
15

Fast Parallel Algorithms for Enumeration of Simple,

Temporal, and Hop-constrained Cycles

JOVAN BLANUŠA and KUBILAY ATASU, IBM Research Europe-Zurich, Switzerland

PAOLO IENNE, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables

important applications in a wide variety of fields, including finance, biology, chemistry, and network science.

However, to enable cycle enumeration in real-world applications, efficient parallel algorithms are required.

In this work, we propose scalable parallelisation of state-of-the-art sequential algorithms for enumerating

simple, temporal, and hop-constrained cycles. First, we focus on the simple cycle enumeration problem and

parallelise the algorithms by Johnson and by Read and Tarjan in a fine-grained manner. We theoretically

show that our resulting fine-grained parallel algorithms are scalable, with the fine-grained parallel Read-

Tarjan algorithm being strongly scalable. In contrast, we show that straightforward coarse-grained parallel

versions of these simple cycle enumeration algorithms that exploit edge- or vertex-level parallelism are not

scalable. Next, we adapt our fine-grained approach to enable the enumeration of cycles under time-window,

temporal, and hop constraints. Our evaluation on a cluster with 256 CPU cores that can execute up to 1,024

simultaneous threads demonstrates a near-linear scalability of our fine-grained parallel algorithms when

enumerating cycles under the aforementioned constraints. On the same cluster, our fine-grained parallel

algorithms achieve, on average, one order of magnitude speedup compared to the respective coarse-grained

parallel versions of the state-of-the-art algorithms for cycle enumeration. The performance gap between the

fine-grained and the coarse-grained parallel algorithms increases as we use more CPU cores.

CCS Concepts: • Theory of computation→ Parallel algorithms; Graph algorithms analysis;

Additional Key Words and Phrases: Cycle enumeration, parallel graph algorithms, graph pattern mining

ACM Reference format:

Jovan Blanuša, Kubilay Atasu, and Paolo Ienne. 2023. Fast Parallel Algorithms for Enumeration of Simple, Tem-

poral, and Hop-constrained Cycles. ACM Trans. Parallel Comput. 10, 3, Article 15 (September 2023), 35 pages.

https://doi.org/10.1145/3611642

1 INTRODUCTION

Graphs are widely adopted for usage as a data representation tool across many domains [47, 50,

70, 71]. A method of analysing graph-based data is to enumerate subgraph patterns, such as cycles,

cliques, and motifs, in graphs [3]. However, enumerating subgraph patterns often leads to long

J. Blanuša is also with Ecole Polytechnique Fédérale de Lausanne, School of Computer and Communication Sciences.

The support of Swiss National Science Foundation (Project No. 172610) for this work is gratefully acknowledged.

Authors’ addresses: J. Blanuša and K. Atasu, IBM Research Europe-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzer-

land; emails: {jov, kat}@zurich.ibm.com; P. Ienne, Ecole Polytechnique Fédérale de Lausanne, School of Computer and

Communication Sciences, Route Cantonale, CH-1015 Lausanne, Switzerland; email: paolo.ienne@epfl.ch.

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2329-4949/2023/09-ART15 $15.00

https://doi.org/10.1145/3611642

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

https://orcid.org/0000-0003-4915-6551
https://orcid.org/0000-0002-4315-6780
https://orcid.org/0000-0002-6142-7345
https://doi.org/10.1145/3611642
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3611642
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611642&domain=pdf&date_stamp=2023-09-21

15:2 J. Blanuša et al.

Fig. 1. Per-thread execution time of (a) the coarse-grained Johnson algorithm vs. (b) our fine-grained Johnson
algorithm using the WT graph and a 12 h time window. Thanks to a perfect load balancing, our fine-grained
method is 3× faster on a 64-core CPU executing 256 threads.

execution times, because the number of subgraph patterns that can exist in a graph [4, 20] can be

orders of magnitude greater than the number of graph vertices. As a result, fast subgraph enumer-

ation algorithms are required that can exploit the parallelisim in modern multi-core processors.

In this article, we focus on enumerating simple cycles in directed graphs and introduce scalable

parallel algorithms for that problem. A simple cycle is a sequence of edges that starts and ends

with the same vertex and visits other vertices at most once. Enumerating simple cycles has impor-

tant applications in several domains. For example, in electronic design automation, combinatorial

loops in circuits are typically forbidden [28, 56], and such loops can be detected by enumerating

simple cycles. In a software bug tracking system, a dependency between two software bugs re-

quires one bug to be addressed before the other [63]. Circular bug dependencies are undesirable

and can be detected by finding simple cycles. Other applications include detecting feedback loops

in biological networks [37, 41] and detecting unstable relationships in social networks [25, 74].

Various types of constraints are often imposed on the simple cycles, because the search for

simple cycles may otherwise be computationally impossible [39, 54, 58]. For instance, temporal

ordering constraints can be imposed when searching for simple cycles in temporal graphs that

have edges annotated with timestamps. Simple cycles enumerated under this constraint contain

edges ordered in time; such cycles are referred to as temporal cycles [39]. Enumerating temporal

cycles has applications in the financial domain, where a temporal cycle can be an indicator of

money laundering [30, 43, 65], credit card fraud [58], or circular trading used for manipulating

stock prices [31, 34, 52]. Other types of constraints include hop constraints [54, 58], which limit

the length of paths explored during the search for cycles, and time-window constraints [39], which

restrict the search to cycles that occur within a time window of a given size. Hop-constrained cycles

can be used to detect fraudulent behaviour in e-commerce networks [58]. In addition, long cycles

in financial transaction networks are less likely to be associated with money laundering, because

they increase the risk for fraudsters of being caught [43], and imposing hop-constraints can filter

out such cycles. Furthermore, searching for cycles under temporal ordering, hop, and time-window

constraints reduces the number of paths explored during the search, making the cycle enumeration

problem more tractable. Therefore, we focus on searching for cycles under these constraints.

Parallelisation challenges. We focus on parallelising the algorithms by Johnson [35] and by

Read and Tarjan [60] for enumerating simple cycles, because these algorithms achieve the lowest

time complexity bounds reported for directed graphs [27, 46]. Both algorithms are recursively for-

mulated and construct a recursion tree in a depth-first fashion. However, these algorithms employ

different pruning techniques to limit the amount of work they perform. In practice, the Johnson

algorithm is faster than the Read-Tarjan algorithm due to more aggressive pruning techniques [27,

46]. Furthermore, the state-of-the-art algorithms for temporal and hop-constrained cycle enumer-

ation are extensions of the Johnson algorithm [39, 54]. Thus, parallelising the Johnson algorithm

also enables parallelisation of these temporal and hop-constrained cycle enumeration algorithms.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:3

Table 1. Summary of Our Theoretical Analysis

Parallel algorithm Work-efficient Scalable

Coarse-grained parallel algorithms ✓
Our fine-grained parallel Johnson ✓
Our fine-grained parallel Read-Tarjan ✓ ✓

Our fine-grained parallel Read-Tarjan algorithm is the only solution that is both

work-efficient and scalable.

The naïve way of parallelising the Johnson and the Read-Tarjan algorithms involves search-

ing for cycles starting from different vertices or edges in parallel, which we refer to as the

coarse-grained parallel methods. Such coarse-grained parallel approaches are straightforward to

implement using the popular vertex-centric [45, 48] and edge-centric [62] graph processing frame-

works. However, real-world graphs often exhibit a power-law or a log-normal distribution of vertex

degrees [8, 16]. In such graphs, the execution time of coarse-grained parallel approaches is domi-

nated by searches that start from a small set of vertices or edges as illustrated in Figure 1(a). This

behaviour leads to a workload imbalance and limits scalability of parallel implementations.

The shortcomings of coarse-grained parallel approaches can be addressed by decomposing the

search for cycles starting from a given edge or vertex into finer-grained tasks [1, 11, 20]. How-

ever, parallelising the Johnson algorithm using the fine-grained approach is challenging, because

the pruning efficiency of this algorithm depends on a strictly sequential depth-first-search-based

recursion tree exploration. We demonstrate that the lesser-known Read-Tarjan algorithm does not

have such a requirement, and, thus, it is easier to decompose into fine-grained tasks.

Contributions. This article presents an extension of the work by Blanuša et al. [10], which

introduces the following contributions:

(i) Scalable fine-grained parallelisation of the Johnson and the Read-Tarjan algorithms. To our

knowledge, we are the first ones to parallelise these asymptotically optimal cycle enumeration

algorithms in a fine-grained manner and achieve an almost linear performance scaling on a system

that can execute up to a thousand concurrent software threads. Such a scalability is enabled by

our decomposition of long sequential searches into fine-grained tasks, which are then dynamically

scheduled across CPU cores. To decompose the Johnson algorithm into fine-grained tasks, we have

relaxed its strictly depth-first-search-based exploration, which enables this algorithm to perform

multiple independent depth-first searches in parallel. As a result, our fine-grained parallel Johnson

algorithm is able to achieve an ideal load balancing as shown in Figure 1(b).

(ii) Theoretical analysis of the coarse- and fine-grained parallel algorithm. We theoretically show

that both of our fine-grained parallel algorithms are scalable, which is not the case for the Johnson

and the Read-Tarjan algorithms parallelised in a coarse-grained manner. Moreover, we show that

our fine-grained parallel Read-Tarjan algorithm performs asymptotically the same amount of work

as its serial version, whereas our fine-grained parallel Johnson algorithm does not. Therefore, our

fine-grained parallel Read-Tarjan algorithm is the only parallel algorithm based on an asymptot-

ically optimal cycle enumeration algorithm that is both work-efficient and scalable, as shown in

Table 1. Interestingly, despite not being work-efficient, our fine-grained Johnson algorithm outper-

forms our fine-grained parallel Read-Tarjan algorithm in most of our experiments.

In this article, we extend our prior work [10] with the following contributions:

(iii) General framework for parallelising temporal and hop-constrained cycle enumeration. We

show that our method for parallelising the Johnson algorithm in a fine-grained manner can

be adapted to parallelise the state-of-the-art algorithms for temporal and hop-constrained cycle

enumeration. This adaptation is possible because these state-of-the-art algorithms, such as the

2SCENT algorithm for temporal cycle enumeration [39] and the BC-DFS algorithm [54] for hop-

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:4 J. Blanuša et al.

Table 2. Capabilities of the Related Work Versus Our Own

Related work [39] [58] [54] [57] [29] Ours

Fine-grained parallelism ✓ ✓
Asymptotic optimality ✓ ✓ ✓ ✓
Temporal cycles ✓ ✓
Time-window constraints ✓ ✓ ✓
Hop constraints ✓ ✓ ✓ ✓ ✓

Competing algorithms either fail to exploit fine-grained parallelism or do it on top of

asymptotically inferior algorithms.

constrained cycle enumeration, are extensions of the Johnson algorithm. By parallelising these

algorithms using our fine-grained method, we were able to achieve speedups of up to 40× and 61×
compared to the coarse-grained parallel versions of 2SCENT and BC-DFS, respectively.

(iv) Improvements to the pruning efficiency of the Read-Tarjan algorithm. To make this algorithm

competitive with the Johnson algorithm, we have introduced several optimisations that enhance

the pruning efficiency of the Read-Tarjan algorithm. The optimisations reduce the amount of un-

necessary vertex visits that this algorithm performs. As a result, our improved version of the Read-

Tarjan algorithm is up to 6.8× faster than the original version of this algorithm.

