it can attain, given the movement regions of its endpoint nodes. This is represented by
line 3 of Algorithm 1. The upper bound is set to the critical path delay of the starting placement
produced by the general placer, assuming that all connections are implemented as programmable.
The search stops when the two bounds differ less thanTmin

δ
, which we set to 30 ps in the subsequent

experiments.
The main loop consists of solving an improvement LP with the current target bound, to obtain

the set of movable nodes (line 7; see Section 5) followed by solving the related placement ILP to
actually position the movable nodes (line 8; see Section 6). The solver is instructed to minimize
the critical path delay, TI LP , as much as possible, given the allowed runtime budget. The solution
is constrained to have a critical path delay at most as large as the smallest one encountered so far,
Tincumbent . The lower bound on achievable critical path delay used for pruning the edges which can
never become critical (see Section 6.3) is set to the critical path delay obtained after thresholding
the LP solution, TLP (see Section 5), reduced slightly to leave some margin for round-off.

If the obtained critical path delay, TI LP , is lower than the current best, Tincumbent , or they are
equal, but TI LP is proven by the solver to be closer to the optimum for the current set of movable
nodes, the incumbent solution is updated (line 10). When the solution is proven to be within 1% of
the optimum, the algorithm considers that the current placement problem was successfully solved
and that an attempt to achieve more critical path delay reduction should be made. Hence, the
binary search range is constricted from the right, on line 12. The same happens when the problem
is proven infeasible. This means that the incumbent solution cannot be improved with the current
selection of movable nodes. To resolve this, the set of movable nodes should likely be increased,
which is achieved by reducing the target critical path delay so that more edges need to be improved

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:19

Fig. 14. Determining movement cost between a pair of clusters during legalization. The figure illustrates the
cost of moving nodes 2 and 3 from the cluster (3, 0) to the cluster (4, 0). The post move worst negative slack
is the same for both nodes. Hence, the timing cost difference between the starting situation and after the
move is used to break the tie. The difference is lower for node 3; hence, it will be the moved by the legalizer.

to meet it. If the solver failed to provide a definitive answer in the allowed runtime budget (even
if it did find a new incumbent solution, but failed to prove it optimal) the problem is deemed too
difficult to be solved in the allowed runtime budget and the binary search range is constricted
from the left (line 14) in a hope that a looser target critical path delay would result in an easier
placement problem.

Once the binary search converges, any overlaps which may have occurred between the movable
and the stationary nodes must be removed. This is done by the postprocessing step on line 15,
discussed in more detail in the next section.

7.2 Legalizer

For removing overlaps between the movable and the stationary nodes, we adapt the algorithm of
Darav et al. [7]. Since our main goal is to optimize performance of the processed circuit, the legal-
izer must be timing-aware itself, not to undo the critical path reduction achieved by the detailed
placer, unless that is necessary for achieving a legal placement.

7.2.1 Pricing LUT Movement. When faced with a decision about which LUT should be moved
between clusters A and B, as a primary factor, we use the postmove worst negative slack of all
connections incident to the LUT we are attempting to move, and choose the LUT for which the
magnitude of this slack is the smallest. This is illustrated in Figure 14. In case of ties, we compute
the difference in the timing cost of the LUT before and after the move and pick the LUT with the
smallest increase in this cost. The timing cost is adopted from VPR’s timing-driven placer [21]:

critu,v = 1 −
slacku,v

T
, (16)

tcost
u =

∑

(u,v)∈E

tu,v × critα
u,v +

∑

(p,u)∈E

tp,u × critα
p,u , α ∈ R+. (17)

Here, T designates the current critical path delay. For the selectivity parameter α , we use 8 in the
subsequent experiments. We first run the legalizer without performing any slack updates, relying
on the values obtained in the first static timing analysis after the detailed placement converged.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:20 S. Nikolić et al.

If the legalized critical path delay exceeds the one computed by the ILP solver during detailed
placement by more than 100 ps, we rerun the legalizer, committing each move to the timing graph
as soon as it is decided and updating the slacks accordingly, to prevent suboptimal local move
decisions from having a large cumulative effect.

7.2.2 Bounding Overlaps. Success of targeted application of the placement ILP to a limited set
of movable nodes spread over wide regions of the starting placement relies on the observation
that in many circuits, the gain from appropriately positioning a small number of critical nodes far
exceeds the loss created by suboptimally moving other, less critical nodes that stand in their way.
However, this only holds if not too many nodes need to be moved from their original positions
during postprocessing. Otherwise, the timing information that was presented to the ILP solver,
which assumes that all stationary nodes will retain their original positions, may be too signifi-
cantly disturbed in the overlap removal process, leading to an inevitable loss in the achieved delay
reduction. To prevent this from happening, we need to control the amount of overlap occurring in
each cluster. This is easily achieved with the help of the following constraints:

∑

u ∈Vm

xu,c ≤ ωc , ∀c . (18)

The constant ωc ∈ N sets a limit on the number of movable nodes, which can be placed in cluster
c = (x ,y). We determine it as follows:

s = |{V \Vm } ∩ c |, (19)

ωc = N − s +min(s,δ). (20)

Constant s holds the number of stationary nodes in cluster c , while N is the cluster size in the
underlying FPGA architecture. The allowed overflow is determined by the parameter δ , which we
set at 2 in the subsequent experiments, as we observed that this value does not limit achieved post-
placement delay reduction and rarely leads to an increase in this delay after legalization. The N −s
part of Equation (20) specifies that all positions, which were originally unoccupied, or were occu-
pied by the movable nodes, can be filled by the movable nodes. The min(s,δ) part guarantees that
overlaps within the cluster can be resolved by removal of stationary nodes in the postprocessing
step. As mentioned before, overlaps between movable nodes, which are assigned exact positions
are impossible due to constraints (6). However, some of the movable nodes may not be assigned
an exact position but merely a cluster, in which case they could overlap with other movable nodes.
Since the movable nodes are necessarily critical (albeit for the LP target critical path delay), as oth-
erwise the minimum improvement solution of the improvement LP (Section 5) would not affect
them, they should be positioned with care. Allowing them to overlap with other movable nodes,
by letting the amount of overlap exceed the number of stationary nodes in the cluster, would leave
their positioning to the fast but suboptimal legalizer.

