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To achieve resource-efficient hardware designs, high-level synthesis (HLS) tools share (i.e., time-multiplex)
functional units among operations of the same type. This optimization is typically performed in conjunction
with operation scheduling to ensure the best possible unit usage at each point in time. Dataflow circuits have
emerged as an alternative HLS approach to efficiently handle irregular and control-dominated code. However,
these circuits do not have a predetermined schedule—in its absence, it is challenging to determine which op-
erations can share a functional unit without a performance penalty. More critically, although sharing seems
to imply only some trivial circuitry, time-multiplexing units in dataflow circuits may cause deadlock by block-
ing certain data transfers and preventing operations from executing. In this paper, we present a technique to
automatically identify performance-acceptable resource sharing opportunities in dataflow circuits. More im-
portantly, we describe a sharing mechanism which achieves functionally correct and deadlock-free dataflow
designs. On a set of benchmarks obtained from C code, we show that our approach effectively implements
resource sharing. It results in significant area savings at a minor performance penalty compared to dataflow
circuits which do not support this feature (i.e., it achieves a 64%, 2%, and 18% average reduction in DSPs, LUTs,
and FFs, respectively, with an average increase in total execution time of only 2%) and matches the sharing
capabilities of a state-of-the-art HLS tool.
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1 INTRODUCTION

Current industrial and academic HLS approaches [7, 36] rely on static scheduling: at compile time,
these tools decide the clock cycles in which each operation will execute and, at the same time, de-
termine the number of functional units to allocate. The goal is to obtain the best possible schedule
while reducing the resource requirements by sharing functional units between operations which
are used in different clock cycles [6, 30, 38].
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In contrast to standard HLS tools, dataflow or latency-insensitive protocols [8, 11, 13, 34] imple-
ment dynamically scheduled circuits, in which components exchange data as soon as all conditions
for execution are satisfied. Due to this ability to adapt the schedule at runtime to particular data
and control outcomes, dataflow circuits have recently been explored as an efficient HLS approach
to handle irregular and control-dominated applications [18]. However, the scheduling flexibility
of dataflow circuits makes resource sharing challenging: in the absence of a predetermined sched-
ule, the cycle in which each operation executes is unknown. Hence, dataflow approaches typically
employ an individual unit for each operation and result in area-expensive solutions.

The intuition on how to implement sharing in a dataflow context is fairly straightforward: in-
stead of relying on cycle information on operation execution, one could consider statistical in-
formation on unit utilization—if a certain unit is, on average, underutilized (i.e., not always busy
computing), it may be possible to share it with another underutilized unit. However, on its own,
this strategy does not consider two crucial concerns: (1) Sharing may compromise some of the fun-
damental functional properties of dataflow circuits; one needs to ensure that the resulting circuits
are always deadlock-free. (2) Sharing may postpone the execution of some operation with respect
to its execution in the original dataflow circuit and, consequently, compromise performance; one
needs to evaluate and minimize this performance impact.

In this paper, we present a complete methodology to implement resource sharing in dataflow
circuits. In Section 2, we illustrate the difficulties of performing sharing in the absence of a prede-
termined schedule. In Section 3, we describe the dataflow circuits we use and provide an intuition
on identifying good sharing candidates in this context. In Section 4, we formulate the necessary
requirements to ensure deadlock-free circuits with sharing and implement a sharing mechanism
accordingly. We then discuss how to minimize the performance impact due to sharing. Section 5
details our hardware implementation, and Section 6 presents our algorithm for sharing resources
in dataflow circuits obtained from C code. Finally, we evaluate our approach in Section 7; we show
that our technique results in up to 81% DSP reduction with minimal or no impact on execution
time compared to dataflow circuits that do not implement sharing.

Our main purpose here is to make dataflow circuits competitive in computational resource us-
age to standard HLS approaches while profiting from the key advantages of dynamic scheduling.
To demonstrate that we have successfully achieved this goal, we compare our circuits with stati-
cally scheduled HLS designs and show that they employ the exact same number of computational
units realized in DSPs. Additionally, in benchmarks where dynamic scheduling is superior to static
scheduling, dataflow circuits with sharing achieve speedups of up to 2.5× over the static solutions.

This work is an extension of our conference paper “Resource sharing in dataflow circuits” [22],
presented at the 30th IEEE Symposium on Field-Programmable Custom Computing Machines,
2022. In addition to the content of the published paper, we here describe a mathematical model for
dataflow circuits with sharing (Section 5.2); we employ it to analyze the throughput of dataflow
circuits with sharing and to ensure that sharing does not come at a performance penalty. Addition-
ally, we provide a mathematical description of the impact of sharing on initiation interval (II)

and elaborate on the sharing of different types of resources. We extend our evaluation section with
a detailed analysis of our sharing structures and their overheads. Our resource sharing methodol-
ogy is fully integrated into Dynamatic, our open-source HLS compiler, and available together with
our benchmarks at dynamatic.epfl.ch.

2 MOTIVATION

To illustrate the challenges of resource sharing in dataflow circuits, consider the example in
Figure 1. One should observe that this circuit has no centralized controller—instead, all dataflow
units are connected to their predecessor and successor units with handshake signals that regulate
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Fig. 1. Dataflow circuit and a possible resource sharing implementation. The multiplications could be com-
puted using a single multiplier, with input and output multiplexing logic. Yet, this mechanism on its own
does not guarantee that the circuit is deadlock-free nor that its performance is optimal. The multiplication
results are indicated asmop,iter (e.g., m2,1 is the result of operation M2 from iteration 1).

the flow of data (i.e., tokens); each operation executes as soon as its inputs become available and
the corresponding unit is ready. The execution starts when a token enters through the starting
point (i.e., Start BB, with iterator i = 0); a new loop iteration is triggered as soon as a token reen-
ters the loop body through the cyclic path (in this example, every second clock cycle because of
two registers, Buff 1 and Buff 2, on the cyclic path through the merge and the branch). The loop
in the figure contains two pipelined, 4-stage multipliers; all other units, apart from the buffers, are
combinational. Since a new loop iteration starts every second cycle, the two multiplications could
be performed using a single multiplier. An intuitive implementation is shown on the right—the
merge and mux steer one set of input tokens at a time into the shared unit (as the figure indicates,
these units must communicate to ensure that they always accept the matching operands from their
predecessors). The branch at the output ensures that the result is sent to the appropriate successor,
depending on the origin of the operand tokens—this information is conveyed to the branch by the
input merge through a FIFO.

Surprisingly, this implementation does not guarantee a functional circuit: in this example,
the store needs both operands (i.e., both the address and the data) to execute; it therefore stalls
the available operand (m1,1, i.e., the result of M1 of the first iteration) while it waits for the
second operand (m2,1, i.e., the result of M2). However, because of the stall of m1,1, m2,1 will
never be able to exit the shared unit and arrive to the store, therefore causing deadlock. Such
problems are absent by construction in elementary dataflow circuits [18] where each operation
uses an individual unit and only a single token per loop iteration is transferred from one unit to
another. However, introducing sharing compromises this property; it is crucial that we develop a
sharing mechanism that handles this issue and ensures the absence of deadlock in every possible
case.

3 BACKGROUND

In this section, we describe dataflow circuits and illustrate why classic sharing techniques are not
applicable in this context. Finally, we discuss how existing performance analysis techniques can
be used to identify sharing opportunities in dataflow designs.
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Fig. 2. Resource sharing in static and dynamic scheduling. In static scheduling, resource sharing is decided
based on the cycle information on operation execution; in contrast, dataflow circuits can rely on average
unit utilization to identify good sharing candidates.