Article structure. The remainder of this article is organised as follows. The related work and

background are presented in Sections 2 and 3, respectively. Coarse-grained parallel versions of the

Johnson and the Read-Tarjan algorithms are covered in Section 4. Sections 5 and 6 introduce our

fine-grained parallel versions of the Johnson and the Read-Tarjan algorithms, respectively. Sec-

tion 6 also includes our optimisations for improving the pruning efficiency of the Read-Tarjan

algorithm. Our general framework for parallelising temporal and hop-constrained cycle enumer-

ation algorithms is presented in Section 7. In Section 8, we provide an experimental evaluation of

our fine-grained parallel algorithms. Finally, we conclude our work in Section 9.

2 RELATED WORK

Simple cycle enumeration algorithms. Enumeration of simple cycles of graphs is a classical

computer science problem [2, 9, 27, 35, 44, 46, 60, 66–68, 72]. The backtracking-based algorithms

by Johnson [35], Read and Tarjan [60], and Szwarcfiter and Lauer [66] achieve the lowest time

complexity bounds for enumerating simple cycles in directed graphs. These algorithms implement

advanced recursion tree pruning techniques to improve on the brute-force Tiernan algorithm [68].

Section 3.4 covers such pruning techniques in further detail. A cycle enumeration algorithm that

is asymptotically faster than the aforementioned algorithms [35, 60, 66] has been proposed in

Birmelé et al. [9]; however, it is applicable only to undirected graphs. Simple cycles can also be

enumerated by computing the powers of the adjacency matrix [19, 36, 55] or by using circuit

vector space algorithms [24, 46, 73], but the complexity of such approaches grows exponentially

with the size of the cycles or the size of the input graphs.

Time-window, temporal ordering, and hop constraints. It is common to search for cycles

under some additional constraints. For instance, in temporal graphs, it is common to search for

cycles within a sliding time window, such as in Kumar and Calders [39] and Qiu et al [58]. In

addition, temporal ordering constraints can be imposed when searching for cycles in temporal

graphs, such as in Kumar and Calders [39]. Furthermore, the maximum number of hops in cycles

or paths can be constrained, such as in Gupta and Suzumura [29] and Peng et al. [54]. Note that

hop-constrained simple cycles can also be enumerated using incremental algorithms, such as in

Qiu et al. [58]. However, this algorithm is based on the brute-force Tiernan algorithm [68], which

makes it slower than nonincremental algorithms that use recursion tree pruning techniques [54].

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:5

Table 3. Summary of the Notation Used in the Article

Symbol Description Symbol Description

G (V,E) Graph with verticesV and edges E Π Current simple path explored by an algorithm

N (v) The set of neighbours of the vertex v Blk Set of blocked vertices

u → v A directed edge from u to v Blist Unblock list of the Johnson algorithm

n, e No. vertices and edges in a graph E Path extension of the Read-Tarjan algorithm

δ Size of a time window XTi
Data structure X is maintained by the thread Ti

L Hop constraint p No. threads used by a parallel algorithm

c No. simple cycles in a graph Tp (n) Execution time of a parallel algorithm

s No. maximal simple paths in a graph Wp (n) Amount of work a parallel algorithm performs

Additionally, because incremental algorithms maintain auxiliary data structures, such as paths,

to be able to construct cycles incrementally, they are not as memory-efficient as nonincremental

algorithms [54]. Table 2 offers comparisons between the capabilities of these methods and ours.

Parallel and distributed algorithms for cycle enumeration. Cui et al. [18] proposed a multi-

threaded algorithm for detecting and removing simple cycles of a directed graph. The algorithm

divides the graph into its strongly connected components and each thread performs a depth-first

search on a different component to find cycles. However, sizes of the strongly connected compo-

nents in real-world graphs can vary significantly [49], which leads to a workload imbalance. Rocha

and Thatte [61] proposed a distributed algorithm for simple cycle enumeration based on the bulk-

synchronous parallel model [69], but it searches for cycles in a brute-force manner. Qing et al. [57]

introduced a parallel algorithm for finding length-constrained simple cycles. It is the only other

fine-grained parallel algorithm we are aware of in the sense that it can search for cycles starting

from the same vertex in parallel. However, the way this algorithm searches for cycles is similar to

the way the brute-force Tiernan algorithm [68] works. To our knowledge, we are the first ones to

introduce fine-grained parallel versions of asymptotically optimal simple cycle enumeration algo-

rithms, which do not rely on a brute-force search, as we show in Table 2. Distributed algorithms

for detecting the presence of cycles in graphs readily exist [6, 23, 51]. However, our focus is on

discovering all simple cycles of a graph rather than detecting whether a graph has a cycle or not.

3 BACKGROUND

This section introduces the main theoretical concepts used in this article and provides an overview

of the most prominent simple cycle enumeration algorithms. The notation used is given in Table 3.

3.1 Preliminaries

We consider a directed graph G (V,E) having a set of vertices V and a set of directed edges

E = {u → v | u,v ∈ V}. The set of neighbours of a given vertex v is defined as N (v) = {w |
v → w ∈ E}. We refer to the vertex v of an edge v → u as its source vertex and to the vertex u as

its destination vertex. An outgoing edge of a given vertex v is defined as v → w and an incoming

edge is defined as u → v , where v → w,u → v ∈ E. A path between the vertices v0 and vk ,

denoted as v0 → v1 . . . → vk , is a sequence of vertices such that there exists an edge between

every two consecutive vertices of the sequence. A simple path is a path with no repeated vertices.

A simple path is maximal if the last vertex of the path has no neighbours or all of its neighbours

are already in the path [21]. A cycle is a path of non-zero length from a vertex v to the same

vertex v . A simple cycle is a cycle with no repeated vertices except for the first and last vertex.

The number of maximal simple paths and the number of simple cycles in a graph are denoted as

s and c , respectively (see Table 3). Note that s can be exponentially larger than c [67]. A path or a

cycle is said to satisfy a hop-constraint L if the number of edges in that path or cycle is less than

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:6 J. Blanuša et al.

Fig. 2. Two snapshots of a temporal graph associated with two different time windows of size δ = 5. The
solid arrows indicate the edges that belong to the respective time windows.

or equal to L. The goal of simple cycle enumeration is to compute all simple cycles of a directed

graph G, ideally without computing all maximal simple paths of it.

A temporal graph is a graph that has its edges annotated with timestamps [53]. Such a graph

might contain parallel edges, which are edges with the same source and destination vertices [7]. An

example of a temporal graph with parallel edges is given in Figure 2. In temporal graphs, a tempo-

ral cycle is a simple cycle, in which the edges appear in the increasing order of their timestamps.

A simple cycle or a temporal cycle of a temporal graph occurs within a time window [tw1 : tw2]

if every edge of that cycle has a timestamp ts such that tw1 ≤ ts ≤ tw2. Figure 2 shows the simple

cycles of a temporal graph that occur within two different time windows of size δ = 5. This graph

contains two simple cycles in the time window [2 : 7] (Figure 2(a)), which are also temporal cycles,

and two simple cycles in the time window [10 : 15] (Figure 2(b)), neither being a temporal cycle.

Note that the existence of parallel edges in temporal graphs makes it possible to have several sim-

ple cycles that contain the same sequence of vertices, as shown in Figure 2(a). The union of several

cycles that contain the same sequence of vertices is called a cycle bundle [39].

3.2 Task-level Parallelism

The parallel algorithms described in this article can be implemented using shared-memory par-

allel processing frameworks, such as TBB [38], Cilk [13], and OpenMP [59]. These frameworks

enable the decomposition of a program into tasks that can be independently executed by different

software threads. In our setup, tasks are created and scheduled dynamically. A parent task can

spawn several child tasks. The depth of a task is the number of its direct ancestors. A dynamic

task management system assigns the tasks created to the work queues of the available threads.

Furthermore, a work-stealing scheduler [13, 14, 38] enables a thread that is not executing a task to

steal a task from the work queue of another thread. Stealing tasks enables dynamic load balancing

and ensures full utilisation of the threads when there are sufficiently many tasks.

3.3 Work Efficiency and Scalability

We use the notions of work efficiency and scalability to analyse parallel algorithms [12]. We refer

to the time to execute a parallel algorithm on a problem of size n using p threads as Tp (n). The

size of a graph is determined by the number of vertices n as well as the number of edges e , but we

will refer only to n for simplicity. The depth of an algorithm is the length of the longest sequence

of dependent operations in the algorithm. The time required to execute such a sequence is equal

to the execution time of the parallel algorithm using an infinite number of threads, denoted by

T∞. Furthermore, work performed by a parallel algorithm on a problem of size n using p threads,

denoted asWp (n), is the sum of the execution times of the individual threads. The work efficiency

and the scalability are formally defined as follows.

Definition 1 (Work Efficiency). A parallel algorithm is work-efficient if and only if Wp (n) ∈
O (T1 (n)).

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:7

Definition 2 (Scalability). A parallel algorithm is scalable if and only if lim
n→∞

(
lim

p→∞

Tp (n)

T1 (n)

)
= 0.

Informally, a work-efficient parallel algorithm performs the same amount of work as its serial

version, within a constant factor. Scalability implies that, for sufficiently large inputs, increasing

the number of threads increases the speedup of the parallel algorithm with respect to its serial

version.

We also define the notion of strong scalability as follows [32].

Definition 3 (Strong Scalability). A parallel algorithm is strongly scalable if and only if
T1 (n)
Tp (n) =

Θ(p) for large enough n.

Whereas Definition 2 implies that the speedup T1 (n)/Tp (n) achieved by a parallel algorithm

with respect to its serial execution is infinite when the number of threads p is infinite, Definition 3

implies that the speedup is always in the order of p. Another related concept is weak scalability,

which requires the speedup to be in the order of p when the input size per thread is constant. Note

that both strong scalability and weak scalability imply scalability.

3.4 Simple Cycle Enumeration Algorithms

The following algorithms for simple cycle enumeration perform recursive searches to incremen-

tally update simple paths that can lead to cycles. Each algorithm iterates the vertices or edges of

the graph and independently constructs a recursion tree to enumerate all the cycles starting from

that vertex or edge. The difference between these algorithms is to what extent they reduce the

redundant work performed during the recursive search, which we discuss next.

The Tiernan algorithm [68] enumerates simple cycles using a brute-force search. It recur-

sively extends a simple path Π by appending a neighbour u of the last vertex v of Π provided that

u is not already in Π. A clear downside of this algorithm is that it can repeatedly visit vertices that

can never lead to a cycle. When searching for cycles in the graph shown in Figure 3(a) starting from

the vertexv0, this algorithm would explore the path containingb1, . . . ,bk 2m times. From each ver-

tex wi and ui , with i ∈ {1, . . . ,m}, the Tiernan algorithm would explore this path only to discover

that it cannot lead to a simple cycle. As noted by Tarjan [67], the Tiernan algorithm explores every

simple path and, consequently, all maximal simple paths of a graph. Exploring a maximal simple

path takes O (e) time, because it requires visiting each edge of the graph in the worst case. Given

a graph with s maximal simple paths (see Table 3), the worst-case time complexity of the Tiernan

algorithm is O (se).
The Johnson algorithm [35] improves upon the Tiernan algorithm by avoiding the vertices

that cannot lead to simple cycles when appended to the current simple path Π. For this purpose,

the Johnson algorithm maintains a set of blocked vertices Blk that are avoided during the search.