8 OPTIMIZATION

In the previous sections, we described the basic form of the proposed algorithm. It first solves an LP
to determine which edges in the circuit’s timing graph should have their delays reduced by moving
their endpoint nodes to align them with the endpoint LUTs of the direct connections available in
the FPGA architecture. Then it solves a related ILP to perform the actual placement. We focused on
simplifying the ILP model to the extent that would allow for its solving in reasonable time. Until
now, the solution of the improvement LP determined the formulation of the placement ILP, but
we have done little to formulate the improvement LP itself in such a manner that its solution is
more likely to produce a feasible ILP. In this section we focus on extending the formulation of the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:21

Fig. 15. Pitfalls of the basic selection LP. An architecture is shown on the left, and a piece of a circuit on
the right. A solution selecting both circuit connections for improvement is valid, but not supported by the
architecture in which each LUT has only one incident direct connection.

improvement LP to more tightly couple it to the placement ILP. We also extend the formulation of
the placement ILP itself, so as to make it easier to solve.

8.1 Specialization of the Improvement LP to the Architecture

Keeping the set of edges selected for improvement (the number of movable nodes, |Vm |) reasonable
is necessary for the related placement ILP to be solved in a reasonable amount of time. That was the
reason for which the formulation of the improvement LP presented in Section 5 minimized the total
delay improvement. Let us for the moment disregard the aforementioned fact that minimizing the
total improvement does not necessarily translate to smaller |Vm |, nor does this necessarily translate
to an easier-to-solve ILP. Let us assume instead that the obtained ILP can be solved in the allowed
amount of time. The ILP can still be infeasible, for various different reasons and we would like to
predict and ideally prevent this already at the LP level. For example, simultaneous improvement
of two different connections might imply two nodes being placed at the same position or one node
being placed at two distinct positions at once.

Aside from the initial placement of the circuit and the allowed movement regions, the FPGA
architecture strongly influences feasibility of the placement ILPs constructed from the solutions
of the improvement LPs. Figure 15 shows a simple architecture and a piece of a circuit. With the
current LP formulation, there is nothing that would prevent the solution from including both edges
of the circuit, although it is clear that the architecture will not be able to improve both of them.
We cannot enforce exclusivity in choosing between these two edges without introducing integer
variables, but we can use additional constraints to increase the chance of obtaining solutions that
the architecture can support. To begin with, we can introduce a bound on the sum of the improve-
ments of the two edges, equal to the maximum of the two individual bounds. This still does not
prevent the solution from including both connections, but covering only one of them during the
placement process will suffice for this short path to meet what is expected of it in terms of over-
all delay reduction. For that reason, we introduce pairwise improvement bounds, for each pair of
edges sharing a common node. In general, this will not be the maximum of the two individual
bounds, but the largest total improvement achievable within the movement regions of the three
incident nodes. To further improve feasibility, we include bounds on the total improvement of the
incoming, the outgoing, and all the edges incident to each individual node.

8.2 Solving Successive ILPs

During the binary search for the smallest achievable critical path delay, the placer may have to
solve many ILPs. However, since all of them are describing a detailed placement problem of the
same circuit, on the same FPGA architecture, and with the same starting general placement, they
will inevitably be related. We can use this fact to make the solution of the ILPs simpler, as well as
improve the chances that they are feasible, by slightly adjusting the LP formulation.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:22 S. Nikolić et al.

8.2.1 Enforcing ILP Solution Overlaps. During experimentation, we observed that the number of
covered edges rarely substantially decreases between two consecutive incumbent solutions. More-
over, in most cases that we have inspected, there was a substantial overlap between two consec-
utive incumbent solutions in terms of which edges were covered in them. We can use this fact
to help the solver find feasible solutions more easily. Let Ei

s be the set of edges selected for im-
provement in the problem that led to the incumbent solution and Ei

c ⊆ Ei
s the set of edges that are

actually covered in the incumbent solution. We denote the set of edges selected for improvement
in the current problem as Es , like before. Similarly, Ec denotes the set of edges covered in a valid
solution of the current problem. Then we add the following two constraints to the ILP:

|Ec | ≥ η ��
�
Ei

c
�
�
�
× |Es |

max
(
|Es | , ��

�
Ei

s
�
�
�

) , η ∈ (0, 1), (21)

�
�
�
Ec ∩ Ei

c
�
�
�
≥ ζ ��

�
Ei

c
�
�
�
×
�
�
�
Es ∩ Ei

s
�
�
�

�
�
�
Ei

s
�
�
�

, ζ ∈ (0, 1). (22)

The first constraint specifies the minimum number of covered edges, with respect to the number
of covered edges in the incumbent solution, appropriately scaled down if the number of edges
selected for improvement is smaller than in the problem which produced the incumbent solution.
The second constraint specifies the minimum amount of overlap between the set of covered edges
in the incumbent solution and the solution of the current problem. Note that |Ei

c | and |Ei
s | are

constants obtained by inspecting the incumbent solution, while |Es | and |Es∩Ei
s | are also constants

obtained from the solution of the improvement LP. Hence, the right-hand side of both constraints
is constant. The left-hand side is a single sum, encoded using the coverage indicators cu,v = 1−cu,v ,
where cu,v was introduced in Section 6.2. In the subsequent experiments, parameters η and ζ are
set to empirically determined values of 0.7 and 0.3, respectively. In general, there is no requirement
that η + ζ = 1.

8.2.2 Using ILP Solutions to Improve LP Formulation. Anticipating which edges selected for
improvement will not actually improve due to conflicts with improvement of other selected edges
is difficult at the LP level. On the other hand, whenever the ILP returns a feasible solution, it is
possible to inspect it for selected edges, which did not actually get covered and discourage their
repeated selection in the LP solution. To do that, we extend the objective of the LP to

min
∑

(u,v)∈E

αu,vimpu,v , αu,v ∈ R+ ∪ {0}. (23)

We temporarily set αu,v to 0 for all edges covered by the incumbent solution (Ei
c), to prevent unnec-

essary restriction of possible overlap between it and the solution of the next problem (Section 8.2.1).
For the remaining edges of the timing graph, the coefficients are initially set to 1. Each time a so-
lution to the ILP is found, for every edge (u,v) ∈ Es , we multiply αu,v by 0.9 if it is covered by the
solution and 1.1 if it is not.

In this manner, we encourage the solution of the improvement LPs to include edges that were re-
peatedly shown to be successfully coverable and discourage it from selecting the ones, which were
repeatedly shown to be difficult to cover. Note that since we do not modify the bound on achiev-
able improvement of any edge, but merely the way in which the invested improvement enters the
objective, if the target critical path delay is small enough to require selection of edges which over
time grew expensive, there is nothing that would prevent this from happening. Needless to say,
the exact values of the scaling parameters can be changed as required.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:23

Fig. 16. Example used to illustrate formulation tightening through node degree matching.

8.3 ILP Formulation Tightening

In Section 6.2, we have exploited a specific characteristic of FPGA architectures with direct con-
nections to encode the placement ILP much more efficiently. We can exploit characteristics of a
particular architecture further, but this time to produce additional constraints that will tighten the
formulation of the ILP.