3.1 Dataflow Circuits

Dataflow circuits, also referred to as elastic, latency-insensitive, or data-driven circuits, are built
out of units that exchange data (i.e., tokens) using a handshake mechanism [8, 11, 13, 34]. Several
authors [3, 12, 18, 25, 31, 32] generate dataflow circuits from high-level programs; we follow an
approach that produces synchronous dataflow circuits from C code [18]. The circuits we consider
organize units into basic blocks (BBs), i.e., straight pieces of code with no conditionals; once
a BB is triggered, all its units are guaranteed to receive all their input data and each dataflow
edge between the units performs a single token transfer. Control flow statements are implemented
between the BBs to form a control flow graph (CFG).

We use the following dataflow units that communicate using a standard handshake protocol [11]:
(1) a merge sends a token nondeterministically into a BB from one of the predecessor BBs, (2) a
mux is a deterministic version of a merge with an additional control input to select the input
token, (3) a branch sends the token to one of the successor BBs, as determined by the BB condition,
(4) a fork distributes a copy of a token to each of its successors, either simultaneously (lazy fork),
or whenever they are ready to accept it (eager fork), and (5) a join synchronizes multiple tokens
(e.g., operation operands) before triggering the successor. Buffers are used to store data; they are
characterized by their capacity (i.e., the number of tokens a buffer can hold) and transparency
(indicating whether a buffer adds sequential delay, or is a pass-through element) [23]. To ensure
that a circuit is deadlock-free, each cyclic path must always have at least one empty buffer slot;
additional buffers may be arbitrarily added without compromising correctness [11, 18], but only
with impact on performance.

3.2 Deciding What to Share in a Dataflow Circuit

Standard, statically scheduled HLS tools [7, 36] perform scheduling in conjunction with resource
allocation and sharing [38]; depending on the optimization objective, they trade-off area and per-
formance by deciding the cycle in which each operation executes and allocating units accordingly.
Figure 2(a) shows two possible schedules for the code from Figure 1: the first achieves the ideal
loop pipeline with an II of 1 by scheduling both multiplications in the same cycle, hence employing
two multipliers; the second increases the II to 2 and schedules each multiplication on every second
cycle, which allows the usage of a single multiplier. It is important to note that the compile-time
scheduling dictates the execution time of each operation: by scheduling the two multiplications
to start in two consecutive cycles, it enables them to share a single multiplier. Dataflow circuits
face the same optimization objectives and area-performance trade-offs; however, there is no pre-
determined schedule: the exact execution time of each operation is unknown and will only be
determined at runtime, during dataflow circuit execution. Thus, one cannot rely on scheduling
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information to decide how many units to employ. Instead, one can reason about the average com-
putational rate, identify units which are, on average, underutilized, and use this information to
implement sharing.

Several authors discussed techniques to analyze the timing of dataflow circuits [4, 5, 23, 28, 29];
some determine the rate at which dataflow units compute and directly provide the information
on average unit utilization. We here rely on an approach that maximizes the throughput (i.e.,
the inverse of the initiation interval, 1/II) of each CFG cycle by appropriately placing and sizing
buffers [23]. The approach calculates the average occupancy of each unit with tokens, i.e., for a
given throughput of a CFG cycle, determines the average number of tokens that each unit holds
in the steady state of the cycle execution. We can use this information to identify good candidates
for sharing [20]: if the sum of the tokens in two units of the same type is at most equal to the unit
latency (i.e., number of sequential stages), it may be possible to use a single unit without damaging
the throughput of the CFG cycle.

In the dataflow circuit in Figure 1, the cyclic path contains two buffers, so a new token enters the
loop on every second cycle, i.e., the throughput is 1/2. Thus, a new token enters each multiplier on
every second cycle as well; in the steady state, each multiplier holds two tokens and has two empty
slots (i.e., the occupancy of each multiplier is equal to 2), as shown on the left of Figure 2(b). It is
therefore possible to implement the two multiplications using a single multiplier that will accept
a new token and start a new multiplication on every cycle—this multiplier will, in the steady state,
always be busy computing and its occupancy will be equal to 4 (see right of Figure 2(b)).

Although such analysis ensures that each shared unit receives tokens at a rate at which it can
compute, it does not recognize that sharing may postpone a computation: In Figure 1, prior to
sharing, both multiplications execute simultaneously (i.e.,m1,1 andm2,1 are computed at the same
time by the two multipliers); with sharing, one multiplication is delayed by one clock cycle (in the
right of Figure 2(b), m2,1 is computed one cycle after m1,1). In some cases, such delays may com-
promise throughput, as we will discuss later. More importantly, as indicated in Section 2, nothing
in this analysis guarantees that the dataflow circuit with sharing is deadlock-free. We will address
both of these issues in this paper.

4 RESOURCE SHARING IN DATAFLOW CIRCUITS

This section details our methodology for deadlock-free and high-performance resource sharing in
dataflow circuits.

4.1 Sharing in Noncyclic Datapaths

Sharing requires steering data into a unit from multiple predecessors and sending the output to the
appropriate successor. This behavior is realized on the left of Figure 3, repeating the situation of
Figure 1: the input of the shared unit has a merge for one of its operands and a mux for all others;
they have as many data inputs as there are shared operations. The merge informs the muxes and
the branch which operand it took so that they can choose the corresponding operands and send
the result to the correct successor, respectively. The merge and the branch communicate through
a FIFO, with as many slots as there are pipeline stages in the unit. Yet, as discussed before, this
scheme does not guarantee a functional circuit: a token may be stalled inside the unit and prevent
the others from exiting, potentially causing deadlock. In this case, as the successor unit needs to
join tokens m1,1 and m2,1 to compute, m1,1 cannot exit the unit until m2,1 arrives; however, the
exact same token (m1,1) is blocking m2,1 from ever exiting the unit, therefore infinitely starving
the succeeding store and blocking the shared multiplier from processing other tokens.

The mechanism on the right of Figure 3 guarantees that all tokens from a noncyclic datapath
(i.e., a single BB or a sequence of nonrepeating BBs) that enter the shared unit are able to exit
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Fig. 3. Hardware for sharing. A naive implementation (left) results in deadlock. Placing transparent buffers
(t-buffs) on the branch outputs (right) allows all tokens from a single datapath execution to exit the shared
unit and all the computation of the datapath to complete.

it by adding a 1-slot transparent buffer (see Section 3.1), i.e., t-buff, at each branch output. In a
single BB execution, each dataflow edge transfers a single token; the output edge of the shared
unit, on the other hand, does not honor this property (i.e., it transfers as many tokens as there
are shared operations), but it sends only one token to each branch output (corresponding to each
individual operation in the original circuit). Hence, the t-buff is sufficient to ensure that each token
can always exit the unit, regardless of the availability of the successor: if the successor is not ready,
the t-buff will store the token; otherwise, the token will immediately propagate further. No token
will be stalled in the unit, nor will it block other tokens in the unit; all successor units of the same
BB will be able to receive their data and all BB computation will successfully complete, exactly as
if no units were shared.

However, this hardware does not guarantee deadlock-free execution in cases where BBs repeat,
as in a loop. We discuss this issue in the following section.

4.2 Sharing in General Datapaths

The methodology from the previous section guarantees that the circuit is functional only when
sharing within a single BB or a loop iteration; we here extend this implementation to general
programs.

Figure 4 shows two examples where the mechanism from Section 4.1 does not manage to pre-
vent deadlock: (1) Circuit 1 has a similar problem as discussed before, but occurring across loop
iterations: a token from a successive iteration (m1,2) blocks the token from the previous iteration
(m2,1) from exiting the shared unit; at the same time,m1,2 cannot proceed before the previous com-
putation completes, so both tokens indefinitely stall. (2) Circuit 2 has a cycle from the output of
the shared unit to its input. The unit may fill with tokens and cause deadlock because there is no
empty space for the tokens to move (i.e., the property which guarantees the absence of deadlock,
outlined in Section 3.1, is violated, as no buffer slot on the cycle is empty): the token in the unit
(m1,2) needs to move into t-buff on the cycle, but the token in the t-buff (m1,1, i.e., the input z of
M2) cannot move back into the unit before another token exits.