In addition, a list of vertices Blist[w] is stored for each blocked vertex w . Whenever a vertex w is

unblocked (i.e., removed from Blk) by the Johnson algorithm, the vertices in Blist[w] are also un-

blocked. This unblocking process is performed recursively until no more vertices can be unblocked,

which we refer to as the recursive unblocking procedure.

A vertex v is blocked (i.e., added to Blk) when visited by the algorithm. If a cycle is found after

recursively exploring every neighbour of v that is not blocked, then the vertex v is unblocked.

However, v is not immediately unblocked if no cycles are found after exploring its neighbours.

Instead, the Blist data structure is updated to enable unblocking of v in a later step by adding v
to the list Blist[w] of every neighbour w of v . This delayed unblocking of the vertices enables

the Johnson algorithm to discover each cycle in O (e) time in the worst case. Because this algo-

rithm requires O (n + e) time to determine that there are no cycles, its worst-case time complexity

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:8 J. Blanuša et al.

Fig. 3. (a) An example graph and (b) the recursion tree constructed when searching for cycles that start from
v0. The nodes of the recursion tree represent the recursive calls of the depth-first search. The dotted path of
the right subtree is explored only by the Read-Tarjan algorithm.

is O (n + e + ec) [66]. Note that because s can be exponentially larger than c [67], the Johnson

algorithm is asymptotically faster than the Tiernan algorithm.

In the example shown in Figure 3(a), every simple path Π that starts from v0 and contains ver-

tices b1, . . . ,bk is a maximal simple path, and, thus, it cannot lead to a simple cycle. The Johnson

algorithm would block b1, . . . ,bk immediately after visiting this sequence once and then keep

these vertices blocked until it finishes exploring the neighbours of v2. As a result, the Johnson

algorithm visits vertices b1, . . . ,bk only once, rather than 2m times the Tiernan algorithm would

visit them. Note that because these vertices get blocked during the exploration of the left subtree

of the recursion tree, they are not going to be visited again during the exploration of the right

subtree. Effectively, a portion of the right subtree is pruned (see the dotted path in Figure 3(b))

based on the updates made on Blk and Blist during the exploration of the left subtree. This strictly

sequential depth-first exploration of the recursion tree is critically important for achieving a high

pruning efficiency, but it also makes scalable parallelisation of the Johnson algorithm extremely

challenging, which we are going to cover in Section 5.

The Read-Tarjan algorithm [60] also has a worst-case time complexity ofO (n + e + ec). This

algorithm maintains a current path Π between a starting vertex and a frontier vertex. A recursive

call of this algorithm iterates the neighbours of the current frontier vertex and performs a depth-

first search (DFS). Assume that v0 is the starting vertex and v1 is the frontier vertex of Π (see

Figure 3(a)). From each neighbour y ∈ {v0,v2} of v1, a DFS tries to find a path extension E back to

v0 that would form a simple cycle when appended to Π. In the example shown in Figure 3(a), the

algorithm finds two path extensions, one indicated as E and one that consists of the edge v1 → v0.

The algorithm then explores each path extension by iteratively appending the vertices from it to

the path Π. For each vertexx added to Π, the algorithm also searches for an alternate path extension

from that vertex x to v0 using a DFS. In the example given in Figure 3(a), the algorithm iterates

through the vertices of the path extension E and finds an alternate path extension E ′ from the

neighbour u1 of v2. If an alternate path extension is found, then a child recursive call is invoked

with the updated current path Π, which is v0 → v1 → v2 in our example. Otherwise, if all the

vertices in E have already been added to the current path Π, then Π is reported as a simple cycle.

In our example, the Read-Tarjan algorithm explores both E and E ′ path extensions, and each leads

to the discovery of a cycle.

The Read-Tarjan algorithm also maintains a set of blocked vertices Blk for recursion-tree prun-

ing. However, differently from the Johnson algorithm, Blk only keeps track of the vertices that

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:9

cannot lead to new cycles when exploring the current path extension within the same recursive

call. The vertices in Blk are avoided while searching for additional path extensions that branch

from the current path extension. For instance, the left subtree of the recursion tree shown in Fig-

ure 3(b) demonstrates the exploration of the path extension E shown in Figure 3(a). During the

exploration of E, the vertices b1, . . . ,bk are added to Blk immediately after visiting w1, and they

are not visited again while exploring E. However, when exploring another path extension E ′ in

the right subtree, the vertices b1, . . . ,bk are visited once again (see the dotted path of the right

subtree). As a result, the Read-Tarjan algorithm visits b1, . . . ,bk twice instead of just once. As we

are going to show in Section 6, this drawback becomes an advantage when parallelising the Read-

Tarjan algorithm, because it enables independent exploration of different subtrees of the recursion

tree.

4 COARSE-GRAINED PARALLEL METHODS

The most straightforward way of parallelising the Johnson and the Read-Tarjan algorithms is to

search for cycles that start from different vertices in parallel. Each such search can then be executed

by a different thread that explores its own recursion tree. This approach is beneficial, because it

is work-efficient and can be implemented using one of the existing graph processing frameworks,

such as Pregel [45], in a manner similar to the method used by Rocha and Thatte [61]. We refer to

this parallelisation approach as the coarse-grained parallel approach.

The coarse-grained approach can express more parallelism if each thread performs a search for

cycles that start from a different edge rather than a different vertex. This assumption is supported

by the fact that graphs typically have more edges than vertices. Nevertheless, the coarse-grained

approach is not scalable, which we prove here.

Proposition 1. The coarse-grained parallel Johnson and Read-Tarjan algorithms are

work-efficient.

The proof of Proposition 1 is trivial, and we omit it for brevity.

Theorem 1. The coarse-grained parallel Johnson and Read-Tarjan algorithms are not scalable.

Proof. In this case, the depth T∞ (n) represents the worst-case execution time of a search for

cycles that starts from a single vertex or edge, and it depends on the number of cycles found

during this search. In the worst case, a single recursive search can discover all cycles of a graph.

An example of such graph is given in Figure 4(a), where each vertex vi , with i ∈ {1, . . . ,n − 1},
is connected to v0 and to every vertex vj such that j > i . In that graph, any subset of vertices

v2, . . . ,vn−1 defines a different cycle. Therefore, the total number of cycles in this graph is equal

to the number of all such subsets c = 2n−2. Before the search for cycles, both the Johnson and the

Read-Tarjan algorithm find all vertices that start a cycle, which is only v0 in this case. Therefore,

the search for cycles will be performed only by one thread. Because both the Johnson and the Read-

Tarjan algorithms requireO (e) time to find each cycle, the depth of the coarse-grained algorithms

isT∞ (n) ∈ O (ec). Because limn→∞T∞ (n)/T1 (n) � 0, the coarse-grained algorithms are not scalable

based on Definition 2. �

Theorem 1 shows that the main drawback of the coarse-grained parallel algorithms is their

limited scalability. This limitation is apparent for the graph shown in Figure 4(a), which has

an exponential number of cycles in n. When using a coarse-grained parallel algorithm on this

graph, all the cycles will be discovered by a single thread, and, thus, the depth of this algorithm

grows linearly with c , as shown in Table 4. Because only one thread can be effectively utilised,

increasing the number of threads will not result in a reduction of the overall execution time of

the coarse-grained parallel algorithm. Figure 1(a) shows the workload imbalance exhibited by the

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:10 J. Blanuša et al.

Fig. 4. (a) A graph with an exponential number of simple cycles. (b) The recursion tree of the Johnson algo-
rithm for n = 6 constructed when the algorithm starts fromv0. Whereas a coarse-grained parallel algorithm
explores the complete recursion tree using a single thread, our fine-grained parallel algorithms can explore
different regions of the recursion tree in parallel using several threads.

Table 4. Work and Depth of the Coarse- and Fine-grained Parallel Algorithms

Parallel algorithm Work Depth

Coarse-grained algorithms O (n + e + ec) O (ec)
Fine-grained Johnson algorithm O (n + e +min{pce, se}) O (e)
Fine-grained Read-Tarjan algorithm O (n + e + ec) O (ne)

coarse-grained parallel algorithms in practice. Section 8 demonstrates the limited scalability of

coarse-grained parallel algorithms in further detail.

5 FINE-GRAINED PARALLEL JOHNSON

To address the load imbalance issues that manifest themselves in the coarse-grained parallel John-

son algorithm, we introduce the fine-grained parallel Johnson algorithm. The main goal of our fine-

grained algorithm is to enable several threads to explore a recursion tree concurrently, as shown

in Figure 4(b), where each thread executes a subset of the recursive calls of this tree. However,

enabling concurrent exploration of a recursion tree is in conflict with the sequential depth-first

exploration, required by the Johnson algorithm to achieve a high pruning efficiency.

In this section, we first discuss the challenges that arise when parallelising the exploration of

a recursion tree of the Johnson algorithm. Then, we introduce the copy-on-steal mechanism used

to address these challenges and present our fine-grained parallel Johnson algorithm. Finally, we

theoretically analyse our algorithm and show that it is scalable.

5.1 Fine-grained Parallelisation Challenges

The requirement of the sequential depth-first exploration of the Johnson algorithm makes it chal-

lenging to efficiently parallelise this algorithm in a fine-grained manner. This requirement is en-

forced by maintaining a set of blocked vertices Blk throughout the exploration of a recursion tree.

If threads exploring the same recursion tree simply share the same set of blocked vertices Blk, then

the parallel algorithm could produce incorrect results. For example, considering the graph given

in Figure 5(a), a thread exploring the path Π = v0 → v1 → u1 → v2 visit and block the vertex u4 in

this case, because u4 cannot participate in a simple cycle that begins with Π. Because the threads

exploring this graph share the blocked vertices, another thread attempting to discover the cycle

v0 → v1 → u4 → v2 → v0 would fail to do so, because u4 is blocked. Therefore, this approach

might not discover all cycles in a graph.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:11

Fig. 5. (a) An example graph and (b) the recursion tree of our fine-grained Johnson algorithm when enu-
merating cycles that start from v0. Each thread of our fine-grained Johnson algorithm explores the vertices
b1, . . . ,bm at most once.

To enable several threads to correctly find all cycles while exploring the same recursion tree, the

algorithm could forward a new copy of the Blk and Blist data structures when invoking each child

recursive call. However, this approach would redundantly explore many paths in a graph. The

reason is that a recursive call would be unaware of the vertices visited and blocked by other calls

that precede it in the depth-first order except for its direct ancestors in the recursion tree. When

enumerating the simple cycles of the graph shown in Figure 5(a) starting from v0, this approach

explores all 4 × 2m−1 + 3 maximal simple paths instead of just seven, that the Johnson algorithm

would explore. Hence, this approach exhaustively explores all maximal simple paths in the graph

and is identical to the brute-force solution of Tiernan (see Section 3.4). Next, we propose a fine-

grained parallel algorithm that addresses the aforementioned parallelisation challenges.

5.2 Copy-on-steal

To enable different threads to concurrently explore the recursion tree in a depth-first fashion while

also taking advantage of the powerful pruning capabilities of the Johnson algorithm, each thread

executing our fine-grained parallel Johnson algorithm maintains its own copy of the Π, Blk, and

Blist data structures. These data structures are copied between threads only when these threads

attempt to explore the same recursion tree. To achieve this behaviour, our fine-grained parallel

Johnson algorithm implements each recursive call of the Johnson algorithm as a separate task.