The approach that we use is to classify LUT positions based on the number of incoming and
outgoing direct connections they have. Then, we introduce constraints, which keep count of the
incoming and outgoing direct connections that each movable node has under the current assign-
ment of values to the variables. Finally, we use these counts in implications that help exclude the
positions, which cannot accommodate the required number of direct connections. To illustrate
this, let us take a look at the example in Figure 16.

Let us for the sake of simplicity neglect the timing information, assume that all nodes of the
circuit are movable and that the objective is to maximize the number of covered edges. This can
be described with the following ILP:

max cA,B + cA,C ,

cA,B = eA,B, (0,0,3), (1,0,2) + eA,B, (0,0,3), (1,0,1) + eA,B, (0,0,1), (1,0,0),

cA,C = eA,C, (0,0,3), (1,0,2) + eA,C, (0,0,3), (1,0,1) + eA,C, (0,0,1), (1,0,0),

eA,B, (0,0,3), (1,0,2) ≤ xA, (0,0,3),xB, (1,0,2) ; eA,B, (0,0,3), (1,0,2) + 1 ≥ xA, (0,0,3) + xB, (1,0,2),

eA,B, (0,0,3), (1,0,1) ≤ xA, (0,0,3),xB, (1,0,1) ; eA,B, (0,0,3), (1,0,1) + 1 ≥ xA, (0,0,3) + xB, (1,0,1),

eA,B, (0,0,1), (1,0,0) ≤ xA, (0,0,1),xB, (1,0,0) ; eA,B, (0,0,1), (1,0,0) + 1 ≥ xA, (0,0,1) + xB, (1,0,0),

eA,C, (0,0,3), (1,0,2) ≤ xA, (0,0,3),xC, (1,0,2) ; eA,C, (0,0,3), (1,0,2) + 1 ≥ xA, (0,0,3) + xC, (1,0,2),

eA,C, (0,0,3), (1,0,1) ≤ xA, (0,0,3),xC, (1,0,1) ; eA,C, (0,0,3), (1,0,1) + 1 ≥ xA, (0,0,3) + xC, (1,0,1),

eA,C, (0,0,1), (1,0,0) ≤ xA, (0,0,1),xC, (1,0,0) ; eA,C, (0,0,1), (1,0,0) + 1 ≥ xA, (0,0,1) + xC, (1,0,0),

xA, (0,0,3) + xA, (0,0,2) + xA, (0,0,1) + xA, (0,0,0) + xA, (1,0,3) + xA, (1,0,2) + xA, (1,0,1) + xA, (1,0,0) = 1,
xB, (0,0,3) + xB, (0,0,2) + xB, (0,0,1) + xB, (0,0,0) + xB, (1,0,3) + xB, (1,0,2) + xB, (1,0,1) + xB, (1,0,0) = 1,
xC, (0,0,3) + xC, (0,0,2) + xC, (0,0,1) + xC, (0,0,0) + xC, (1,0,3) + xC, (1,0,2) + xC, (1,0,1) + xC, (1,0,0) = 1,

xA, (0,0,3) + xB, (0,0,3) + xC, (0,0,3) ≤ 1,
xA, (0,0,2) + xB, (0,0,2) + xC, (0,0,2) ≤ 1,
xA, (0,0,1) + xB, (0,0,1) + xC, (0,0,1) ≤ 1,
xA, (0,0,0) + xB, (0,0,0) + xC, (0,0,0) ≤ 1,
xA, (1,0,3) + xB, (1,0,3) + xC, (1,0,3) ≤ 1,
xA, (1,0,2) + xB, (1,0,2) + xC, (1,0,2) ≤ 1,
xA, (1,0,1) + xB, (1,0,1) + xC, (1,0,1) ≤ 1,
xA, (1,0,0) + xB, (1,0,0) + xC, (1,0,0) ≤ 1.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:24 S. Nikolić et al.

While solving the continuous relaxation of the above program the solver could yield the following
fractional solution

eA,B, (0,0,3), (1,0,2) = eA,C, (0,0,3), (1,0,2) = eA,B, (0,0,1), (1,0,0) = eA,C, (0,0,1), (1,0,0) = 0.5,

cA,B = cA,C = 1,

xA, (0,0,3) = xA, (0,0,1) = 0.5,
xB, (1,0,2) = xC, (1,0,2) = xB, (1,0,0) = xC, (1,0,0) = 0.5,

with all other variables at 0. Of course, this solution is not feasible for the ILP itself, since it implies
that all nodes partially occupy two positions each. It would be good to make this solution infeasible
for the relaxation too. To do so, let us start by introducing covered fanout counting variables, f ou ,
and covered fanin counting variables, f iu , for each movable node. In the running example, these
would be:

f oA = cA,B + cA,C ; f iA = 0, (24)

f oB = 0; f iB = cA,B , (25)

f oC = 0; f iC = cA,C . (26)

Let us focus on f oA, since no other variable in the current example is interesting, as will soon
become apparent. Let the binary variable xu,i =

∑
pu ∈{p=(x,y, j)∈P (u,W):j=i} xu,pu

designate that the
movable nodeu is placed at LUTi in one of the clusters within its movement region. The following
implication always holds: (f oA > 1) =⇒ xA,3 = 1. To encode this, we can first introduce another
binary variable f obu,θ , indicating that f ou ≥ θ . We can assign a valid value to this variable with
the help of the following two constraints [31]

θ f obu,θ ≤ f ou , (27)

(μ − θ + 1) f obu,θ + θ − 1 ≥ f ou , (28)

where μ is the largest number of connections originating at u, which could potentially be covered
(upper bound on f ou). In the running example the constraints would be

2f obA,2 ≤ f oA, (29)

f obA,2 + 1 ≥ f oA. (30)

In the previous fractional solution, (cA,B = cA,C = 1) =⇒ f oA = 2. Hence, constraint (30) implies
that f obA,2 = 1. To complete the implication that the fanout constraint has on valid placement
positions, we merely need to add the following constraint

f obA,2 ≤ xA,3 = xA, (0,0,3) + xA, (1,0,3), (31)

which makes the previous fractional solution invalid in the continuous relaxation of the program as
well. As can be seen in Figure 2, in a typical architecture, the fanin and the fanout of LUTs is rather
small, which means that not many values of the θ -threshold need to be considered. This also allows
for combining the fanin and fanout constraints. For example, encoding (f ibu,2 ∧ f obu,1) =⇒
xu,4 would constraint a movable node with at least two covered incoming edges and one covered
outgoing edge to LUT4, as it is the only one which can support that in the architecture of Figure 2.
It is important to note, however, that depending on the value of μ, degree matching may not be as
effective as the above example illustrates. For instance, if μ and θ are 6 and 2, respectively, f obu,2

can be as low as 1/5.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:25

In principle this degree-matching approach could be recursively extended to counting the cov-
ered fanins/fanouts of predecessors and successors up to a certain distance [25], to further con-
strain the set of valid positions in the continuous relaxation. We have not tried this in practice
yet.