Both problems are due to tokens entering the shared unit in an order different than the one
specified by the control flow of the program—some tokens enter the unit before all tokens from
the preceding BBs and prevent their computations from completing: (1) In circuit 1, instead of
consecutively consuming both tokens from the same BB execution, the unit inputs some tokens
from the following iteration (i.e., the next BB) which prevent one of the previous tokens from ever
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Fig. 4. Deadlock situations. In the shown dataflow circuits, deadlock can occur due to the reordering of
tokens from different BB executions. In circuit 1, the token from the second loop iteration (m1,2) precedes
the token from the first iteration (m2,1) and prevents it from ever exiting the unit. In circuit 2, tokens from
multiple iterations may enter the unit before the second multiplication (M2) of the first iteration issues; the
unit fills with tokens and no token can move forward. The solution in both cases is to force tokens to enter
the unit in the order of BB execution, i.e., all tokens from one BB must enter the unit before the tokens from
the successor BBs, as shown in the rightmost figures.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 4, Article 54. Pub. date: September 2023.



54:8 L. Josipović et al.

exiting the unit. (2) In circuit 2, the token from the first BB execution (i.e., first iteration) comes from
the shared unit itself. Yet, instead of consuming this token to execute the first multiplication of M2,
the shared unit keeps taking tokens from the following iterations (coming from the noncyclic path
and performing multiplications of M1), therefore filling the unit and preventing the older token
from the t-buff from propagating further.

The solution to both problems is to send tokens to the shared unit in the order specified by the
control flow (i.e., program order): once a BB execution is decided, all its tokens must be consumed
by the shared unit before the tokens from the following BB. If all tokens from a BB are injected into
the unit before any successive tokens, they are guaranteed to exit the unit (see Section 4.1). Thus,
always sending tokens into the unit in order of BB execution guarantees the absence of deadlock
for any number of BBs and BB executions.

4.3 Sharing and Performance

The previous section showed the need to order tokens from different BBs as they enter a shared
unit to prevent deadlock. The ordering of tokens from the same BB does not compromise the circuit
functioning, but may impact performance.

The buffering of the dataflow circuit needs to account for the operation delays caused by sharing.
More importantly, one needs to make sure that the latency of a throughput-critical cycle is not
increased. In the dataflow circuit in Figure 5, both multiplications execute simultaneously; M1 is
on a loop determining the throughput, equal to 1/5 (because of the buffer and the 4-stage multiplier
on the cycle). If the two multiplications share a unit, one of them will be postponed for a clock
cycle while the multiplier consumes the inputs of the other. If the delayed computation is M1, the
cycle latency increases and, consequently, lowers the throughput to 1/6, as shown in the bottom
of the figure.

Therefore, in addition to enforcing the ordering of operations from different BBs, as previously
described, one could order operations within each BB as well, as indicated in the bottom right of
Figure 5, such that the throughput impact is minimal. We incorporate this notion into our shar-
ing strategy, as we will describe in Section 6: we use the performance analysis from Section 3.2
to choose an ordering which maintains the original throughput as well as to obtain the optimal
buffering that accounts for the delays caused by sharing. Note that we now implement a total
order of the operations and, thus, the corresponding operands always arrive aligned to the unit;
hence, the muxes at the unit inputs (see Section 4.1) can be replaced by merges. We detail our
implementation of the ordering logic in Section 5.

4.4 Extending the Ordering Scheme

The ordering rules described so far ensure the absence of deadlock by ordering tokens across BBs
(Section 4.2); to ensure the best possible throughput in the presence of such ordering, we order
operations within a BB as well (Section 4.3). Interestingly, ordering tokens across BBs may, in
particular cases, lower the throughput of a loop, as it may limit the overlapping of operations
from different loop iterations. This is the case in circuit 2 in Figure 4: One could, in principle,
implement sharing for M1 and M2 with a throughput of 1/2 (i.e., an II of 2) by starting one of
the two multiplications on every consecutive clock cycle. However, our strategy from Section 4.2
lowers the throughput to 1/5—as suggested in the rightmost sharing implementation of circuit 2 in
Figure 4, the first computation of M2 (m2,1) starts four cycles after the start of the first computation
from M1 (m1,1); the next operation from M1 can start on the cycle after the start of M2. Concretely,
our ordering enforces a cycle distance between two consecutive executions of a single operation
to be greater than the number of cycles between the start of the first and the start of the last
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Fig. 5. Performance impact of sharing. The order in which tokens are sent to the shared unit may impact
performance by postponing the execution of a throughput-limiting computation (in this example, M1 on
the cyclic path). Hence, apart from ordering tokens from different BBs as they enter a shared unit, we also
enforce the ordering of tokens of the same BB such that the throughput impact is minimal.

operation within the iteration. The initiation interval of the loop with sharing, I Ishared , can then be
expressed as:

I Ishared =max(I Iorig,Dist(opfirst, i, oplast, i)), (1)

where I Iorig is the II of the loop prior to sharing, and Dist(opfirst, i, oplast, i) the clock cycle distance
between the first and the last operation of a loop iteration i; if this value is higher than I Iorig ,
it will increase the II and lower performance. In fact, because of this throughput degradation,
the sharing algorithm which we later introduce would not identify the operations of circuit 2 in
Figure 4 as acceptable sharing candidates.

Note that our ordering condition from Section 4.2 is sufficient to guarantee the absence of
deadlock in any dataflow circuit with the structural properties described in Section 3.1. Yet,
this condition is not always necessary—our generic ordering mechanism could be replaced by
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application-specific multiplexing and buffering schemes. For instance, one could relax the order-
ing constraint so that particular executions from different iterations can overlap—in the example
above, allowing an operation from M1 to start before the operation of M2 from the preceding iter-
ation would lower the II. The number of overlapping iterations could be determined based on the
cycle distances between operation executions and the achievable II. The buffers around the sharing
logic would need to be sized to accommodate tokens from multiple iterations. The technique from
Section 4.3 would then be extended to order operations among all iterations which overlap.
Naturally, the search space for the appropriate ordering, the complexity of the ordering logic, and
the sizes of the buffers around the shared unit would increase with the number of overlapping
iterations. Without loss of generality, we limit our ordering to the rules from Sections 4.2 and 4.3.
As we later demonstrate, our strategy effectively implements sharing without a throughput
penalty in realistic benchmarks.

4.5 Sharing Other Resources

Although we here describe the sharing of functional units (and, as discussed later, focus on
reducing their DSP count), our entire sharing strategy is general and applicable to other types of
resources as well (e.g., memory blocks, LUTs, buffers). The deadlock avoidance mechanism from
Section 4.2 supports any sequential resource type and can be simplified for combinational units:
as tokens immediately propagate from input to output, they cannot be stalled within the unit and
the transparent buffers at the unit outputs are sufficient to guarantee the absence of deadlock.
The same mechanism applies to function sharing as well, as long as the function implementation
ensures that tokens exit the units in the same order that they entered (and, thus, exhibit the same
ordering properties as any functional unit discussed before). The performance considerations of
Section 4.3 (and the accompanying algorithm that we introduce in Section 6) directly apply to
any resource type.

5 ORDERING IMPLEMENTATION

In this section, we detail how to implement the previously-described token ordering when sharing
dataflow units.

5.1 Implementation

To implement the desired ordering between operations sharing a unit, we build an in-order
dataflow network that strictly mimics the control flow of the program; it propagates a data-less
token which triggers the advancement of operands to the shared unit in a predetermined order
only when control flow reaches the corresponding BB. Each shared operation is associated with
a lazy fork in this network; one of the fork outputs is synchronized, using a join, with the inputs
of its shared operation. The fork must be lazy (see Section 3.1) so that a token moves forward
and triggers the next fork only after the joined inputs have been sent to the unit. The forks are
separated by buffers which introduce a 1-cycle sequential delay, i.e., two forks cannot be active at
the same time. Hence, only one set of inputs to the unit will be active at any given clock cycle; this
activation order corresponds to the desired operation ordering.