The pseudocode of this task is given in Algorithm 1, where a data structure X , maintained by

the thread Ti , is denoted as XTi
(see Table 3). If a child task and its parent task are executed by

the same thread Ti , then the child task reuses the ΠTi
, BlkTi

, and BlistTi
data structures of the

parent task. However, if a child task has been stolen—i.e., it is executed by a thread other than the

thread that created it, then the child task will allocate a new copy of these data structures (line 2

of Algorithm 1). We refer to this mechanism as copy-on-steal.

The problem with copying data structures between different threads upon task stealing is that

the thread that has created the stolen task (i.e., the victim thread) can modify its data structures

before this task is stolen by another thread (i.e., the stealing thread). This problem can be observed

in the example shown in Figure 6. There, the victim threadT1 and the stealing threadT2 explore the

same recursion tree given in Figure 6(b) while searching for cycles that start with P1 = v0 → v1 →
v2 and P2 = v0 → v1 → v7, respectively. In this case, T2 steals a task created by T1 that explores

v7, as indicated in Figure 6(b), and receives a copy of the blocked vertices BlkT1 = {v4,v5,v6}

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:12 J. Blanuša et al.

ALGORITHM 1: FGJ_task (v, v0, d, T1)

Input: v - the current vertex, v0 - the starting vertex

d - the depth of this task

InOut : T1 - the thread that created this task � T1 maintains ΠT1, BlkT1, BlistT1, and MutexT1

Output: true if a cycle was found

1 T2 = the thread executing this task; � T2 maintains ΠT2, BlkT2, BlistT2, and MutexT2

2 if T1 � T2 then FGJ_copyOnSteal(d, T1, T2); � Check if this task is stolen

3 MutexT2
.lock();

4 ΠT2
.push(v); BlkT2

= BlkT2
∪ {v};

5 MutexT2
.unlock();

6 found = false;

7 foreach u : N (v) s.t. u.id > v0.id do � Recursively explore the neighbours of v

8 if u = v0 then

9 report cycle ΠT2
;

10 found = true;

11 else if u � BlkT2
then

12 f = spawn FGJ_task(u, v0, d + 1, T2) ; � Create a child task

13 found = found ∨ f ;

14 wait for the spawned tasks;

15 MutexT2
.lock();

16 ΠT2
.pop();

17 if found then � Unblock vertices if a cycle was found

18 RecursiveUnblock(v, BlkT2
, BlistT2

);

19 else

20 foreach u : N (v) do BlistT2
[u] = BlistT2

[u] ∪ {v};
21 MutexT2

.unlock();

22 return found;

Fig. 6. (a) An example graph and (b) the recursion tree of our fine-grained Johnson algorithm when enumer-
ating simple cycles that start from v0. Here, XTi

denotes a data structure X of the thread Ti . The thread T2

can prune the dotted part of the tree by avoiding v5 and v6 that the threadT1 has blocked after creating the
task stolen by T2.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:13

ALGORITHM 2: FGJ_copyOnSteal (d, T1, T2)

Input: d - the depth of the task executing this function

InOut : T1 - the victim thread

T2 - the stealing thread

1 MutexT1
.lock();

2 {ΠT2
,BlkT2

,BlistT2
} = copy

(
{ΠT1
,BlkT1

,BlistT1
}
)
; � The data structures of T1 are copied to T2

3 MutexT1
.unlock();

4 while
�
�
�
ΠT2

�
�
�
≥ d do � Copy-on-steal with recursive unblocking

5 u = ΠT2
.pop();

6 RecursiveUnblock(u, BlkT2
, BlistT2

);

discovered by T1. The thread T1 blocked these vertices, because they cannot participate in any

simple cycle that begins with P1. If T2 simply uses a copy of these blocked vertices BlkT1 without

modifications, then T2 will be unable to find the cycle v0 → v1 → v7 → v4 → v2 → v3 → v0,

because v4 is blocked. Therefore, a method for unblocking vertices after copy-on-steal is required

to correctly find all cycles.

We explore two solutions for this problem:

(i) Copy-on-steal with complete unblocking. To enable the threads of our algorithm to find

cycles after performing copy-on-steal, the stealing thread could unblock all vertices that the victim

thread had blocked after creating the stolen task. In our example given in Figure 6, the stealing

thread T2 unblocks all vertices BlkT1 = {v4,v5,v6} it received from the victim thread T1. Although

this approach enables T2 to correctly find cycles, it also fails to take advantage of the information

collected by T1 to reduce the redundant work of T2. For instance, in Figure 6, T2 visits v5 and v6,

even though T1 already concluded that these vertices cannot participate in any simple cycle that

begins with P = v0 → v1, where P is the largest common prefix of all the paths explored byT1 and

T2. As a result, T2 redundantly visits the dotted part of the recursion tree given in Figure 6(b).

(ii) Copy-on-steal with recursive unblocking. In this approach, the stealing thread capi-

talises on the information already discovered by the victim thread. The stealing threadT2 can reuse

a subset B ⊂ BlkT1 of the blocked vertices discovered by T1 if the vertices in B cannot participate

in simple cycles that begin with P , where P is the largest common prefix of all the paths explored

byT1 andT2. Because any path discovered byT2 begins with P ,T2 can avoid visiting vertices from

B. Thus, to correctly find simple cycles, it is sufficient forT2 to unblock the vertices from BlkT1 \B.

To achieve this behaviour, T2 invokes a recursive unblocking procedure of the Johnson algorithm

for every vertexv ∈ ΠT1 \P , as shown in Algorithm 2, where ΠT1 is the pathT1 is exploring during

task stealing. The vertices in B can only be unblocked by a recursive unblocking invoked forv ∈ P ;

hence, the vertices in B remain blocked. In the example given in Figure 6, T2 invokes a recursive

unblocking procedure for ΠT1 \ P = {v2}, which results in unblocking of v4. Thus, T2 is able to

discover a cycle that contains v4. The vertices B = {v5,v6} will not be unblocked, because they

cannot take part in any simple cycle that begins with P = v0 → v1. Therefore, thread T2 avoids

visiting the dotted part of the recursion tree given in Figure 6(b).

Without countermeasures, our algorithm can suffer from race conditions, because its data struc-

tures can be accessed concurrently by different threads. For instance, a stealing threadT2 can copy

the data structures of a victim thread T1 while T1 performs a recursive unblocking, in which case

T2 could receive the vertex set BlkT1 that is partially unblocked. When using copy-on-steal with

recursive unblocking,T2 may not be able to continue the interrupted unblocking of BlkT1 , causing

the algorithm to miss certain cycles. To avoid this problem, we define critical sections in lines 15–

21 of Algorithm 1 and in lines 1–3 of Algorithm 2 using coarse-grained locking by maintaining a

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:14 J. Blanuša et al.

ALGORITHM 3: FGJ (G (V, E))

Input: G - the input graph with verticesV and edges E
1 parallel foreach v0 → v : E do

2 T0 = the thread executing this loop iteration; � T0 maintains ΠT0, BlkT0, BlistT0, and MutexT0

3 ΠT0
= v0; BlkT0

= ∅;

4 foreach u :V do BlistT0
[u] = ∅;

5 spawn FGJ_task(v , v0, 1, T0); � Create a task

6 wait for all spawned tasks;

mutex per thread. However, such a locking mechanism is not required when using copy-on-steal

with complete unblocking, becauseT2 can correctly unblock vertices in BlkT1 simply by removing

all vertices from BlkT1 inserted after the stolen task was created. Thus, it is sufficient to enable

thread-safe operations on Π, Blk, and Blist using fine-grained locking. As a result, the critical sec-

tions are shorter when the copy-on-steal with complete unblocking approach is used.

Nevertheless, we opt to use the copy-on-steal with recursive unblocking approach in our fine-

grained parallel Johnson algorithm, because this approach leads to less redundant work and rarely

suffers from synchronisation overheads. The pseudocode of our fine-grained parallel Johnson al-

gorithm is given in Algorithm 3.

5.3 Theoretical Analysis

We now show that the fine-grained parallel Johnson algorithm is scalable but not work-efficient.

Theorem 2. The fine-grained parallel Johnson algorithm is not work-efficient.

Proof. According to Lemma 3 presented by Johnson [35], a vertex cannot be unblocked more

than once unless a cycle is found, and once a vertex is visited, it can be visited again only after

being unblocked. Thus, the Johnson algorithm visits each vertex and edge at most c times. In the

fine-grained parallel Johnson algorithm executed usingp threads, each thread maintains a separate

set of data structures used for managing blocked vertices. Because the threads are unaware of each

other’s blocked vertices, each edge is visited at most pc times, c times by each thread. Additionally,

an edge cannot be visited more than s times, because each maximal simple path of a graph is

explored by a different thread in the worst case, and during each simple path exploration, an edge

is visited at most once. Therefore, the maximum number of times an edge can be visited by the fine-

grained parallel Johnson algorithm is min
{
pc, s

}
. Because the algorithm executes in O (n + e) time

if there does not exist a cycle or a path in the input graph, the work performed by the fine-grained

parallel Johnson algorithm is

Wp (n) ∈ O (n + e +min{pce, se}) . (1)

When c > 0, p > 1, and s > c , the work performed by the fine-grained parallel Johnson algorithm

Wp (n) is greater than the execution time T1 (n) of the sequential Johnson algorithm. Thus, this

algorithm is not work-efficient. �

The work inefficiency of our fine-grained parallel Johnson algorithm occurs if more than one

thread performs the work the sequential Johnson algorithm would perform between the discovery

of two cycles. This behaviour can be illustrated using the graph from Figure 5(a), which contains

c = 4 cycles and s = c × 2m−1 + 3 maximal simple paths, each starting from vertex v0. When

discovering each cycle, our fine-grained algorithm explores an infeasible region of the recursion

tree, as shown in Figure 5(b), in which the vertices b1, . . . ,bm are visited. If this infeasible region

is explored using a single thread, then each vertex bi , with i ∈ {1, . . . ,m}, will be visited exactly

once. However, if p threads are exploring the same infeasible region of the recursion tree, then

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:15

vertices b1, . . . ,bm will be visited up to p times, because the threads are unaware of each other’s

blocked vertices. In this case, the fine-grained parallel Johnson algorithm performs more work than

necessary, and, thus, it is not work-efficient. Additionally, each infeasible region of the recursion

tree that visits vertices b1, . . . ,bk can be executed by at most s/c = 2m−1 threads, because there

are 2m−1 maximal simple paths that can be explored in each infeasible region. In this case, each

vertex bi , with i ∈ {1, . . . ,m}, is visited up to s times, and, thus, the fine-grained parallel Johnson

algorithm behaves as the Tiernan algorithm (see Section 3.4).

Lemma 1. The depth T∞ (n) of the fine-grained parallel Johnson algorithm is in O (e).

Proof. The worst-case depth of this algorithm occurs when a thread performs copy-on-steal

and explores a maximal simple path. A thread explores such a path in O (e) time, because it visits

at most e edges. As a result, Π and Blk contain at most e vertices, and Blist contains at most e pairs

of vertices. Therefore, copy-on-steal requires O (e) time to copy Π, Blk, and Blist, and to unblock

vertices in Blk. As a result, the depth of this algorithm is T∞ (n) ∈ O (e). �

Theorem 3. The fine-grained parallel Johnson algorithm is scalable when limn→∞ c = ∞.