9 RESULTS

In this section, we present the results of applying the proposed placement algorithm on the target
architecture.

9.1 Experimental Setup

We inherit the delay modeling from our previous architectural study that produced the architec-
ture of Figure 2 [26]. We also retain the experimental methodology, along with its limitations.
Notably, we do not support carry chains, fracturable LUTs, nor sparse crossbars at the moment.
One important restriction of the previous methodology is now lifted, however. We extended VPR
to support cluster output equivalence specification after placement, independently for each cluster.
As a result, there are no longer any constraints on route-time LUT permutation for the reference
architecture, while for the one with the direct connections, only those LUTs that actually use a di-
rect connection are kept fixed; the others may be freely permuted by the router. To further improve
realism, we allow each cluster output in both architectures to reach all four adjacent routing chan-
nels. Thus, we avoid the situation where different pins have access to different channels, which is
not representative of industrial architectures, such as Agilex [5]. At the moment, we do not have
a sound method for legalizing the number of inputs to each cluster, so we increase the number of
physical cluster inputs to 60 for both architectures (the maximum for a ten 6-LUT cluster). As this
is not uncommon in industrial architectures [10, 17], we do not believe that it has any impact on
the validity of the results.

All experiments were performed on a 20-core (40-thread) Xeon-based server with 256 GB of
RAM, using CPLEX 12.10 with a timeout of 10 minutes for the solver. The reported results are
medians of five different starting placements and each circuit was routed by the delay-targeted

routing algorithm of Rubin and DeHon [28], implemented on top of VTR 7.0 [18], with the channel
width fixed at 300 tracks.

9.2 Delays

In this section, we present the impact of applying the proposed algorithm to the architecture of
Figure 2 on the critical path delay of the implemented benchmark circuits.

9.2.1 Postplacement Delays. For the cases when the LUTs are allowed to move only within their
initial clusters (W = 0) and in a region of 3 × 3 clusters centered at the initial clusters (W = 1),
the delays obtained through solving the sequence of placement ILPs (Section 7) are shown in the
columns labeled as covered in Table 1. The > 400 ps difference between the average delays of 10.09
ns and 9.68 ns is significant and translates to about 3× greater relative average improvement over
the reference, when LUTs are allowed to change clusters.

We may note that the 1.94% average improvement for theW = 0 case is noticeably lower than
what was previously reported [26]. This could be an artifact of an inferior movable node selection
method, although the lower bounds in Table 1 suggest a more fundamental cause. The cause is in
fact of architectural nature: because we use a 60- instead of a 40-input cluster architecture, a much
denser packing is obtained, bringing some of the intercluster routing delay into the clusters. Since
the architecture has no local direct connections, when W = 0, the placer cannot do anything to
improve their delay, while whenW > 0 it can. To verify the hypothesis, we reran the experiments

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:26 S. Nikolić et al.

Table 1. Delays in Nanoseconds

postplacement postrouting

lower bound covered
circuit ref. W = 0 W = 1 W = 0 W = 1 legal. −Δ[%] ref. w/ dir. mux −Δ[%] w/o dir.
raygentop 4.70 4.70 4.70 4.70 4.70 4.70 0.00 4.87 4.88 0.02 −0.21 4.88
ch_intrinsics 3.15 3.15 2.84 3.15 3.15 3.15 0.00 3.28 3.27 0.03 0.30 3.27
mkDelayWorker32B 6.83 6.83 6.55 6.83 6.58 6.58 3.66 7.09 7.04 0.03 0.71 7.36
mkSMAdapter4B 5.16 5.11 4.97 5.11 5.02 5.02 2.71 5.38 5.26 0.05 2.23 5.63
bgm 23.56 23.56 22.21 23.56 22.66 22.66 3.82 23.66 23.04 0.20 2.62 26.33
boundtop 6.10 6.01 5.57 6.01 5.73 5.73 6.07 6.05 5.82 0.05 3.80 6.37
stereovision0 3.74 3.74 3.31 3.74 3.52 3.52 5.88 3.74 3.57 0.06 4.55 4.06
diffeq1 20.45 19.48 18.24 19.81 19.19 19.19 6.16 21.16 20.01 0.12 5.43 21.86
diffeq2 15.69 14.92 13.46 15.02 14.48 14.48 7.71 16.14 15.14 0.11 6.20 16.68
blob_merge 9.90 8.76 6.79 9.44 8.90 9.16 7.47 9.89 9.21 0.11 6.88 10.56
or1200 13.08 12.66 10.76 12.77 11.69 11.75 10.17 13.12 12.20 0.23 7.01 15.66
LU8PEEng 105.05 101.07 91.47 101.49 95.57 95.63 8.97 104.86 96.45 0.98 8.02 110.17
sha 11.89 11.02 9.15 11.25 10.65 10.83 8.92 11.88 10.86 0.15 8.59 12.59
geomean 10.29 9.99 9.03 10.09 9.68 9.72 5.54 10.46 10.01 0.09 4.30 11.07

Each entry corresponds to a median of delays obtained for five different placement seeds. Entries have been computed
independently of the corresponding entries in other columns. For instance, the routed critical path delay of or1200

amounting to 12.20 ns does not necessarily correspond to the postrouting critical path delay of the placement for
which the median postplacement critical path delay of 11.75 ns was obtained. Rather, the entries state that the median
postplacement delay for this circuit was 11.75 ns, whereas the median routed delay was 12.20 ns. Similarly, the 230 ps
of overhead due to direct-connection-selection multiplexers is the median penalty that was paid and does not
necessarily correspond to the amount of overhead, which contributed to the median routed delay being 12.20 ns.

for W = 0 on a subset of circuits for which the average relative improvement was 2.22%, using
a 40-input architecture. The improvement rose to 3.55%, which is much closer to the previously
reported results [27]. This illustrates the importance of considering other architectural parameters
when deciding which direct connections are the most beneficial.

The placements forW = 0 are legal by construction, but those forW = 1 are not. The postlegal-
ization results are also reported in Table 1. The delay does sometimes deteriorate due to legaliza-
tion, but in most cases by a modest amount.