Figure 6(a) shows a CFG of a program with two CFG cycles; it contains three multiplications
(M1 and M2 in BB1, and M3 in conditionally executed BB2) which we, in this example, aim to
implement using a single multiplier. The resulting dataflow circuit is shown in Figure 6(b) (all
irrelevant dataflow units are omitted from the figure for clarity). The in-order network which
supplies ordering information to the unit shared between M1, M2, and M3 is shown on the left
of the figure—it implements the orderings {M1, M2} in BB1 and {M3} in BB2. When the execution
of BB1 starts, the first lazy fork keeps the token until both inputs of M1 become available and
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Fig. 6. Sharing implementation and model. A specialized in-order dataflow network enforces the specified
ordering of operations in the shared unit. The same network is used during performance analysis to model
delays introduced by sharing.
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Fig. 7. Optimized sharing implementation. We use the in-order network described in Section 5.3 which,
instead of sending an ordering signal per operand, sends a signal per BB; the selector uses this information
to enforce a preencoded ordering of operations within each BB.

are consumed by the multiplier; only then does the token move to the next LFork through Buff 1,
triggering the execution of M2 at least one clock cycle later. If the control flow decides on the
execution of BB2, the in-order network will ensure that M3 executes before M1 and M2 from the
next iteration of BB1. Thus, this in-order network effectively implements the functionality of the
ordering unit in Figure 5.

5.2 Sharing Model for Performance Analysis

To determine whether sharing affects performance, as discussed in Section 4.3, we need to ana-
lyze the throughput achieved in each CFG cycle and compare it to the throughput achieved prior
to sharing. The latter is directly obtainable for the original circuit without sharing using the per-
formance analysis [23] mentioned in Section 3.2 which provides us with the throughput of the
CFG cycles (e.g., the two cycles in the example in Figure 6). However, the circuit representation in
Figure 6(b) is not directly suitable for performance analysis—determining the throughput of each
CFG cycle requires every operation to be represented as an individual unit in a particular BB (and,
consequently, analyzable as part of a CFG cycle); furthermore, the merge and branch units at the
shared unit inputs and output are not immediately compatible with the choice-free behavior that
such performance analysis requires [23].

Hence, for the performance analysis, we represent each operation individually in its original BB
and model the effects of sharing with the in-order network described in the previous section; it
connects the individual operators and describes the delays due to the enforced ordering, as shown
in Figure 6(c). The performance analysis determines the throughput achievable with this circuit
configuration and the corresponding delays. The comparison of the achieved throughput with that
of the original circuit indicates whether the sharing and the explored ordering are desirable [16];
we include this aspect in the sharing strategy in Section 6.

5.3 Optimized Implementation

The sharing logic described above may quickly grow in complexity as each shared unit requires its
own in-order network with as many lazy forks and buffers as there are shared operations; clearly,
it is desirable to unify all networks. Also, as we will later mention, we implement our approach
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Fig. 8. Implementation of the selector unit. The internal selector logic (grey) selects the appropriate data in-
puts of the muxes on the left based on the order of BB execution (i.e., the BB start signals) and the preencoded
operation order for each BB.

in an existing HLS framework which already produces, for other purposes, an in-order network
expressing the dynamic succession of executed BBs [17, 21]. Thus, we adapt our implementation
to directly leverage this existing network.

Our simplified implementation is shown in Figure 7. The network on the left of the figure is
what already exists in the dataflow circuit: it emits tokens corresponding to the BB succession and,
as in our original network, the use of lazy forks separated by buffers ensures that each BB start
signal is triggered strictly in order. Essentially, the difference compared to Figure 6(b) is that the
selector receives a single ordering signal per BB instead of an ordering signal per operand: thus,
every time a BB starts, the selector needs to enforce the ordering of the corresponding BB operands
(preencoded in the selector unit) before the operands of the subsequent BB.

5.4 Selector Unit

Figure 8 details the selector unit. It contains a FIFO which stores the IDs of the incoming BBs as
they arrive in program order and one at a time from the in-order network. The BB id at the head
of the FIFO selects the preencoded BB ordering information (i.e., a vector with the operand order,
BB order, and the total number of operands of this BB, BB operands). An internal counter enables
the appropriate input ports (mux input) of the data muxes on the left; a mux port is enabled only
after the previous port has sent a token into the unit. A BB id is removed from the queue when
all its operations have started executing, moving the successor BB to the head of the queue and
allowing its tokens to enter the shared unit next.

The size of the encoded ordering information depends on the total number of shared units S , the
maximal number of units within a single BB, Sbb , and the number of BBs connected to the selector,
B: (1) BB id requires log2(B) bits, (2) BB order requires Sbb × log2(S) bits, and (3) BB operands

requiresmax(1,
⌈
log2(Sbb )

⌉
) bits. Typically, only a few operations share a unit and these values are

relatively small (e.g., in the example of Figure 8, BB id, BB order, and BB operands, encoded in the
dotted boxes, are 1, 4, and 1 bits). The complexity of the multiplexing logic in the selector follows
the same trends; it is typically minor in comparison to the 32- or 64-bit data multiplexers (left of the
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Fig. 9. Example execution of our sharing strategy. The execution assumes that units M1 and M3 are on
throughput-critical cycles and, therefore, should not be shared.

selector in Figure 8), which are necessary in any sharing implementation and are not an overhead
of our particular strategy. We will evaluate the complexity of the selector unit in Section 7.4.

6 PUTTING IT ALL TOGETHER

Algorithm 1 summarizes our resource sharing strategy. It operates on control-data flow graphs

(CDFGs) of independent loop nests, i.e., different strongly connected components of the global
CDFG. Initially, we consider every operation as a separate group (i.e., unit). Our strategy attempts
to merge different groups that can share the same physical resource without compromising the
throughput of any of the loops as follows:

(1) Sharing within a loop nest. For every pair of groups that belong to the same loop nest, we

check if their sum of token occupancies (indicated as
•

Θ) is at most equal to the unit latency
Lu (line 14 of the algorithm); if so, the units are underutilized (see Section 3.2) and shar-
ing may be possible without compromising performance. If neither of the groups has units
on cyclic paths (lines 17–21), the original throughput Θs can always be maintained; thus,
we topologically order the operations within each BB and employ the performance analysis
from Section 3.2 to resize the buffers accordingly (i.e., to account for any operation delay due
to sharing). If any of the units is on a cyclic path (lines 22–30), we use the same performance
analysis to choose an ordering of operations that does not damage the throughput, i.e., where
none of the operations on a throughput-critical cycle is postponed (see Section 4.3). As soon
as such an ordering is found, the search terminates; the groups will be merged and the oc-
cupancy of the group will be updated (lines 32–36). If all orderings degrade throughput, the
merging of the groups is discarded. This process repeats until no further merging can be
done. The final ordering within each group corresponds to that found in the last success-
ful merge and the buffer placement and sizing to that determined in the last performance
analysis run.
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ALGORITHM 1: Sharing strategy.