Proof. For this algorithm,T1 (n) ∈ O (n + e + ec) andT∞ (n) ∈ O (e) (see Lemma 1). Given e < n2

and our assumption that limn→∞ c = ∞, we have limn→∞
T∞ (n)
T1 (n) = limn→∞

e
n+e+ec

= 0. Thus, this

algorithm is scalable based on Definition 2. �

For the fine-grained parallel Johnson algorithm to be scalable, it is sufficient for c to increase

sublinearly with n. Even though this algorithm is scalable, a strong or weak scalability is not guar-

anteed due to the work inefficiency of this algorithm. Nevertheless, our experiments show that

this algorithm is strongly scalable in practice (see Figure 18).

5.4 Summary

Our relaxation of the strictly depth-first-search-based recursion-tree exploration reduces the prun-

ing efficiency of the Johnson algorithm. In the worst case, the fine-grained parallel Johnson algo-

rithm could perform as much work as the brute-force Tiernan algorithm does—i.e.,O (se). However,

in practice, this worst-case scenario does not happen (see Section 8). In addition, our fine-grained

parallel Johnson algorithm can suffer from synchronisation issues in some rare cases (see Sec-

tion 8), because our copy-on-steal mechanism can lead to long critical sections. In the next section,

we introduce a fine-grained parallel algorithm that is scalable, work-efficient, and less prone to

synchronisation issues.

6 FINE-GRAINED PARALLEL READ-TARJAN

In this section, we first introduce several optimisations that reduce the number of unnecessary

vertex visits performed by the sequential Read-Tarjan algorithm. Then, we present our fine-grained

parallel Read-Tarjan algorithm that includes these optimisations. Finally, we show that our parallel

algorithm is work-efficient and strongly scalable.

6.1 Improvements to the Pruning Efficiency

To improve the pruning efficiency of the sequential Read-Tarjan algorithm, we include the follow-

ing optimisations:

(i) Blocked vertex set forwarding enables a recursive call of the Read-Tarjan algorithm to

reuse vertices blocked by its parent call, resulting in fewer vertex visits. The original Read-Tarjan

algorithm discards blocked vertices after each recursive call [60], even though this information

could be reused later. In this optimisation, the algorithm forwards the blocked vertices Blk of a

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:16 J. Blanuša et al.

Fig. 7. (a) An example graph and (b) the recursion tree of our fine-grained parallel Read-Tarjan algorithm
when enumerating cycles that start from v0. The nodes of the recursion tree represent the recursive calls of
the depth-first search. Tasks shown in (b) can be executed independently of each other.

recursive call to its child recursive calls, preventing those child calls from unnecessarily visiting the

vertices in Blk again. For example, in Figure 7, the vertex v8 is blocked the first time the algorithm

visits v8 while exploring the path extension E1. This optimisation prevents the algorithm from

visiting v8 again when exploring the same extension E1 or another extension E3 that branches

from E1. As a result of this optimisation, the algorithm can avoid the dotted part of the recursion

tree.

(ii) Path extension forwarding prevents recomputation of the path extension E found by

a parent recursive call by forwarding this path extension to its child recursive call. In this way,

each child recursive call performs one fewer DFS invocation than the original Read-Tarjan algo-

rithm [60].

(iii) Blocking on a successful DFS is another mechanism for discovering vertices to be

blocked. As a reminder, the Read-Tarjan algorithm searches for path extensions using a DFS. In

the original algorithm, a vertex is blocked only if it is visited during an unsuccessful DFS invoca-

tion, which fails to discover a path extension. However, successful DFS invocations could also visit

some vertices that have all their neighbours blocked. Such vertices cannot lead to the discovery of

new cycles and, thus, can also be blocked. The pseudocode of the DFS function that includes this

optimisation is given in Algorithm 4. In our example given in Figure 7, a successful DFS invoked

from v3 finds a path extension E3 and discovers that the only neighbour v8 of v7 is blocked. The

algorithm then blocksv7, which enables it to avoid visitingv7 again when exploring E3. Therefore,

fewer vertices are visited during the execution of the algorithm.

6.2 Fine-grained Parallelisation

Although the optimisations presented in Section 6.1 eliminate some of the redundant work per-

formed by the Read-Tarjan algorithm, this algorithm typically performs more work than the John-

son algorithm (see Section 3.4). However, this redundancy makes it possible to parallelise the Read-

Tarjan algorithm in a scalable and work-efficient manner.

Because the Read-Tarjan algorithm allocates a new Blk set for each path extension exploration,

a recursive call can explore different path extensions in an arbitrary order. In addition, discovery

of a new path extension E results in the invocation of a single recursive call, and these calls can

be executed in an arbitrary order. As a result, several threads can concurrently explore different

paths of the same recursion tree constructed by the Read-Tarjan algorithm for a given starting

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:17

ALGORITHM 4: FGRT_DFS(u, v0, Blk, Vis)

Input: u - the current vertex, v0 - the starting vertex

InOut : Blk - blocked vertices

Vis - vertices visited during the DFS

Output: E - the resulting path extension from u to v0

1 if u = v0 then return u;

2 Vis = Vis ∪ {u};
3 block = true;

4 foreach w : N (u) s.t. w.id > v0.id do

5 if w = v0 then

6 return u→ w

7 else if w � Blk ∧w � Vis then

8 E = FGRT_DFS(w, v0 Blk, Vis); � Recursively search for the path extension E

9 if E � ∅ then

10 return E.push_front(u);

11 if w � Blk then

12 block = false

13 if block then Blk = Blk ∪ {u}; � Blocking on a successful DFS

14 return ∅;

edge. There are neither data dependencies nor ordering requirements between different calls, apart

from those that exist between a parent and a child. To exploit the parallelism available during the

recursion tree exploration, we execute each path extension exploration in each recursive call as a

separate task, all of which can be independently executed. Examples of such tasks are shown in

Figure 7. We refer to the resulting algorithm as the fine-grained parallel Read-Tarjan algorithm.

Our implementation shown in Algorithm 5 performs only a single path extension exploration in

a recursive call and uses all the optimisations we introduced in Section 6.1. We execute each such

recursive call as a separate task using a dynamic thread scheduling framework (see Section 3.2).

To find all cycles of a graph, we execute a parallel for loop iteration for each edge v0 → v that

uses Algorithm 4 to search for a path extension E from v to v0, as shown in Algorithm 6. If such E
exists, then a task is created using v , v0, and E as its input parameters. This task then recursively

creates new tasks, as shown in lines 14 and 19 of Algorithm 5, until all cycles that start with the

edge v0 → v have been discovered.

To prevent different threads from concurrently modifying Π and Blk, each task allocates and

maintains its own Π and Blk sets. A task can receive a copy of Π and Blk directly from its parent

task at the time of task creation. However, it is possible to minimise the copy overheads by copying

these sets only when a task is stolen. For this purpose, we use the copy-on-steal with complete

unblocking approach described in Section 5.2, which has shorter critical sections than the copy-

on-steal with recursive unblocking approach used by our fine-grained parallel Johnson algorithm.

6.3 Theoretical Analysis

We now show that the fine-grained parallel Read-Tarjan algorithm is both work-efficient and

strongly scalable.

Theorem 4. The fine-grained parallel Read-Tarjan algorithm is work-efficient.

Proof. Because each task of our fine-grained parallel Read-Tarjan algorithm either discovers a

cycle or creates at least two child tasks, our algorithm is executed using O (c) tasks. Each task per-

forms several unsuccessful DFS invocations and one successful DFS per each child task it creates.

All unsuccessful DFS invocations explore at most e edges in total, because they share the same set

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:18 J. Blanuša et al.

ALGORITHM 5: FGRT_task(v, v0, E, d, T1)

Input: v - the current vertex, v0 - the starting vertex

E - the path extension from v to v0

d - the depth of this task

InOut : T1 - the thread that created this task � T1 maintains ΠT1 and BlkT1

1 T2 = the thread executing this task; � T2 maintains ΠT2 and BlkT2

2 if T1 � T2 then � Check if this task is stolen

3 {ΠT2
,BlkT2

} = copy({ΠT1
,BlkT1

}); � Operations on Π and Blk are thread-safe

4 while ΠT2
.back() � v do ΠT2

.pop();

5 Remove vertices from BlkT2
inserted at depth d′ ≥ d;

6 found = false;

7 while E � ∅ do � Exploration of the path extension E

8 v = E.pop_front();

9 ΠT2
= ΠT2

.push(v); BlkT2
= BlkT2

∪ {v};
10 foreach u : N (v) s.t. u.id > v0.id do

11 if u � E.front() ∧ u � BlkT2
then

12 E′ = FGRT_DFS(u, v0, BlkT2
, Vis = ∅); � Find an alternate path extension E′

13 if E′ � ∅ then

14 spawn FGRT_task(v, v0, E′, d + 1, T2); � Create a child task

15 found = true;

16 else BlkT2
= BlkT2

∪ Vis;

17 if found then break;

18 if E = ∅ then report cycle ΠT2
;

19 else spawn FGRT_task(v, v0, E, d + 1, T2); � Create a child task

ALGORITHM 6: FGRT (G (V,E))

Input: G - the input graph with verticesV and edges E
1 parallel foreach v0 → v : E do

2 T0 = the thread executing this loop iteration; � T0 maintains ΠT0 and BlkT0

3 ΠT0
= v0; BlkT0

= ∅; � Operations on Π and Blk are thread-safe

4 E = FGRT_DFS(v, v0, BlkT0
, Vis = ∅);

5 if E � ∅ then spawn FGRT_task(v, v0, E, 1, T0); � Create a task

6 wait for all spawned tasks;

of blocked vertices. In the worst case, each edge is visited twice per task, once by a successful DFS

and once by one of the unsuccessful DFS invocations. Thus, this algorithm performs O (e) work

per task. Because this algorithm performs O (n + e) work if there are no cycles in the graph, the

total amount of work this algorithm performs isWp (n) = O (n + e + ec). Hence, this algorithm is

work-efficient based on Definition 1. �

The work-efficiency of our fine-grained parallel Read-Tarjan algorithm can be demonstrated us-

ing the example given in Figure 5(a). In this example, the threads of this algorithm independently

explore four different path extensions Ei = v1 → ui → v2 → v0, with i ∈ {1 . . . 4}. A thread explor-

ing a path extension Ei invokes a DFS from v2, which explores vertices b1, . . . ,bm at most once

and fails to find any other path extension. Therefore, the amount of work the fine-grained parallel

Read-Tarjan algorithm performs does not increase compared to its single-threaded execution.

Lemma 2. The depth T∞ (n) of the fine-grained parallel Read-Tarjan algorithm is in O (ne).

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:19

Proof. In the worst case, a thread executing this algorithm creates a task for each vertex of its

longest simple cycle, which has a length of at most n. Before invoking its first child task, a task

executes a sequence of unsuccessful DFS invocations inO (e) and a successful DFS invocation also

in O (e). Thus, the depth of this algorithm is O (ne). �

The worst-case depth of our algorithm can be observed when this algorithm is executed on

the graph given in Figure 4(a). This graph has c = 2n−2 cycles and the length of its longest cycle

v0 → . . .vn−1 → v0 is n. The algorithm creates a task for each vertex of the cycle and performs a

successful DFS in each such call, which leads to T∞ ∈ O (ne).