9.2.2 Postrouting Delays. The postrouting delays are reported in the column designated as w/

dir. The postlegalization relative improvement is generally retained throughout the routing pro-
cess. Many of the cases where a nonnegligible deterioration occurs can be explained by the delays
of the additional multiplexers that are not modeled during placement. Those circuit connections
that are implemented as direct are forced to suffer this additional delay, while the others are rarely
impacted by it. This is due to the sparsity of the direct connections, which causes relatively few
LUT inputs to be delayed. The difference that dedicated placement brings to the postrouting delay
is shown in Figure 17.

In the placement ILP formulation, we allow connection delays to decrease only when imple-
mented as direct. However, it is possible that some of the delay improvements in Table 1 are due
to shortening of programmable connections or packing improvement. To verify if this is the case,
we also routed the circuits placed with the dedicated algorithm, but without actually using the
direct connections. The results are reported in the w/o dir. column of Table 1. Clearly, it is not the
overall improvement of placement that led to the positive results. In fact, the dedicated placer sig-
nificantly distorts the general placement, in a way that makes sense only in the presence of direct
connections.

9.2.3 Sensitivity to the Starting Placement. In Section 3.3, we argued that it is sufficient to ap-
ply a dedicated detailed placer to a general starting placement produced without knowledge of
existence of the fast direct connections, because the additional delay decreases due to appropriate
usage of these direct connections is small compared to the amount of optimization that the general

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:27

Fig. 17. Relative change in the postrouting critical
path delay. The W = 0 and the W = 1 cases are
shown in orange and blue, respectively. The dashed
red line represents the relative change of the geo-
metric mean critical path delay over all circuits, for
W = 0, while the solid line represents the same for
W = 1.

Fig. 18. Sensitivity to starting placement. Starting
postplacement delays for all five starting place-
ments of each circuit are shown in grey. Postle-
galization delays forW = 1 are shown in blue. All
values are normalized by the maximum starting
postplacement delay occurring for the particular
circuit.

placer can achieve with respect to a random, unoptimized placement. Given that in practice, dur-
ing detailed placement, a small subset of movable nodes can be moved only to a limited distance,
how much of this further delay reduction can actually be achieved could depend on the starting
placement.

To assess this, we plot in Figure 18 the starting postplacement delays (grey) and the final post-
placement delays after legalization (blue) for all five starting placements of each circuit. All delays
corresponding to the same circuit are normalized by the largest starting postplacement delay occur-
ring for that circuit. We can see that there are significant differences in the achieved relative delay
improvement between different placements of the same circuit, even if the starting postplacement
delay is the same. A notable example is the blob_merge circuit.

As discussed in Section 3, we believe that successfully constructing a dedicated placer that would
combine global and detailed placement in a scalable manner, while actually maximizing the benefit
from using the direct connections, is not particularly likely. Nevertheless, Figure 18 suggests that
providing some information about the direct connections to the general placer may allow it to
create more opportunity for the detailed placer to improve the critical path delay.

9.3 Improvement Subgraphs

The size and the structure of the circuit subgraphs induced by the connections selected for im-
provement (the solid edges in Figure 19) influence both the time needed to solve the placement
ILPs and the achievable critical path delay reduction. Some basic properties of the last successfully
placed subgraph in the run resulting in the median postplacement delay are given in Table 2. The
circuits that achieved a final delay improvement of <3% are omitted, as their subgraphs were either
very small, or no successful placement was found for any of them.

Perhaps the most apparent feature of the subgraphs is their fragmentedness, visible in the com-

ponents columns, which show the sizes of the weakly connected components (maximal subgraphs
where every node can be reached from all others when edge orientation is neglected). The diam-

eter (longest of the shortest paths between all pairs of nodes) often remains substantial, however.
The node degrees are low, which is appropriate for the architecture of Figure 2.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:28 S. Nikolić et al.

Table 2. Properties of the Subgraphs Induced by the Connections Selected for Improvement

size components degrees

circuit |V | |E | W H # 〈|V |〉 max|V | 〈total〉 max total max in max out diameter
boundtop 29 18 18 9 11 2.64 5 1.24 3 2 1 4

25 14 18 9 11 2.27 3 1.12 2 2 1 3
stereovision0 51 39 39 13 12 4.25 16 1.53 5 4 2 6

36 20 39 12 16 2.25 3 1.11 2 2 2 3
diffeq1 38 32 7 6 6 6.33 14 1.68 6 1 5 9

31 19 7 6 12 2.58 4 1.23 3 1 2 4
diffeq2 38 33 6 4 5 7.60 17 1.74 4 3 2 11

30 17 6 4 13 2.31 3 1.13 2 2 1 3
blob_merge 49 37 4 8 15 3.27 9 1.51 5 2 4 6

47 28 4 8 19 2.47 3 1.19 2 2 2 3
or1200 97 71 14 16 26 3.73 11 1.46 3 3 2 11

87 50 14 15 37 2.35 4 1.15 3 3 1 3
LU8PEEng 334 227 24 21 111 3.01 10 1.36 5 4 5 8

294 164 24 21 130 2.26 4 1.12 3 3 2 3
sha 74 52 13 8 23 3.22 10 1.41 4 2 3 7

59 33 13 8 26 2.27 4 1.12 2 2 2 4
The shaded rows show the corresponding properties of the subgraphs induced by the connections that were
successfully improved by being implemented as direct. Columns W and H correspond respectively to the width and
the height, in number of clusters, of the region bounding the movable nodes. Angular brackets denote an average.

The subgraphs induced by the connections that are actually implemented as direct (the blue
edges in Figure 19) are noticeably smaller than the ones originally selected for improvement, but
they still cover a large portion of their edges.

Without the information on how the individual connections selected for improvement are
positioned within the entire circuit graph, it is not apparent how covering each of them influ-
ences the reduction of the critical path delay. We show one particular improvement subgraph in
Figure 19. The dashed arrows mark the edges between the movable nodes that were not selected
for improvement. It should not be surprising that they often occur as intermediate edges of paths
that were selected for improvement. The intention of the selection LPs of Section 5—although there
is no guarantee that it will actually be realized—is to select a minimal subset of edges of a path
as this directly influences the size of the placement ILPs. We can see that, in this case, the numer-
ous small connected components are not merely pieces of unrelated paths, but in fact constitute
a carefully selected subgraph of a nontrivial graph. This showcases the generality of the movable
node selection method that was mentioned in Section 4.

Another interesting observation that can be made from Figure 19 is that the connections that
were successfully covered use a wide variety of direct connections available in the architecture,
with different span lengths and directions, both vertical and horizontal. This seems to confirm
what was found in prior work [26]: that using only very simple patterns of direct connections,
such as the vertical cascades, may not expose their full potential.