1 // Input: units (all units of the same type)
2 // Input: sets (dataflow units of different strongly connected components of the CDFG)
3 // Output: globalGroups (sets of operations which share a resource)

4 // 1. Sharing within a loop nest
5 forall s ∈ sets do

6 // Calculate original throughput and buffers in set
7 Θs , buffs = runPerformanceAnalysis (s)

8 // Initialize groups to individual units
9 groups (s) = {u | u ∈ units, u ∈ s}

10 // Grouping of units
11 while groups (s) modified do
12 forall g1, g2 ∈ groups (s), g1 � g2 do

13 // If token occupancy sum is at most equal to the unit latency, sharing is possible

14 if
•
Θд1 +

•
Θд2 ≤ Lu then

15 finalOrd = null
16 // Check if any unit on cycle
17 if !g1.hasCycle and !g2 .hasCycle then

18 // No cyclic paths, sort topologically
19 finalOrd = sort (g1 ∪ g2)

20 // Resize buffers
21 Θs,ord , buffs = runPerformanceAnalysis (s, ord)
22 else
23 // Search for best group ordering
24 forall ord ∈ possible_orderings (д1 ∪ д2) do

25 // Check if throughput maintained
26 Θs,ord , buffs = runPerformanceAnalysis (s, ord)
27 if Θs,ord = Θs then

28 // Ordering found, terminate
29 finalOrd = ord
30 break

31 // Valid ordering found: share
32 if finalOrd != null then

33 // Merge groups and update ordering
34 groups(s).update(g1, g2, g1 ∪ g2 , finalOrd)

35 // Update occupancy of merged group

36
•
Θд1∪д2 =

•
Θд1 +

•
Θд2

37 // 2. Sharing across loop nests
38 globalGroups = {}
39 forall s ∈ sets do
40 // Merge every distinct group of one loop nest with distinct groups of other nests
41 i = 0
42 forall group ∈ groups (s) do
43 globalGroups (i++).add (group (s))

44 // 3. Sharing other units
45 // Merge every remaining unit with any existing group
46 i = 0
47 forall u ∈ {u | u ∈ units, ∀s ∈ sets : u � s } do
48 globalGroups (i++ mod globalGroups.size).add (u)

(2) Sharing across loop nests. In this step (lines 38–43), we merge every distinct group of one loop
nest with any distinct group of another (if available and not already merged with another
group from the same nest); the operation ordering in each BB remains as determined in the
previous step.
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(3) Sharing other units. We merge units that are not in any loop with any of the existing groups
(lines 46–48).

The first step ensures that sharing never damages the throughput of any interconnected loops.
The second step does not need throughput analysis as different loop nests execute consecutively—
while the final iterations of one loop may overlap with the initial iterations of another, two oper-
ations from different loop nests never execute simultaneously in the steady state. The same holds
for units that do not belong to any loop.

Figure 9 illustrates this strategy with an example. The given CFG has two loop nests; although
not visible in the figure, we assume for the purpose of this example that M1 and M3 are on paths
which are critical for throughput and, hence, should not be shared. The first step of the sharing
algorithm (sharing within a loop nest) considers the two loop nests separately; it attempts to group
operations while evaluating the throughput, as shown on the right of the figure. In loop nest 1,
two out of three operations can be shared (i.e., according to our assumption for this example, M1
and M3 cannot share a unit as this sharing would degrade the throughput). In loop nest 2, there
is only a single operation, M5, thus nothing is shared. The second step of the algorithm (sharing

across loop nests) groups operations from different loop nests; in this example, M5 from loop nest
2 is grouped with M1 and M2. Finally, the third step (sharing other units) adds the operation that
does not belong to any loop nest (M4) to the previously determined groups. In this example, the
resulting circuit implements five operations using two shared units.

Our strategy minimizes the number of units under a throughput constraint. It is adaptable to
other optimization objectives as well, e.g., honoring a resource constraint: if the constraint is
tighter than the group count achieved by Algorithm 1, one could continue grouping until it is met;
the associated performance penalty could be minimized by exploring different groupings. Our al-
gorithm immediately identifies good sharing candidates (i.e., underutilized units) and performs
an ordering exploration only in case of throughput-limiting operations on cycles; it is therefore
effective in optimizing complex graphs with a large unit count.

7 EVALUATION

In this section, we evaluate our approach for implementing resource sharing in dataflow circuits
obtained from C code.

7.1 Methodology and Benchmarks

We evaluate a selection of floating-point kernels from the PolyBench suite [27] that contain loop
nests with different properties (i.e., loop organization, count, and nest levels) and computational
patterns, thus offering different sharing opportunities within and across loops and loop nests, as
shown in Table 1. Most kernels have long-latency loop-carried dependencies due to pipelined
floating-point operations that limit the loop II. Our purpose here is not to show the superiority
of dataflow circuits over statically scheduled designs but to investigate their sharing capabilities;
nevertheless, we also consider two typical cases where dynamic scheduling excels over standard
HLS, i.e., gsum and gsumif, that conditionally compute floating-point polynomial expressions. The
conditional statements incur unpredictable long-latency, loop-carried dependencies that prevent
static scheduling from achieving high-throughput pipelines; due to the low throughput, the static
solutions can share floating-point units among the conditionally executed operations [9].

We implement our sharing strategy in Dynamatic, an open-source HLS tool [19] that synthe-
sizes C code into synchronous dataflow designs and implements the performance analysis from
Section 3.2. Although our sharing technique is applicable to any type of resource and functional
unit, our goal here is to minimize the DSP usage without affecting loop throughput; we thus apply
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Table 1. Benchmark Characteristics: Their Loop (i.e., CFG Cycle) and Loop Nest Count, Scheduling
Property, Number of Sharing Candidates (fadd Indicates Floating Point Adders, and fmul Floating

Point Multipliers), and Possible Types of Sharing

Benchmark Loops Loop nests Property Sharing candidates Sharing types

atax 3 1 regular 2 fadd, 2 fmul in nest
bicg 2 1 regular 2 fadd, 2 fmul in nest
gemm 3 1 regular 3 fmul in nest
gemver 7 4 regular 5 fadd, 6 fmul in, across nest
gesummv 2 1 regular 3 fadd, 4 fmul in nest
2mm 6 2 regular 2 fadd, 4 fmul in, across nest
3mm 9 3 regular 3 fadd, 3 fmul in, across nest
mvt 4 2 regular 2 fadd, 2 fmul in, across nest
gsum 2 1 irregular 5 fadd, 4 fmul in nest
gsumif 3 1 irregular 7 fadd, 4 fmul in nest

Algorithm 1 to share every type of floating-point operation realized in DSPs. We use ModelSim
to measure the execution cycle counts and for functional verification. We target a Xilinx Kintex-7
FPGA and use Xilinx floating-point operations (encapsulated in wrappers with handshake signals
to communicate with other dataflow units). All memory operations connect to dual-port BRAMs.
We obtain the clock period and resource usage from Vivado after place and route.

Although we use Dynamatic for our implementation, our strategy is perfectly general and ap-
plies to any dynamic HLS approach (e.g., that of Elakhras et al. [14], Budiu et al. [3], or Li et al.
[25]). Our strategy relies on the performance analysis of Dynamatic to decide what to share—any
alternative approach that determines the average loop throughput could be used instead (alter-
natively, Dynamatic’s performance analysis could be employed on dataflow circuits constructed
in a different manner, as demonstrated by Elakhras et al. [14]). To enforce operation order at the
shared unit input, we use the existing in-order control network of Dynamatic; if not available, this
network could be easily added to any dataflow circuit obtained from C code using standard control
flow analyses [33].

7.2 Results: Effectiveness of the Sharing Strategy

Tables 2 and 3 compare dataflow circuits that do not implement sharing (i.e., circuits produced by
Dynamatic) with the circuits optimized with our sharing strategy. The circuits without sharing
(Naive) achieve the best possible pipelines (i.e., limited exclusively by the loop-carried dependen-
cies) and a minimal number of cycles. Yet, they employ an individual functional unit for each
operation, reflected in their DSP usage. In contrast, our designs (Shared) share functional units
among multiple operations of the same type, thus significantly reducing the number of employed
DSPs. Our strategy ensures that the loop throughput remains unchanged, as evident from the cy-
cle count, which either remains identical or slightly increases. This increase is due to the pipeline
latency increase, i.e., some operations using a shared unit execute later than in the original circuit
(see Section 4.3) or transient effects when independent loops overlap, i.e., when one loop is ending
and another one is starting, sharing temporarily lowers throughput as both loops compete for a
shared resource (see Section 6). These effects are perfectly in line with what we described earlier
and arguably acceptable for the significant DSP savings.