Theorem 5. The fine-grained parallel Read-Tarjan algorithm is strongly scalable when

limn→∞ c/n = ∞.

Proof. Because the fine-grained parallel Read-Tarjan algorithm is work-efficient, we can apply

Brent’s rule [15]:
T1 (n)

p
≤ Tp (n) ≤ T1 (n)

p
+T∞ (n). (2)

SubstitutingT1 (n) with O (n + e + ec) andT∞ (n) with O (ne) (see Lemma 2), for a positive constant

C0, it holds that

1

/ (
1

p
+ C0

n

c

)
< 1

/ (
1

p
+
T∞ (n)

T1 (n)

)
≤ T1 (n)

Tp (n)
≤ p. (3)

Given that limn→∞ c/n = ∞, there exist n0 > 0,C1 > 0 such that if n > n0, then c/n > C1p. Thus,

for everyn > n0, it holds that kp ≤ T1 (n)
Tp (n) ≤ p, where k = C1/(C0+C1) < 1. As a result,

T1 (n)
Tp (n) = Θ(p),

which, based on Definition 3, completes the proof. �

As shown in Table 4, our fine-grained parallel Read-Tarjan algorithm has a higher depth than

our fine-grained parallel Johnson algorithm, introduced in Section 5. Nevertheless, the former

algorithm is strongly scalable when c grows superlinearly withn, whereas strong scalability cannot

be guaranteed for the latter algorithm.

6.4 Summary

The work of our fine-grained parallel Read-Tarjan algorithm does not increase after fine-grained

parallelisation. This parallel algorithm performsWp (n) ∈ O (n+e +ec) work: the same as the work

performed by its serial version. Our optimisations introduced in Section 6.1 do not reduce the

workWp (n) performed by our parallel algorithm in the worst case. However, these optimisations

significantly improve its performance in practice (see Section 8.4). In addition, the synchronisation

overheads of the fine-grained parallel Read-Tarjan algorithm are not as significant as those of the

fine-grained Johnson algorithm because of its shorter critical sections. Furthermore, this algorithm

is the only asymptotically optimal parallel algorithm for cycle enumeration for which we are able

to prove strong scalability.

7 PARALLELISING CONSTRAINED CYCLE SEARCH

This section describes the methods for adapting our parallel algorithms to search for simple cycles

under various constraints. Because state-of-the-art algorithms for temporal and hop-constrained

cycle enumeration are extensions of the Johnson algorithm [39, 54], our parallelisation approach

described in Section 5 is also applicable to these algorithms. In this section, we describe the

changes to the fine-grained parallel Johnson algorithm needed for enumeration of temporal and

hop-constrained cycles. We also introduce modifications to the cycle enumeration algorithms re-

quired for finding time-window-constrained cycles.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:20 J. Blanuša et al.

7.1 Cycles in a Time Window

Cycle enumeration algorithms require minimal modifications to support time-window constraints.

Such constraints restrict the search for simple, temporal, and hop-constrained cycles to those that

occur within a time window of a given size δ , as illustrated in Figure 2. To find time-window-

constrained cycles that start with an edge that has timestamp t0, only the edges with timestamps

that belong to the time window [t0 : t0 + δ] are visited. To avoid reporting the same cycle several

times, another edge with the same timestamp t0 is visited only if the source vertex of that edge

has an ID that is smaller than the ID of the vertex from which the search for cycles was started.

Overall, imposing time-window constraints reduces the number of cycles discovered, which results

in a more tractable problem.

Because temporal graphs may contain parallel edges, several simple cycles that contain the same

sequence of vertices may exist in a temporal graph (see Figure 2(a)). As a result, such cycles may

be discovered simultaneously, which could accelerate the search for cycles in temporal graphs. For

that purpose, we use a method similar to Kumar and Calders [39], in which several simple cycles

that contain the same sequence of vertices and whose edges belong to the same time window

[t0 : t0 + δ] are grouped into a single cycle bundle and explored together. Once a cycle bundle is

discovered, the cycles that belong to that bundle can be extracted and reported.

A strongly connected component (SCC) can be used to reduce the number of vertices visited

during the search for time-window-constrained cycles. The search for cycles that start with the

edge ε can be limited to use only the vertices from the SCC that contains ε [35]. In the case of

time-window-constrained cycles, we compute an SCC for ε using only the edges with timestamps

that belong to [t0 : t0 + δ], where t0 is the timestamp of ε . Because an SCC can be computed

independently for each edge inO (e) time [22], our fine-grained parallel algorithms remain scalable.

7.2 Temporal Cycles

To efficiently enumerate temporal cycles, the 2SCENT algorithm [39] replaces the set of blocked

vertices Blk in the Johnson algorithm with closing times. The closing time ct of a vertexv indicates

that the outgoing temporal edges of v with a timestamp greater than or equal to ct cannot par-

ticipate in a temporal cycle and are therefore blocked. Increasing the closing time of v to a new

value ct ′ unblocks the blocked outgoing edges of v that have timestamps smaller than ct ′. This

operation triggers the recursive unblocking procedure that unblocks the incoming edges ofv with

a timestamp smaller than the maximal timestamp among the unblocked outgoing edges of v . This

process is repeated for every vertex with unblocked outgoing edges.

Because the backtracking phase of 2SCENT is based on the Johnson algorithm, it can be par-

allelised using our fine-grained approach described in Section 5. For this purpose, we use our

copy-on-steal mechanism with recursive unblocking, introduced in Section 5.2, which enables a

thread to maintain its own set of data structures used for recursion tree pruning. However, this

mechanism is not directly applicable in this case, because the recursive unblocking procedure of

2SCENT requires the new closing time for a vertex as a parameter in addition to the vertex itself.

For this reason, an additional data structure called PrevLocks is used alongside the current path Π
that records the closing time that each vertex v had before it was added to Π. Copy-on-steal then

performs the recursive unblocking procedure for each vertexv removed from Π using the original

closing time of the vertex v obtained from PrevLocks, as shown in Algorithm 7. We refer to the

resulting algorithm as the fine-grained parallel temporal Johnson algorithm.

The aforementioned modification to the copy-on-steal with recursive unblocking approach also

enables a thread of our fine-grained parallel algorithm to reuse the edges blocked by another thread.

This behaviour can be observed in the example shown in Figure 8, where the thread T2 steals the

task indicated in Figure 8(b) from the thread T1. Copy-on-steal executed by T2 invokes recursive

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:21

Fig. 8. (a) An example graph and (b) the recursion tree of our fine-grained temporal Johnson algorithm when
enumerating temporal cycles that start fromv0. The threadT2 can avoid the dotted part of the tree by reusing
the blocked edges v6 → v7 and v7 → v3 discovered by T1.

ALGORITHM 7: CFGJ_copyOnSteal(d, T1, T2)

Input: d - the depth of the task executing this function

InOut : T1 - the victim thread

T2 - the stealing thread

1 MutexT1
.lock();

2 {ΠT2
,BlkT2

, PrevLocksT2
} = copy({ΠT1

,BlkT1
, PrevLocksT1

}); � Blk contains closing times or

barriers

3 {BlistT2
} = copy({BlistT1

}); � Blist is not used for hop-constrained cycles

4 MutexT1
.unlock();

5 while |ΠT2
| > d do � Copy-on-steal with recursive unblocking

6 u = ΠT2
.pop();

7 lock = PrevLocksT2
.pop();

8 RecursiveUnblock(u, lock, BlkT2
, BlistT2

);

unblocking that restores the closing time of v3 to its original value of 9 obtained from PrevLocks.

Note that this original closing time of v3 was previously set by T1 while exploring the path v0 →
v1 → v3. The recursive unblocking thatT2 invokes forv3 unblocks only the edgev6 → v3, because

it is the only incoming edge of v3 with a timestamp smaller than the closing time 9 of the vertex

v3. Without recording the previous closing times, T2 could instead unblock all incoming edges of

v3 by invoking recursive unblocking for v3 with a closing time ∞, which also unblocks the edges

v6 → v7 and v7 → v3. However, because there is no temporal cycle that contains these two edges

and starts with v0,T2 would unnecessarily visit them in this case. Thus, restoring the closing time

of v3 to its original value 9 prevents T2 from performing this redundant work.

We also adapt the Read-Tarjan algorithm and its fine-grained and coarse-grained versions to

enumerate temporal cycles using closing times. The necessary changes to the algorithm are trivial,

and we omit discussing them for brevity.

To reduce the number of vertices visited during the search for temporal cycles, we use a method

similar to the SCC-based technique discussed in Section 7.1. Instead of computing an SCC for

each edge ε , we compute a cycle-union that represents an intersection of temporal ancestors and

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:22 J. Blanuša et al.

Fig. 9. (a) An example graph and (b) the recursion tree of our fine-grained hop-constrained Johnson algo-
rithm when enumerating cycles of length L = 6 that start from v0. Barrier values of unmarked vertices are
0. Copy-on-steal enables the thread T2 to reuse barriers discovered by the thread T1 and to avoid exploring
the dotted part of the tree.

temporal descendants of ε . The temporal descendants and the temporal ancestors of ε are the

vertices that belong to the temporal paths in which ε is the first edge and the last edge, respectively.

Defined as such, a cycle-union contains only the vertices that participate in temporal cycles that

have ε as their starting edge. Thus, the search for temporal cycles that start with ε can be limited

to only those vertices.

7.3 Hop-constrained Cycles

An efficient algorithm for enumerating hop-constrained cycles and paths, called BC-DFS [54], re-

places the set of blocked vertices Blk in the Johnson algorithm with barriers. A barrier value bar of

a vertex v indicates that the starting vertex v0 of a cycle cannot be reached within bar hops from

v . As a result,v is blocked if the length of the current path Π when the algorithm attempts to visit

v is greater than or equal to L− bar , where L is the hop constraint. BC-DFS modifies the recursive

unblocking of the Johnson algorithm to reduce the barrier bar of v to a specified value bar ′ < bar .

This procedure also sets the barrier of any vertex u that can reach v in k hops to bar ′ + k if the

previous barrier of u was greater than bar ′ + k . Maintaining barriers in such a way minimises

redundant vertex visits when searching for hop-constrained cycles.

To parallelise BC-DFS in a fine-grained manner, we use the same technique as that used for

fine-grained parallelisation of the Johnson algorithm (Section 5) and the 2SCENT algorithm (Sec-

tion 7.2). In this case, threads exploring a recursion tree of BC-DFS maintain separate data struc-

tures, such as the current path Π and barrier values for each vertex, and use the copy-on-steal

with the recursive unblocking approach to copy these data structures among threads. Similarly to

our algorithm from Section 7.2, each thread also maintains a data structure PrevLocks that records

the original barrier value of each vertex v from Π. When a thread steals a task, it performs a re-

cursive unblocking procedure for each vertex v removed from Π using its original barrier value

obtained from PrevLocks, as shown in Algorithm 7. This procedure reduces the barrier value of

the vertices that can reach v , enabling the stealing thread to visit those vertices. We refer to the

resulting algorithm as the fine-grained parallel hop-constrained Johnson algorithm.