9.4 Runtimes

Runtime breakdowns for the placement run that resulted in the median postplacement delay of the
given circuit are reported in Table 3. Circuits ch_intrinsics and raygentop are omitted because for
them no improvement was possible in the median case, and this was detected immediately after
computing the lower bound on achievable critical path delay (Section 7). In all cases, the number
of ILPs solved until convergence is small (≤7). For majority of the solved ILPs, a solution at least as
good as the previous best one was obtained, meaning that infeasible cases were often eliminated
at the LP level, because the sought critical path delay was impossible to meet. The LP solution

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:29

Fig. 19. Subgraph selected for improvement in the blob_merge circuit. All nodes are movable. The blue solid
arrows correspond to the edges that were successfully implemented as direct after dedicated placement. The
orange solid arrows represent the edges selected for improvement that were not successfully implemented
as direct. Finally, the dashed arrows depict the edges that exist between the movable nodes but were not
selected for improvement. Those nodes that have an incident direct connection have their final positions as
labels. The label of each blue edge corresponds to the identifier used in Figure 2 to mark the direct connection
that implemented it.

Table 3. Solution Runtime. All runtimes are in seconds

ILP preparation ILP status flexibility (last feas.) 〈ILP sol. t〉

circuit #LUTs
wall
clock

CPU 〈LP sol. t〉 〈setup t〉 feas. infeas. timeout 〈pos./u〉 〈pair/e〉 〈|tree|〉 feas. infeas.

diffeq2 322 92.05 370.63 0.05 3.12 4 0 0 42 81 73 12.88 —
diffeq1 485 156.86 810.27 0.07 3.69 5 0 0 43 78 215 22.93 —
mkSMAdapter4B 1 982 52.82 34.92 0.33 2.38 2 1 0 32 37 0 0.06 0.04
sha 2 280 2 355.68 38 358.80 0.21 6.44 5 0 2 38 88 4 561 210.42 —
or1200 3 054 279.96 1 423.68 0.11 6.71 3 0 0 44 85 682 59.12 —
boundtop 3 070 87.45 73.94 0.22 3.64 4 1 0 31 50 0 0.44 0.02
mkDelayWorker32B 5 602 127.45 110.88 0.26 5.44 3 0 0 42 39 0 0.09 —
blob_merge 6 019 2 967.47 47 072.96 0.46 4.76 5 0 2 42 93 9 455 311.82 —
stereovision0 14 779 274.80 271.00 0.41 10.13 3 1 0 36 79 0 2.13 0.02
LU8PEEng 26 455 4 637.07 55 084.80 3.43 72.80 3 0 4 37 81 4 666 264.04 —
bgm 36 480 1 624.23 3 445.75 3.38 71.54 4 0 0 36 82 5 412 43.03 —

Columns under ILP preparation hold the average time taken to set up each ILP as well as the average time taken to
solve the preceding LP. Columns under ILP status hold the number of algorithm iterations which resulted in a feasible
ILP, an infeasible ILP, and a timed-out ILP, respectively. Columns under flexibility hold the average number of
positions per movable node (covering position pairs per edge selected for improvement). Finally, columns under
〈ILP sol.t〉 hold the average time taken by the ILP solver to find a feasible solution (prove infeasibility), as well as the
average size of the branching tree. The remaining runtime entering the wall clock time includes loading of
datastructures, setting up the initial LP, attempts to solve infeasible LPs, and final legalization.

time was generally very small, with a trend of increasing with the increasing circuit size, which
is expected since the LP models the entire circuit. This solution time can be further reduced by
considering only the critical subgraphs of the timing graphs.

The solution times for the ILPs are displayed in the last two columns of the table. There seems
to be no correlation between the size of the circuit and the solution time, which is expected, as the
size of the movable node set has no a priori correlation with the circuit size either. Some of the ILPs
are solved by merely solving the continuous relaxation of the problem in the root of the search
tree (〈|tree|〉 = 0). Others, however, require substantial branching. In these cases, the capability of
CPLEX to branch in parallel can be useful. For this size of the search trees, memory is, however,
not a concern. The largest trees required on the order of a few hundreds of megabytes.

Each ILP also needs time to be constructed. This time is reported under the 〈setup t〉 column. In
some cases, it is nontrivial, but this is mostly due to a fairly inefficient Python implementation.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:30 S. Nikolić et al.

Table 4. Critical Path Delays Obtained on the Architecture of Figure 20

postplacement postrouting

circuit ref. W = 1 −Δ [%] W = 2 −Δ [%] ref. W = 1 −Δ [%] W = 2 −Δ [%]
raygentop 4.70 4.70 0.00 4.70 0.00 4.87 4.88 −0.21 4.88 −0.21
ch_intrinsics 3.15 3.15 0.00 3.15 0.00 3.28 3.30 −0.61 3.29 −0.30
mkDelayWorker32B 6.83 6.63 2.93 6.58 3.66 7.09 7.06 0.42 7.04 0.71
mkSMAdapter4B 5.16 5.02 2.71 5.02 2.71 5.38 5.31 1.30 5.25 2.42
bgm 23.56 22.85 3.01 22.66 3.82 23.66 23.20 1.94 22.84 3.47
boundtop 6.10 5.89 3.44 5.69 6.72 6.05 5.91 2.31 5.73 5.29
stereovision0 3.74 3.74 0.00 3.74 0.00 3.74 3.76 −0.53 3.76 −0.53
diffeq1 20.45 19.62 4.06 19.42 5.04 21.16 20.33 3.92 20.20 4.54
diffeq2 15.69 14.97 4.59 14.61 6.88 16.14 15.46 4.21 15.18 5.95
blob_merge 9.90 9.26 6.46 9.17 7.37 9.89 9.26 6.37 9.23 6.67
or1200 13.08 12.13 7.26 11.95 8.64 13.12 12.50 4.73 12.21 6.94
LU8PEEng 105.05 97.51 7.18 94.55 10.00 104.86 98.03 6.51 95.03 9.37
sha 11.89 10.97 7.74 10.87 8.58 11.88 11.01 7.32 10.92 8.08
geomean 10.29 9.90 3.79 9.78 4.96 10.46 10.16 2.87 10.04 4.02

The average number of positions per movable node (〈pos./u〉) is substantial in most cases. It is
lower than the theoretical maximum of 90, however. The average number of covering pairs for
each edge (〈pair/e〉) is also much lower than the 8,100 that would occur in the naive formulation.

Finally, the table also shows wall-clock times measuring the duration of the entire detailed place-
ment run, from loading datastructures with the output of VPR to storing the postlegalization re-
sults. These times also include a one-time LP setup, which is later updated by merely changing
the target critical path delay bound and the objective of Section 8.2.2. As with ILP setup, the com-
bined overhead of the aforementioned steps is tolerable, but not always negligible (maximum being
1,140s for bgm); we believe this to be mostly due to a fairly inefficient Python implementation.