The minor differences in clock period (CP) are largely due to the timing variations caused
by FPGA place and route; the interactions of the in-order network and the selector unit from
Figure 6(b) sometimes contribute to these variations. These discrepancies are orthogonal to our
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Table 2. Resources (i.e., DSPs, LUTs, and FFs) of Dataflow Circuits without Sharing
(i.e., Naive, Obtained by Dynamatic [19]) and with Sharing (i.e., Shared, this Contribution)

Benchmark
DSPs LUTs FFs

Naive Shared ratio Naive Shared ratio Naive Shared ratio

atax 10 5 0.50 1970 2076 1.05 2206 1997 0.91
bicg 10 5 0.50 1627 1602 0.98 2018 1814 0.90
gemm 11 5 0.45 2339 2448 1.05 2500 2491 1.00
gemver 28 10 0.36 5580 5433 0.97 6753 5418 0.80
gesummv 18 5 0.28 2648 2666 1.01 3163 2528 0.80
2mm 16 5 0.31 3785 4200 1.11 4155 4153 1.00
3mm 15 5 0.33 3700 3653 0.99 3524 3096 0.88
mvt 10 5 0.50 2017 2029 1.01 2253 1878 0.83
gsum 22 5 0.23 2235 1989 0.89 2980 1708 0.57
gsumif 26 5 0.19 2807 2072 0.74 3865 1976 0.51
average 0.36 0.98 0.82

We obtain the resources from Vivado, after place and route. In all benchmarks, our sharing strategy successfully
identifies sharing opportunities and reduces the DSP count, which was our primary target.

Table 3. Timing of Dataflow Circuits without Sharing (i.e., Naive, Obtained by
Dynamatic [19]) and with Sharing (i.e., Shared, this Contribution)

Benchmark
Cycle count CP (ns) Exec. time (μs)

Naive Shared Naive Shared Naive Shared ratio

atax 4140 4459 4.9 4.3 20.3 19.2 0.95
bicg 7909 7910 4.6 4.3 36.4 34.0 0.93
gemm 68827 68827 5.7 4.9 392.3 337.3 0.86
gemver 1817 1899 5.1 5.6 9.3 10.6 1.15
gesummv 7952 8391 5.0 4.9 39.8 41.1 1.03
2mm 16610 17325 5.5 5.6 91.4 97.0 1.06
3mm 24557 24621 5.2 5.5 127.7 135.4 1.06
mvt 15708 15740 4.9 4.9 77.0 77.1 1.00
gsum 2473 2473 5.6 5.8 13.8 14.3 1.04
gsumif 2338 2419 5.3 5.8 12.4 14.0 1.13
average 1.02

We measure the cycle count in simulation and obtain the clock period (i.e., CP) from Vivado,
after place and route. As expected, the throughput of the loops remains unchanged (as
reflected in the cycle counts, that only marginally increase due to pipeline latency increases).

work and have been extensively discussed in the context of the timing analysis we rely on [23]. In
addition to significant DSP reductions, our designs typically require fewer LUTs and FFs, which
indicates that the complexity of the sharing mechanism (i.e., selector at unit input, branch at unit
output) is minor compared to the shared computational units with their dataflow wrapper logic
(i.e., the reduction of the wrapper resources compensates for the sharing mechanism, hence the
LUT and FF decrease).

We summarize our main results from Tables 2 and 3 in Figure 10, which shows the execution
time (i.e., the product of the CP and the cycle count) and resources (i.e., DSPs, LUTs, and FFs) of
our designs, normalized to the naive designs without sharing. All our solutions are Pareto optimal
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Fig. 10. Execution time and resources of dataflow circuits with sharing, normalized to the designs without
sharing. Our main goal is to reduce the DSP count, which we successfully achieved.

in terms of DSPs; some designs even dominate their naive counterpart due to the coincidental
reduction in CP. While we opted to identify sharing opportunities that do not affect throughput,
our sharing mechanism can be easily extended to further explore the design space and discover
other Pareto optimal solutions.

7.3 Results: Comparison with Vivado HLS

In the previous section, we demonstrated that our methodology effectively shares units in dataflow
designs. We are now interested in comparing the capabilities of our sharing strategy with that
of a standard, statically scheduled HLS tool. It should be noted upfront that, aside from gsum

and gsumif, none of the benchmarks we explore have characteristics that can take advantage of
dynamic scheduling. Hence, it is reasonable to expect that our circuits incur resource (i.e., LUT
and FF) and timing (i.e., CP) overheads—we already observed these effects in prior work [9, 18].
Our purpose here is to investigate if the unit count (i.e., number of DSPs) achieved by our sharing
strategy matches that of state-of-the-art HLS solutions.

We synthesized the benchmarks from Section 7.1 with Vivado HLS [36]; we employ the pipeline
directive in all innermost loops and do not impose any resource constraints. Hence, the HLS tool
maximizes performance (i.e., throughput) while minimizing the number of units—it shares as many
units as possible and achieves the minimal DSP count for the best II, which qualitatively matches
our strategy from Section 6.

Tables 4 and 5 compare the results obtained by Vivado HLS with dataflow circuits with sharing
(i.e., Shared results from Tables 2 and 3). The Vivado designs employ the exact same number of
DSPs as our solutions, which validates that our strategy successfully identified all sharing opportu-
nities. None of the benchmarks suffer due to the operation ordering across BBs (Section 4.4), which
indicates the effectiveness of our approach in a variety of practical cases. As anticipated, the static
kernels require fewer LUTs and FFs and achieve a lower CP (typically resulting in a lower total
execution time). Our goal here was to share computational resources (i.e., DSPs) as much as static
HLS does, which we have successfully achieved.

The dynamic designs that implement the irregular benchmarks (i.e., gsum and gsumif ) Pareto-
dominate their static counterparts in execution time by adapting the throughput at runtime to the
actual control outcomes (i.e., they require significantly fewer clock cycles to execute, therefore
decreasing the total execution time). Whenever a long-latency conditional statement is executed,
the throughput is temporarily lowered due to the conditional data dependencies—this lowering
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Table 4. Resources (i.e., DSPs, LUTs, and FFs) of Vivado HLS Circuits (i.e., Vivado) and our Dataflow
Circuits with Sharing (i.e., Shared, Repeated from Table 2), Obtained from Vivado, after Place and Route

Bench-

mark

DSPs LUTs FFs

Vivado HLS Shared ratio Vivado HLS Shared ratio Vivado HLS Shared ratio

atax 5 5 1.00 388 2076 5.35 762 1997 2.62
bicg 5 5 1.00 425 1602 3.77 824 1814 2.20
gemm 5 5 1.00 458 2448 5.34 837 2491 2.98
gemver 10 10 1.00 1032 5433 5.26 1631 5418 3.32
gesummv 5 5 1.00 553 2666 4.82 944 2528 2.68
2mm 5 5 1.00 598 4200 7.02 963 4153 4.31
3mm 5 5 1.00 666 3653 5.48 1104 3096 2.80
mvt 5 5 1.00 481 2029 4.22 802 1878 2.34
gsum 5 5 1.00 558 1989 3.56 1023 1708 1.67
gsumif 5 5 1.00 542 2072 3.82 963 1976 2.05
average 1.00 4.86 2.69

The matching DSP counts indicate that our approach successfully identified all sharing opportunities. The LUT and FF
overheads of dataflow circuits are expected and orthogonal to our sharing contribution.