The modified copy-on-steal with recursive unblocking approach given in Algorithm 7 enables a

stealing thread of the aforementioned fine-grained parallel algorithm to reuse barriers discovered

by other threads. This behaviour can be observed in the example given in Figure 9. In that example,

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:23

Table 5. Hardware Platforms Used in the Experiments

platform Intel KNL [64] Intel Xeon Skylake [26]

P × C/P × T/C 4 × 64 × 4 5 × 48 × 2

Total no. threads 1,024 480

Frequency 1.3 GHz 2 GHz

Memory per proc. 110 GB 360 GB

L1d/L2/L3 cache 32 KB/512 KB/none 32 KB/1 MB/38.5 MB

Here, P, C/P, and T/C represent the number of processors, the number of cores per

processor, and the number of hardware threads per core, respectively.

the thread T1 first visits the vertices v2,v6,v7,v8 and sets the barrier value of each visited vertex

to L − |Π | + 1 (values in red shown in Figure 9(a)), because it was not able to find a cycle of length

L = 6 [54]. Here, |Π | denotes the length of Π at the moment of exploration of each vertex. When the

thread T2 steals the task indicated in Figure 9(b) from T1, the copy-on-steal mechanism executed

by T2 performs a recursive unblocking of the vertex v1 using the original barrier value 0 of v1

obtained from PrevLocks. This recursive unblocking reduces the barrier value of v2 from 4 to 1,

which enablesT2 to find the cycle that contains v2. The barrier values of the vertices v6, v7, and v8

are not modified, and, thus, the thread T2 avoids visiting these vertices unnecessarily.

7.4 Summary

In this section, we described a method to adapt the cycle enumeration algorithms, such as our

fine-grained algorithms introduced in Sections 5 and 6, to search for cycles under time window

constraints. In addition, we introduced a modified version of our copy-on-steal with recursive un-

blocking approach, introduced in Section 5, that supports fine-grained parallelisation of temporal

and hop-constrained cycle enumeration algorithms [39, 54] derived from the Johnson algorithm.

As a result, our fine-grained parallel algorithms can enumerate cycles under time-window, tempo-

ral, and hop constraints.

8 EXPERIMENTAL EVALUATION

This section evaluates the performance of our fine-grained parallel algorithms for simple, tem-

poral, and hop-constrained cycle enumeration.1 As Table 2 shows, we are the only ones to offer

fine-grained parallel versions of the asymptotically optimal cycle enumeration algorithms, such as

the Johnson and the Read-Tarjan algorithms. However, the methods covered in Table 2 can be par-

allelised using the coarse-grained approach covered in Section 4. Thus, we use the coarse-grained

approach as our main comparison point.

The experiments are performed using two different clusters: Intel2 KNL [64] and Intel Xeon

Skylake [26]. The details of these two clusters are given in Table 5. We developed our code on the

Intel KNL cluster and ran most of the analyses there; yet, for completeness, we also provide the

comparisons to competing implementations on the Intel Xeon Skylake cluster available in Google

Cloud’s Compute Engine [26]. Scalability experiments are conducted on the Intel KNL cluster. In

these experiments, the data points that use 64 threads or less are executed on a single Intel KNL

processor; two processors are used to execute the data points that use 128 threads; and all four

processors are used otherwise. Furthermore, we use more than one thread per core only if the

number of threads used is greater than 256.

1The open-source implementations of our algorithms are maintained here: https://github.com/IBM/parallel-cycle-

enumeration
2Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

https://github.com/IBM/parallel-cycle-enumeration

15:24 J. Blanuša et al.

Table 6. Temporal Graphs Used in the Experiments

graph abbr. n e Δavg Δmax Pavg Pmax Time span [days]

bitcoinalpha BA 3.3k 24k 7.4 490 1.0 1.0 1,901

bitcoinotc BO 4.8k 36k 7.4 763 1.0 1.0 1,903

CollegeMsg CO 1.3k 60k 44.3 1.1k 2.9 98 193

email-Eu-core EM 824 332k 403.3 9.8k 13.3 2.8k 803

mathoverflow MO 16k 390k 23.7 4.5k 1.7 225 2,350

transactions TR 83k 530k 6.4 1.7k 1.5 290 1,803

higgs-activity HG 278k 555k 2.0 655 1.2 95 6.0

askubuntu AU 102k 727k 7.1 7.6k 1.3 154 2,613

superuser SU 138k 1.1M 8.1 26k 1.3 78 2,773

wiki-talk WT 140k 6.1M 43.7 233k 1.9 1.1k 2,277

friends2008 FR 481k 12M 25.5 9.1k 1.0 6.0 1,826

wiki-dynamic-nl NL 1.0M 20M 19.5 30k 1.5 352 3,602

messages MS 313k 26M 83.4 48k 4.3 10k 1,880

AML-Data AML 10M 34M 3.4 26k 4.6 96 30

stackoverflow SO 2.0M 48M 24.2 72k 1.3 594 2,774

In this table, Δavg and Δmax refer to the average and maximum values of Δ, respectively, where Δ is the number

of outgoing edges of a vertex, i.e., vertex degree. Similarly, Pavg and Pmax refer to the average and maximum

values of P , respectively, where P represents the number of parallel edges for a given source and destination

vertex. Time span refers to the difference between the maximum and minimum timestamps in a graph.

We use the Threading Building Blocks (TBB) [38] library to parallelise the algorithms on a

single processor. We distribute the execution of the algorithms across multiple processors using the

Message Passing Interface (MPI) [17]. When using distributed execution, each processor stores

a copy of the input graph in its main memory and searches for cycles starting from a different set

of graph edges. The starting edges are divided among the processors such that when the edges

are ordered in the ascending order of their timestamps, k consecutive edges in that order are

assigned to k different processors. Each processor then uses its own dynamic scheduler to balance

the workload across its hardware threads. In this setup, workload imbalance across processors may

still occur, but its impact is limited in our experiments, because we use at most five processors.

We perform the experiments using the graphs listed in Table 6. The TR, FR, and MS graphs are

from Harvard Dataverse [33], the NL graph is from Konect [40], the AML graph is from the AML-

Data repository [5], and the rest are from SNAP [42]. Except for BA and BO, all of the graphs have

parallel edges, as shown in Table 6. To make cycle enumeration problems tractable, we use time-

window constraints in all of our experiments. The time window sizes used in our experiments are

given in the figures next to the graph names. We stop the execution of an algorithm if it takes

more than 24 h on the Intel KNL cluster or more than 6 h on the Intel Xeon Skylake cluster.

8.1 Temporal Cycle Enumeration

The goal of a temporal cycle enumeration problem is to find all simple cycles with edges ordered in

time. Here, we evaluate the performance of our fine-grained parallel algorithms for this problem

introduced in Section 7.2. Our main comparison points are the coarse-grained parallel versions of

the temporal Johnson and temporal Read-Tarjan algorithms. We refer to the backtracking phase

of the state-of-the-art 2SCENT algorithm [39] for temporal cycle enumeration as the temporal

Johnson algorithm and parallelise it in a coarse-grained manner for the experiments. We do not

parallelise the entire 2SCENT algorithm, because the preprocessing phase of 2SCENT is strictly

sequential and has a time complexity in the order of the complexity of its backtracking phase. We

also provide direct comparisons with the 2SCENT algorithm.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:25

Fig. 10. Performance of parallel algorithms for temporal cycle enumeration on (a) the Intel KNL cluster using
1,024 threads and (b) the Intel Xeon Skylake cluster using 480 threads. The values above the bars show the
execution time of each algorithm relative to that of our fine-grained parallel temporal Johnson for the same
benchmark. The values that contain the symbol > represent the experiments that did not finish within the
given time limit.

Fig. 11. Longer time windows increase the performance gap between the algorithms. The algorithms are
executed on the Intel KNL cluster using 1,024 threads. The numbers above the bars show the execution
times of the coarse-grained algorithm relative to that of the fine-grained algorithm.

Fig. 12. (a, b) Frequency distribution of temporal cycles for different cycle lengths and (c) the total number
of temporal cycles discovered during the experiments shown in Figure 10. The number of temporal cycles
discovered is several orders of magnitude greater than the number of vertices or edges of a graph.

Figure 10 shows that our fine-grained parallel algorithms achieve an order of magnitude speedup

compared to the coarse-grained algorithms on the Intel KNL cluster. For the NL graph, this speedup

reaches up to 40×. Because the Intel Xeon Skylake cluster contains fewer physical cores than the

Intel KNL cluster, the speedup between our fine-grained and the coarse-grained parallel Johnson

algorithms is smaller on the former cluster. As can be observed in Figure 11, this speedup increases

as we increase the time window size used in the algorithms. Note that enumerating cycles in longer

time windows is more challenging, because longer time windows contain a larger number of cycles.

Figure 12 shows the number of temporal cycles enumerated in the experiments shown in

Figure 10 and their frequency distribution for the given cycle length. The execution time of the

cycle enumeration algorithms typically depends on the number of cycles discovered. However,

due to the existence of parallel edges, many cycles may consist of the same sequence of vertices

and can be explored simultaneously by grouping such cycles into a cycle bundle [39]. For example,

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:26 J. Blanuša et al.

Fig. 13. Scalability evaluation of parallel temporal cycle enumeration algorithms executed on the Intel KNL
cluster. The baseline is our fine-grained parallel temporal Johnson algorithm. The relative performance of
2SCENT [39] is shown when it completes in 24 h. Note that the 2SCENT implementation is single-threaded
and the single-threaded execution results are not available for all graphs.

in the cases of the CO, TR, and MS graphs, a cycle bundle discovered by our algorithms contains

more than 10 M cycles on average. For this reason, despite discovering several orders of magni-

tude more cycles in the CO, TR, and MS graphs than in the other graphs, the execution time of

our fine-grained algorithms on the CO, TR, and MS graphs is comparable to their execution time

on the other graphs. In addition, in the cases of BA, BO, FR, and NL, where one temporal cycle

per cycle bundle is discovered, our fine-grained algorithms are more time-consuming on the NL

graph, because more cycles are discovered in the NL graph than in the BA, BO, and FR graphs.

Thus, the execution time of our fine-grained algorithms depends more on the number of cycle

bundles explored than the number of cycles.

The scalability evaluation of the parallel temporal cycle enumeration algorithms is given in

Figure 13. We also report the performance of the sequential 2SCENT algorithm in the same figure.

The performance of our fine-grained parallel algorithms improves linearly until 256 threads, after

which it becomes sublinear due to simultaneous multithreading. As a result, our fine-grained ver-

sions of the Johnson and the Read-Tarjan algorithms reach 435× and 470× speedups, respectively,

compared to their serial versions. Additionally, when using 1,024 threads, our fine-grained John-

son algorithm is on average 260× faster than 2SCENT when 2SCENT completes in 24 h. However,

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:27

the coarse-grained Johnson algorithm does not scale as well as the fine-grained algorithms. As a

result, the performance gap between the fine-grained and the coarse-grained algorithms increases

as we increase the number of threads.

Overall, the fastest algorithm for temporal cycle enumeration that we tested is our fine-grained

Johnson algorithm, which is, on average, 60% faster than our fine-grained Read-Tarjan algorithm.

When using 1,024 threads, both fine-grained algorithms are an order of magnitude faster than

their coarse-grained counterparts. Moreover, our fine-grained parallel algorithms, executed on the

Intel KNL cluster using 1,024 threads, are two orders of magnitude faster than the state-of-the-art

algorithm 2SCENT [39].