The reader may notice that the runtime spent on dedicated detailed placement is substantial,
given the size of the circuits in Table 3. In some cases, it even overshadows the rest of the CAD
flow; for example, the standard VTR 7.0 flow takes only 22.34 s on the blob_merge circuit, with a
fixed routing channel width. The fact that this single additional stage in the CAD flow requires
133× more runtime than the rest may seem daunting at first, but it is important to note that its
most runtime-intensive phase—solving the placement ILPs—depends not on circuit size, but on the
size of the movable node sets. On the other hand, runtime expanded on the rest of the CAD flow
is directly related to the circuit size, meaning that for larger circuits, the algorithm proposed here
would likely take but a fraction of the total runtime.

9.5 Independent Subpattern

In our previous architectural study, we observed that the first four direct connections that were
added to the pattern were responsible for 68% of the geomean routed critical path delay reduction
achieved by the complete pattern of Figure 2 [26]. The subpattern containing these four connec-
tions is shown in Figure 20. A particularly interesting feature of this architecture is that each LUT
has at most one incident direct connection. This means that the set of edges selected for improve-
ment that are covered by any valid solution of a placement ILP will constitute a matching in the
circuit graph. Since matchings can be found efficiently [11], we can intuitively expect that the
placement problems formulated for this class of architectures are easier to solve in practice, al-
though the timing dependence between the edges and the necessity to avoid overlaps between the
movable nodes could mean that they are not necessarily easier in theory.

9.5.1 Optimization-Runtime TradeOff. To assess whether the subpattern of Figure 20 still causes
bulk of the improvement achieved by the entire pattern of Figure 2 when nodes are allowed to
move across clusters, we repeat the experiments on it as well. The results shown in Table 4 indeed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:31

Fig. 20. The architecture composed of the first
four direct connections added to the best pat-
tern found in the previous architectural study [27].
Each LUT has at most one incident direct connec-
tion. LUTs without incident direct connections are
omitted from the figure.

Fig. 21. Relative change in the postrouting critical
path delay due to direct connections of the architec-
ture of Figure 20. TheW = 1 and theW = 2 cases are
shown in orange and blue, respectively. The dashed
red line represents the relative change of the geo-
metric mean critical path delay over all circuits, for
W = 1, while the solid line represents the same for
W = 2.

confirm this, with the architecture achieving a 2.87% geomean routed delay reduction, or 67% of
the 4.30% achieved by the complete architecture. The total wall-clock runtime spent for median-
postplacement-delay runs of all circuits was 2,760s, while the total CPLEX runtime amounted to
only 336s. For the complete architecture, the total wall-clock runtime was 12,720s, while the solver
alone used 8,790s. Hence, 67% of the delay improvement was achieved in 4.6× less total time and
using 26× less solver runtime.

9.5.2 Increasing Movement Freedom. The much smaller solver runtime spent on the small in-
dependent subpattern of Figure 20 allowed us to assess the potential benefits of increasing the
movement freedom of the movable nodes on the obtained critical path delay reduction. Results for
W = 2—allowing each node to move in a 5 × 5 cluster region with 250 candidate positions—are
also shown in Table 4, as well as in Figure 21. They show that a number of circuits experience a
large additional improvement and that the average improvement is significantly increased as well.
This suggests that future effort invested in making the solution of the placement problems more
scalable with respect to freedom of movement may pay off. As an illustration, with W = 2 the
solver runtime rose to 7,025s (21× increase).

It is also interesting to observe that by increasing W to 2, the simple architecture of Figure 20
was able to achieve 93% of the geomean routed critical path delay reduction achieved by the archi-
tecture of Figure 2 for W = 1, while still using less runtime. This illustrates that increased CAD
effort may compensate for architectural inefficiencies. It could also make the direct connections
more compelling, given that the architecture of Figure 20 is significantly simpler to implement.

10 CONCLUSIONS AND FUTURE WORK

In this work, we introduced an efficient ILP-based placement algorithm for FPGA architectures
with direct connections between LUTs, which vastly improves their effectiveness compared to
architecture-oblivious algorithms. We also removed some important limitations of the previously
used experimental methodology and showed that the direct connections continue to bring benefits
in this more realistic setting.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

37:32 S. Nikolić et al.

The fact that a simple change in the underlying architecture—increase in the number of cluster
inputs—substantially altered the conclusions about the utility of a particular type of direct connec-
tions suggests that a comprehensive study of the mutual influence of direct connections and other
architectural parameters is due.

Our experiments showed that increasing the freedom of movement beyond what was done in
this work would lead to increased benefits. Another future step on the algorithmic front should
therefore be to address the scalability issues that prevent this at the moment, by integrating incre-
mental solution approaches [16], or even other solution techniques, such as SAT or SMT [23, 24],
that could be better suited to the nature of the problem. Additional performance gains could per-
haps also be achieved by repeated application of the algorithm with previously replaced nodes
kept fixed and by further improving the problem formulation along the lines of the discussion of
Section 8.3.

REFERENCES

[1] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. 1999. Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers.

[2] Stephen Cauley, Venkataramanan Balakrishnan, Y. Charlie Hu, and Cheng-Kok Koh. 2011. A parallel branch-and-cut
approach for detailed placement. ACM Transactions on Design Automation of Electronic Systems 16, 2 (2011), 18:1–18:19.

[3] Gang Chen and Jason Cong. 2004. Simultaneous timing driven clustering and placement for FPGAs. In Proceedings

of the Field Programmable Logic and Application, Jürgen Becker, Marco Platzner, and Serge Vernalde (Eds.), Berlin,
Heidelberg, 158–167.

[4] Scott Y. L. Chin and Steven J. E. Wilton. 2011. Towards scalable FPGA CAD through architecture. In Proceedings of

the ACM/SIGDA 19th International Symposium on Field Programmable Gate Arrays, FPGA 2011, Monterey, California,

February 27, March 1, 2011, John Wawrzynek and Katherine Compton (Eds.), 143–152.
[5] Jeffrey Chromczak, Mark Wheeler, Charles Chiasson, Dana How, Martin Langhammer, Tim Vanderhoek, Grace

Zgheib, and Ilya Ganusov. 2020. Architectural enhancements in intel® agilex™ FPGAs. In Proceedings of the 2020

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside. ACM, 140–149.
[6] Kevin Chung. 1994. Architecture and Synthesis of Field-Programmable Gate Arrays with Hard-wired Connections. Ph. D.