Table 5. Timing of Vivado HLS Circuits (i.e., Vivado) and our Dataflow Circuits with Sharing
(i.e., Shared, Repeated from Table 3)

Benchmark
Cycle count CP (ns) Exec. time (μs)

Vivado HLS Shared Vivado HLS Shared Vivado HLS Shared ratio

atax 5041 4459 3.3 4.3 16.6 19.2 1.15
bicg 9421 7910 3.3 4.3 31.1 34.0 1.09
gemm 91201 68827 3.2 4.9 291.8 337.3 1.16
gemver 2534 1899 3.4 5.6 8.6 10.6 1.23
gesummv 9029 8391 3.4 4.9 30.7 41.1 1.34
2mm 24402 17325 3.3 5.6 80.5 97.0 1.20
3mm 34803 24621 3.3 5.5 114.8 135.4 1.18
mvt 18782 15740 3.3 4.9 62.0 77.1 1.24
gsum 10067 2473 3.4 5.8 34.2 14.3 0.42
gsumif 10047 2419 3.5 5.8 35.2 14.0 0.40
average 1.04

Most of our benchmarks are regular kernels which do not benefit from dynamic scheduling; the exceptions are gsum

and gsumif, where dynamic scheduling significantly outperforms static scheduling. The CP overheads of dataflow
circuits are expected and orthogonal to our sharing contribution.

allows the conditional operations to share functional units and reduces the DSP counts to exactly
those of the static kernels.

Surprisingly, all our solutions require fewer clock cycles to execute than the static solutions—
while this effect is expected for gsum and gsumif, there is no fundamental reason for the dy-
namic kernels to execute faster in the other, perfectly regular, benchmarks. There are two expla-
nations: (1) Sometimes, our designs overlap different loops more effectively than Vivado HLS; a
similar overlapping could be achieved in Vivado HLS using the dataflow pragma, but this optimiza-
tion limits resource sharing [35] and prevents us from comparing DSP-optimal pipelined designs.
(2) In some cases, the retiming algorithms of Vivado place an additional register on the critical
loops and increase the II; we employ a different register placement strategy [23] which does not
need this register. These effects are orthogonal to our contribution and have only a quantitative
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effect on the results; the matching DSP counts of the static and dynamic designs clearly indicate
the effectiveness of our sharing approach in achieving the best possible (i.e., minimal) number of
functional units.

To sum up, the high-level idea of unit sharing is the same in static and dynamic scheduling; yet,
the absence of a fixed, predetermined schedule in dynamically scheduled circuits calls for funda-
mentally different strategies to achieve these goals: (1) Both scheduling approaches aim to share
functional units to minimize their idle time (i.e., each unit should be fully used and constantly busy
computing). In static circuits, the information on unit usage is determined based on the scheduled
execution times of particular operations—operations that are not scheduled to start simultaneously
can share a resource. This information does not exist in dynamically scheduled circuits; instead,
sharing is determined based on average computing rates—operations that receive data at a low rate
can share a resource. (2) Both sharing implementations require data multiplexing at the shared unit
input to ensure correctness and minimal performance damages. In static circuits, this order is en-
forced via scheduling (i.e., the exact cycle time of the start of each operation that the shared unit
performs is fixed at compile time by the HLS tool). In dynamic circuits, the exact execution times
are unknown and exact arrival and entry times may differ based on the dynamic variabilities in the
circuit execution. Instead, the multiplexing logic enforces an order in which data should enter the
shared unit; as before, the order is determined based on the average computing rate (i.e., the order
should be such that the maximal computing rate is maintained). The fact that our circuits achieve
the same sharing capabilities as their static counterparts indicates that our sharing strategy for
dynamically scheduled circuits qualitatively matches that of static HLS.

It is important to note that, in certain situations, the throughput of dataflow circuits may change
during circuit execution (e.g., in the presence of variable-latency events or irregular control flow).
This may cause discrepancies between the average and actual achieved throughput and, conse-
quently, unit occupancy that our sharing strategy relies on. This is completely different than
in static HLS where, in the presence of unpredictable events, the HLS tool creates a pessimistic
schedule—all execution times are known, but conservative. Modeling the performance of dataflow
circuits in the presence of irregular events has been extensively studied in the context of the per-
formance analysis that we use [24]; our sharing results for irregular benchmarks (i.e., gsum and
gsumif ) demonstrate its effectiveness even in such situations.

7.4 Results: Sharing Mechanism Analysis

Our sharing mechanism consists of the following components: (1) Selector at the unit input,
(2) FIFO on the unit side, and (3) branch and t-buffs at the unit output. We are interested in un-
derstanding the resource cost of each of these components as well as their implications on the
total dataflow circuit resources. To this end, we synthesize the sharing components in isolation
targeting various sharing configurations. We vary the number and type of shared units that the
mechanism should support: we explore mechanisms for sharing 2 to 8 floating point adders and 2
to 8 floating point multipliers (i.e., the same units that our benchmarks from Section 7.1 contain).
We investigate how each component scales with the increase of shared units and we evaluate the
resource savings due to sharing.

Our results are reported in Tables 6 to 11 and visualized in Figure 11. We here summarize our
main findings:

(1) DSPs. As explained earlier, our primary target is DSP reduction; this is consistent with
default sharing strategies of standard HLS tools (e.g., Vivado HLS) and a reasonable goal
considering the expensiveness and scarcity of DSPs on FPGAs (e.g., the FPGA we employ
for our experiments contains only 600 DSPs; in contrast, it has over 160 thousand LUTs [37]).
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Fig. 11. Summary of results from Tables 6 to 11. The graphs indicate the resources of dataflow circuits with
sharing, normalized to circuits without sharing, for different numbers of floating point adders (a) and mul-
tipliers (b). In both cases, all resource savings increase with the number of shared resources, indicating the
scalability of our approach.

Our sharing logic does not contain DSPs and sharing removes the DSPs of the floating point
units—consistently with our benchmark evaluation, the DSP savings are significant and in-
crease with the number of shared units.

(2) FFs. Although we did not attempt to save FFs, our approach systematically reduces the total
FF count: sharing removes a large number of pipeline registers in the floating point unit
wrappers, and our sharing components require a comparably small number of FFs to encode
the ordering information, communicate through the FIFO, and store data in the output t-buffs.
The FF savings increase with the number of shared units.

(3) LUTs. Our sharing components contain multiplexing logic at the shared unit input and out-
put; this is the most significant cost in any sharing mechanism. When only two units are
shared, the multiplexing logic dominates the floating point unit LUTs, resulting in an in-
crease in total LUTs. For larger sharing configurations, the LUT count, generally, improves:
the savings are more significant for the adder, as it contains a larger number of LUTs that
are removed when sharing.
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Table 6. DSP Savings when Sharing Float Adders

No sharing Sharing

fadd # DSPfadd,total fadd # DSPfadd DSPsel DSPFIFO DSPbranch DSPtotal ratio

2 4 1 2 0 0 0 2 0.50
3 6 1 2 0 0 0 2 0.33
4 8 1 2 0 0 0 2 0.25
5 10 1 2 0 0 0 2 0.20
6 12 1 2 0 0 0 2 0.17
7 14 1 2 0 0 0 2 0.14
8 16 1 2 0 0 0 2 0.13

The total number of DSPs without sharing corresponds to the DSPs of all employed floating point adders,
DSPfadd, total. The total number of DSPs for the shared implementation, DSPtotal, corresponds to the sum of the
DSPs of the shared adder, selector, FIFO, and branching logic (branch and t-buffs). Our sharing mechanism does
not contain DSPs, and sharing removes DSP-based adders, thus, the more adders we share, the more significant
the DSP savings.

Table 7. FF Savings when Sharing Float Adders

No sharing Sharing

fadd # FFfadd,total fadd # FFfadd FFsel FFFIFO FFbranch FFtotal ratio

2 730 1 365 88 12 66 531 0.73
3 1095 1 365 91 13 99 568 0.52
4 1460 1 365 91 13 132 601 0.41
5 1825 1 365 93 14 165 637 0.35
6 2190 1 365 93 14 198 670 0.31
7 2555 1 365 93 14 231 703 0.28
8 2920 1 365 93 14 264 736 0.25

The total number of FFs without sharing corresponds to the FFs of all employed floating point adders, FFfadd, total.
The total number of FFs for the shared implementation, FFtotal, corresponds to the sum of the FFs of the shared
adder, selector, FIFO, and branching logic (branch and t-buffs). The number of FFs in the shared logic is smaller
than that in the adder; thus, the more adders we share, the more significant the FF savings.

Table 8. LUT Savings when Sharing Float Adders

No sharing Sharing

fadd # LUTfadd,total fadd # LUTfadd LUTsel LUTFIFO LUTbranch LUTtotal ratio

2 360 1 180 190 18 37 425 1.18
3 540 1 180 166 19 59 424 0.79
4 720 1 180 247 19 78 524 0.73
5 900 1 180 292 23 98 593 0.66
6 1080 1 180 415 23 118 736 0.68
7 1260 1 180 367 23 137 707 0.56
8 1440 1 180 470 23 156 829 0.58

The total number of LUTs without sharing corresponds to the LUTs of all employed floating point adders, LUTfadd, total.
The total number of LUTs for the shared implementation, LUTtotal, corresponds to the sum of the LUTs of the shared
adder, selector, FIFO, and branching logic (branch and t-buffs). Our sharing mechanism contains multiplexing logic at
the unit input and output; when sharing two adders, this logic introduces a LUT overhead. In all other cases, the LUT
count of the shared logic is smaller than that of the removed adders; LUT savings increase with the number of shared
units.
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Table 9. DSP Savings when Sharing Float Multipliers

No sharing Sharing

fmul # DSPfmul,total fmul # DSPfmul DSPsel DSPFIFO DSPbranch DSPtotal ratio

2 6 1 3 0 0 0 3 0.50
3 9 1 3 0 0 0 3 0.33
4 12 1 3 0 0 0 3 0.25
5 15 1 3 0 0 0 3 0.20
6 18 1 3 0 0 0 3 0.17
7 21 1 3 0 0 0 3 0.14
8 24 1 3 0 0 0 3 0.13

The total number of DSPs without sharing corresponds to the DSPs of all employed floating point multipliers,
DSPfmul, total. The total number of DSPs for the shared implementation, DSPtotal, corresponds to the sum of the DSPs
of the shared multiplier, selector, FIFO, and branching logic (branch and t-buffs). Our sharing mechanism does not
contain DSPs, and sharing removes DSP-based multipliers, thus, the more multipliers we share, the more significant
the DSP savings.

Table 10. FF Savings when Sharing Float Multipliers

No sharing Sharing

fmul # FFfmul,total fmul # FFfmul FFsel FFFIFO FFbranch FFtotal ratio

2 344 1 172 88 10 66 336 0.98
3 516 1 172 91 11 99 373 0.72
4 688 1 172 91 11 132 406 0.59
5 860 1 172 93 12 165 442 0.51
6 1032 1 172 93 12 198 475 0.46
7 1204 1 172 93 12 231 508 0.42
8 1376 1 172 93 12 264 541 0.39

The total number of FFs without sharing corresponds to the FFs of all employed floating point multipliers, FFfmul, total.
The total number of FFs for the shared implementation, FFtotal, corresponds to the sum of the FFs of the shared
multiplier, selector, FIFO, and branching logic (branch and t-buffs). The number of FFs in the shared logic is smaller than
that in the multiplier; thus, the more multipliers we share, the more significant the FF savings.

Table 11. LUT Savings when Sharing Float Multipliers

No sharing Sharing

fmul # LUTfmul,total fmul # LUTfmul LUTsel LUTFIFO LUTbranch LUTtotal ratio

2 208 1 104 190 14 37 345 1.66
3 312 1 104 166 15 59 344 1.10
4 416 1 104 247 15 78 444 1.07
5 520 1 104 292 19 98 513 0.99
6 624 1 104 415 19 118 656 1.05
7 728 1 104 367 19 137 627 0.86
8 832 1 104 470 19 156 749 0.90

The total number of LUTs without sharing corresponds to the LUTs of all employed floating point multipliers,
LUTfmul, total. The total number of LUTs for the shared implementation, LUTtotal, corresponds to the sum of the LUTs
of the shared multiplier, selector, FIFO, and branching logic (branch and t-buffs). Our sharing mechanism contains
multiplexing logic at the unit input and output; in smaller sharing configurations, this logic introduces a LUT
overhead; when sharing more units, the LUT count improves. These trends are acceptable for the significant DSP and
FF savings that sharing systematically achieves.
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All these findings are consistent with our results from Figure 10: sharing results in significant
DSP and FF savings, typically accompanied by a LUT saving; in some configurations, sharing re-
sults in a minor LUT overhead which is typically acceptable for the significant DSP and FF savings.
Furthermore, the fact that the resource reduction increases with the number of shared units indi-
cates the scalability and broad applicability of our sharing approach.

8 RELATED WORK

Standard, statically-scheduled HLS tools [7, 36] perform scheduling in conjunction with resource
allocation and sharing [38]; they trade-off area and performance by deciding the cycle in which
each operation executes and allocating units accordingly. Dataflow circuits face the same optimiza-
tion objectives and area-performance trade-offs; however, there is no predetermined schedule and
no information on when each operation executes to decide how many units to employ.

Several dataflow-oriented HLS approaches support forms of resource sharing. Bluespec [2]
allows the user to specify the appropriate control logic around a shared resource in a dataflow
network using guarded atomic actions. Nielsen et al. [26] discuss dataflow construct sharing in
the Balsa asynchronous hardware description language. Neither of these works addresses the
correctness and performance aspects of sharing that we discuss here; furthermore, our approach
automatically achieves the correct sharing logic without any user-given specifications. In the
context of dataflow machines [1], a processor-like I-structure manages tokens entering and
exiting a shared function; yet, this centralized mechanism is not available in spatial dataflow
circuits.

Edwards et al. [13] present a nondeterministic sharing mechanism for dataflow circuits, similar
to the one shown in Figure 1; yet, as we have illustrated in this paper, this mechanism is not
sufficient to guarantee the absence of deadlock in dataflow circuits obtained out of imperative
code. Cortadella et al. [10] describe sharing in elastic circuits and indicate the need to build
a local scheduler to decide, at each clock cycle, which input can use the resource, both for
avoiding unit starvation and for performance benefits. Similarly, Hansen and Singh [15] employ
a local, centralized FSM for every shared unit in their asynchronous pipelines to regulate the
multiplexing of tokens at its inputs. However, both these approaches are applicable only to simple
loops without conditionals, where a predetermined sequence of inputs can be encoded into a
centralized scheduler; therefore, they are not applicable to circuits obtained out of high-level code.
In contrast, our method applies to generic HLS constructs and circuits with control flow—we use a
distributed network to control the multiplexing of tokens dynamically, based on particular control
flow outcomes.

9 CONCLUSIONS

Resource sharing is one of the key optimizations in high-level synthesis; if dataflow circuits are
to compete with standard HLS, they need to be able to exploit this optimization opportunity.
In this work, we present a resource sharing methodology for dataflow circuits obtained from C
code; our key contribution is a sharing mechanism that achieves correct, deadlock-free execution.
In addition, we present a method to identify sharing opportunities that do not compromise
performance. On a set of benchmarks, we demonstrate the ability of our approach to significantly
improve the resource efficiency of dataflow circuits and to match the sharing capabilities of a
standard HLS tool. Our sharing mechanism is key to achieve different area-performance tradeoffs
in dataflow designs as well as to make them competitive in terms of computational resources
(i.e., functional units and the corresponding DSP count) with circuits achieved using standard
HLS techniques.
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