Dissertation. University of Toronto.
[7] Nima Karimpour Darav, Andrew A. Kennings, Kristofer Vorwerk, and Arun Kundu. 2019. Multi-commodity flow-

based spreading in a commercial analytic placer. In Proceedings of the 2019 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. ACM, 122–131.
[8] Shounak Dhar, Saurabh N. Adya, Love Singhal, Mahesh A. Iyer, and David Z. Pan. 2016. Detailed placement for modern

FPGAs using 2D dynamic programming. In Proceedings of the 35th International Conference on Computer-Aided Design.
ACM, 1–8.

[9] Shounak Dhar, Mahesh A. Iyer, Saurabh N. Adya, Love Singhal, Nikolay Rubanov, and David Z. Pan. 2017. An effective
timing-driven detailed placement algorithm for FPGAs. In Proceedings of the 2017 ACM on International Symposium

on Physical Design. ACM, 151–157.
[10] Wenyi Feng. 2012. K-way partitioning based packing for FPGA logic blocks without input bandwidth constraint. In

Proceedings of the 2012 International Conference on Field-Programmable Technology, FPT 2012, Seoul, Korea (South),

December 10–12, 2012. IEEE, 8–15.
[11] Alan M. Gibbons. 1985. Algorithmic Graph Theory. Cambridge University Press.
[12] Susanne E. Hambrusch and Hung-Yi Tu. 1997. Edge weight reduction problems in directed acyclic graphs. Journal of

Algorithms 24, 1 (1997), 66–93.
[13] Michael Hutton, Vinson Chan, Peter Kazarian, Victor Maruri, Tony Ngai, Jim Park, Rakesh Patel, Bruce Pedersen,

Jay Schleicher, and Sergey Shumarayev. 2002. Interconnect enhancements for a high-speed PLD architecture. In Pro-

ceedings of the 2002 ACM/SIGDA 10th International Symposium on Field-Programmable Gate Arrays. Monterey, CA,
3–10.

[14] David Lewis, Vaughn Betz, David Jefferson, Andy Lee, Chris Lane, Paul Leventis, Sandy Marquardt, Cameron Mc-
Clintock, Bruce Pedersen, Giles Powell, Srinivas Reddy, Chris Wysocki, Richard Cliff, and Jonathan Rose. 2003. The
stratix routing and logic architecture. In Proceedings of the 2003 ACM/SIGDA 11th International Symposium on Field

Programmable Gate Arrays. Monterey, CA.
[15] Chen Li, Min Xie, Cheng-Kok Koh, Jason Cong, and Patrick H. Madden. 2007. Routability-driven placement and white

space allocation. IEEE Transactions on CAD of Integrated Circuits and Systems 26, 5 (2007), 858–871.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

Detailed Placement for Dedicated LUT-Level FPGA Interconnect 37:33

[16] Shuai Li and Cheng-Kok Koh. 2012. Mixed integer programming models for detailed placement. In Proceedings of the

International Symposium on Physical Design. ACM, 87–94.
[17] Wuxi Li and David Z. Pan. 2019. A new paradigm for FPGA placement without explicit packing. IEEE Transaction on

CAD of Integrated Circuits and Systems 38, 11 (2019), 2113–2126.
[18] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, Konstantin Nasartschuk, Miad Nasr,

Sen Wang, Tim Liu, Nooruddin Ahmed, Kenneth B. Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. 2014.
VTR 7.0: Next generation architecture and CAD system for FPGAs. ACM Transactions on Reconfigurable Technology

and Systems 7, 2 (July 2014).
[19] Jason Luu, Conor McCullough, Sen Wang, Safeen Huda, Bo Yan, Charles Chiasson, Kenneth B. Kent, Jason Anderson,

Jonathan Rose, and Vaughn Betz. 2014. On hard adders and carry chains in FPGAs. In Proceedings of the 2014 IEEE

22nd International Symposium on Field-Programmable Custom Computing Machines. 52–59.
[20] Igor L. Markov, Jin Hu, and Myung-Chul Kim. 2012. Progress and challenges in VLSI placement research. In Proceedings

of the 2012 IEEE/ACM International Conference on Computer-Aided Design. ACM, 275–282.
[21] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. 2000. Timing-driven placement for FPGAs. In Proceedings of

the ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM, 203–213.
[22] Timothy Martin, Dani Maarouf, Ziad Abuowaimer, Abeer Alhyari, Gary Grewal, and Shawki Areibi. 2019. A flat

timing-driven placement flow for modern FPGAs. In Proceedings of the 2019 56th ACM/IEEE Design Automation Con-

ference. 1–6.
[23] Andrew Mihal. 2013. A difference logic formulation and SMT solver for timing-driven placement. In Proceedings of

the SMT Workshop 2013 11th International Workshop on Satisfiability Modulo Theories. Informal Proceedings. 16–25.
[24] Andrew Mihal and Steve Teig. 2013. A constraint satisfaction approach for programmable logic detailed placement. In

Proceedings of the 16th International Conference on Theory and Applications of Satisfiability Testing. Proceedings (Lecture

Notes in Computer Science, Vol. 7962). Springer, 208–223.
[25] Stefan Nikolić, Grace Zgheib, and Paolo Ienne. 2020. Timing-driven placement for FPGA architectures with dedicated

routing paths. In Proceedings of the 2020 30th International Conference on Field-Programmable Logic and Applications.
153–161.

[26] Stefan Nikolić, Grace Zgheib, and Paolo Ienne. 2019. Finding a needle in the haystack of hardened interconnect pat-
terns. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications. 31–37.

[27] Stefan Nikolić, Grace Zgheib, and Paolo Ienne. 2020. Straight to the point: Intra- and intercluster LUT connections
to mitigate the delay of programmable routing. In Proceedings of the 2020 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. Seaside, CA, 150–160.
[28] Raphael Rubin and André DeHon. 2011. Timing-driven pathfinder pathology and remediation: Quantifying and re-

ducing delay noise in VPR-pathfinder. In Proceedings of the ACM/SIGDA 19th International Symposium on Field Pro-

grammable Gate Arrays. ACM, 173–176.
[29] Elias Vansteenkiste, Alireza Kaviani, and Henri Fraisse. 2015. Analyzing the divide between FPGA academic and

commercial results. In Proceedings of the 2015 International Conference on Field Programmable Technology. 96–103.
[30] Kristofer Vorwerk, Andrew Kennings, Jonathan Greene, and Doris T. Chen. 2007. Improving annealing via directed

moves. In Proceedings of the 2007 International Conference on Field Programmable Logic and Applications. 363–370.
[31] H. Paul Williams. 2013. Model Building in Mathematical Programming (5th edition ed.). Wiley.

Received 30 June 2021; revised 29 September 2021; accepted 19 November 2021

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 4, Article 37. Pub. date: December 2022.