8.2 Hop-constrained Cycle Enumeration

In hop-constrained cycle enumeration, we search for all simple cycles in a graph that are shorter

than the specified hop constraint. Here, we compare our fine-grained parallel hop-constrained

Johnson algorithm, introduced in Section 7.3, with the state-of-the-art algorithms BC-DFS and

JOIN [54] for this problem. For this evaluation, we parallelised BC-DFS and JOIN in the coarse-

grained manner. Because adapting the Read-Tarjan algorithm to enumerate hop-constrained cycles

is not trivial, we do not report the performance of the fine-grained and coarse-grained versions of

this algorithm. We also omit the performance results for the MS graph, because our fine-grained

algorithm did not finish under 12 h when using the smallest time window size.

Figure 14 shows that our fine-grained parallel algorithm is, on average, more than 10× faster

than the coarse-grained parallel BC-DFS algorithm for the two largest hop constraints tested.

When using the hop-constraint that is less than or equal to ten, the coarse-grained parallelisa-

tion approach is able to achieve workload balance across cores, and thus the performance of this

approach is similar to that of our fine-grained approach in this case. As we increase the hop con-

straint, the probability of encountering deeper recursion trees also increases. Exploring such trees

using the coarse-grained approach leads to workload imbalance (see Section 4). Our fine-grained

algorithm is designed to resolve this problem by exploring a recursion tree using several threads.

Therefore, increasing the hop constraint increases the speedup of our fine-grained algorithm with

respect to the coarse-grained algorithm.

When the hop constraint is set to 20, our fine-grained parallel algorithm is, on average, 10×
faster than the coarse-grained parallel JOIN algorithm, as shown in Figure 14. Although the lat-

ter algorithm can be competitive with our fine-grained algorithm, it can also suffer from long

execution times, such as in the cases of the AU, NL, and AML graphs. The reason for these long

execution times is the fact that the JOIN algorithm might temporarily construct many non-simple

cycles while searching for simple cycles. Because this algorithm constructs cycles by combining

simple paths, it is not guaranteed that each combination results in a simple cycle. The overhead

of combining paths can dominate the execution time of JOIN if this algorithm constructs orders

of magnitude more non-simple cycles than simple cycles. For instance, this situation occurs in the

case of AU and hop constraint of 20, where JOIN discovers 600×more non-simple cycles than sim-

ple cycles. As a result, the speedup of our fine-grained algorithm compared to the coarse-grained

JOIN algorithm can reach up to three orders of magnitude.

According to Figure 15, the number of cycles increases exponentially as the hop constraint is

increased. Thus, increasing the hop constraint could lead to an exponential increase in the exe-

cution time of our fine-grained parallel algorithm for hop-constrained cycle enumeration, which

can be observed in Figure 14. Note that Figures 12 and 19 indicate that the frequency distributions

of the cycles have a bell shape. As a result, the increase in the number of cycles with increasing

hop constraints shown in Figure 15 may not be exponential when the hop constraint is increased

beyond 20.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:28 J. Blanuša et al.

Fig. 14. Performance of parallel algorithms for hop-constrained simple cycle enumeration on (a) the Intel
KNL cluster using 1,024 threads and (b) the Intel Xeon Skylake cluster using 480 threads. The values above
the bars show the execution time of the coarse-grained parallel algorithms relative to that of our fine-grained
parallel algorithm. The values that contain the symbol > represent the experiments that did not finish within
the given time limit. Larger hop constraints increase the performance gap between the two algorithms.

Fig. 15. (a, b) Frequency distribution of hop-constrained cycles for different cycle lengths and (c) the total
number of hop-constrained cycles discovered during the experiments shown in Figure 14 using the hop-
constraint of 20. In most cases, the number of cycles increases exponentially with hop-constraint.

Figure 16 shows that the speedup of our fine-grained parallel Johnson algorithm with respect

to the coarse-grained parallel BC-DFS can be increased by using more threads. The performance

of our fine-grained parallel algorithm scales linearly with the number of threads, whereas the

scaling of the coarse-grained parallel BC-DFS eventually slows down. Thus, in addition to being,

on average, an order of magnitude faster than the coarse-grained parallel BC-DFS, our fine-grained

algorithm is also more scalable.

8.3 Simple Cycle Enumeration

Here, we evaluate our fine-grained parallel algorithms for simple cycle enumeration. The compu-

tational complexity of simple cycle enumeration is higher than the complexity of temporal and

hop-constrained cycle enumeration, because simple cycle enumeration does not impose temporal

ordering or hop constraints. The only constraint we impose is the time-window constraint. Be-

cause the complexity of enumerating simple cycles is higher, we use smaller time windows com-

pared to the cases of temporal and hop-constrained cycle enumeration. We use the coarse-grained

parallel versions of the Johnson and the Read-Tarjan algorithms as our main comparison points.

We do not report the results for the MS graph, because our algorithms did not finish in 12 h even

if we set the time window to one second. We also provide a comparison with the Tiernan algo-

rithm [68] parallelised in a fine-grained manner, which is a more efficient version of the previous

algorithm by Qing et al. [57] (see Table 2 and Section 2). We parallelise the Tiernan algorithm in

a fine-grained manner by wrapping each recursive call of this algorithm into a task and by using

a dynamic task scheduler to balance the workload across the threads. Note that the algorithm by

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:29

Fig. 16. Scalability evaluation of parallel hop-constrained cycle enumeration algorithms executed on the
Intel KNL cluster using the hop constraint of 15. The speedup values are relative to the single-threaded
execution of BC-DFS. Evaluation on other graphs is omitted for brevity.

Fig. 17. Performance of parallel algorithms for simple cycle enumeration on (a) the Intel KNL cluster using
1,024 threads and (b) the Intel Xeon Skylake cluster using 480 threads. The values above the bars show the
execution time of each algorithm relative to that of our fine-grained parallel Johnson algorithm for the same
benchmark. The values that contain the symbol > represent the experiments that did not finish within the
given time limit.

Qing et al. [57] uses a static load balancing mechanism, which makes it less efficient than our

fine-grained parallelisation of the Tiernan algorithm.

As we can see in Figure 17, our fine-grained parallel algorithms show an order of magnitude av-

erage speedup compared to coarse-grained parallel algorithms on two different platforms. The

reason for this speedup is better scalability of our fine-grained algorithms, which we demon-

strate in Figure 18. Similarly to the cases of temporal and hop-constrained cycle enumeration (see

Figures 13 and 16), our fine-grained parallel algorithms scale linearly with the number of physical

cores used whereas the coarse-grained parallel Johnson algorithm does not scale as well. Thus, the

speedup between the fine-grained and the coarse-grained algorithms increases by utilising more

threads.

Figure 19 shows the number of simple cycles enumerated in the experiments shown in Figure 17

and their frequency distribution for the given cycle length. Similarly to temporal cycle enumera-

tion, the execution time mainly depends on the number of cycle bundles explored rather than on

the number of cycles enumerated. For example, each cycle bundle explored in the BA, BO, SU, FR,

and NL graphs contains only two or fewer simple cycles on average, and the execution time of our

fine-grained Johnson algorithm is the longest for the NL graph, which also has the most reported

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:30 J. Blanuša et al.

Fig. 18. Scalability evaluation of parallel simple cycle enumeration algorithms executed on the Intel KNL
cluster. The speedup values are relative to the single-threaded execution of the Johnson algorithm. Evaluation
on other graphs is omitted for brevity.

Fig. 19. (a, b) Frequency distribution of simple cycles for different cycle lengths and (c) the total number of
simple cycles discovered during the experiments shown in Figure 17. Simple cycles tend to be longer than
temporal cycles, despite using a smaller time window for simple cycle enumeration (see Figure 12).

cycles (see Figure 19). Furthermore, despite BA and BO having similar sizes, the execution time

of our fine-grained Johnson algorithm is an order of magnitude longer for BO than for BA. The

reason for this difference is that more cycles were discovered in the BO graph than in the BA graph

for the time window sizes given in Figure 17. As a result, the execution time of the simple cycle

enumeration can significantly vary, even for graphs of similar sizes.

Figure 20 presents the comparison of our fine-grained parallel Johnson and Read-Tarjan algo-

rithms with the Tiernan algorithm [68] parallelised in a fine-grained manner. Our fine-grained

parallel Johnson algorithm is up to 7× faster than the fine-grained parallel Tiernan algorithm. The

main reason for this performance gap is that the Tiernan algorithm performs more redundant

work than the Johnson algorithm (see Section 3.4). The fine-grained parallel Read-Tarjan algo-

rithm is slower in the case of NL than the fine-grained parallel Tiernan algorithm, because the

redundant work performed by the algorithms is limited, and the Tiernan algorithm performs less

work per visited edge than the Read-Tarjan algorithm. However, the fine-grained parallel Read-

Tarjan algorithm can be up to 5.3× faster than the fine-grained parallel Tiernan algorithm for

other benchmarks. Therefore, our fine-grained parallel Johnson and Read-Tarjan algorithms are

preferable to the parallel formulation of the Tiernan algorithm, such as the algorithm by Qing et al.

[57].

The synchronisation overheads caused by recursive unblocking of our fine-grained parallel John-

son algorithm (see Section 5.2) are visible only in the case of AML. In this case, the fine-grained

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

Fast Parallel Cycle Enumeration Algorithms 15:31

Fig. 20. Comparison of our fine-grained parallel algorithms for simple cycle enumeration with the fine-
grained parallel Tiernan algorithm [68] on the Intel KNL cluster using 1,024 threads. The values above the
bars show the execution time of each algorithm relative to that of our fine-grained parallel Johnson algorithm
for the same benchmark. Our fine-grained parallel Johnson algorithm is up to 7× faster than the fine-grained
parallel Tiernan algorithm.

Fig. 21. Effect of the pruning improvements to our fine-grained parallel Read-Tarjan algorithm for (a) simple
and (b) temporal cycle enumeration. Execution times are normalised to the case that includes all optimisa-
tions. Our optimisations accelerate this algorithm by up to 6.8×.

parallel Johnson algorithm performs 60% fewer edge visits than the fine-grained parallel Read-

Tarjan; however, it is 25% slower. These synchronisation overheads can be explained by a very

low cycle-to-vertex ratio. Because a vertex is blocked if it cannot take part in a cycle, the proba-

bility of a vertex being blocked is higher when the cycle-to-vertex ratio is lower (see Table 6 and

Figure 19). In consequence, more vertices are unblocked during the recursive unblocking of the

fine-grained parallel Johnson algorithm, leading to longer critical sections and more contention

on the locks. Nevertheless, our fine-grained parallel Johnson algorithm achieves a good trade-off

between pruning efficiency and lock contention in most cases.

Overall, our fine-grained parallel Johnson and fine-grained parallel Read-Tarjan algorithms have

comparable performance, as shown in Figure 17. Although the former algorithm is slightly faster,

it can suffer from synchronisation overheads in some cases. Nevertheless, both parallel algorithms

achieve linear scaling with the number of physical cores used and achieve, on average, more than

10× speedup with respect to coarse-grained parallel versions of the algorithms. These conclusions

also hold in the cases of temporal and hop-constrained cycle enumeration.

8.4 Improvements to the Read-Tarjan Algorithm

Figure 21 shows the effect of our pruning improvements, introduced in Section 6.1, on the perfor-

mance of our fine-grained Read-Tarjan algorithm. The experiments are performed using a single

Intel KNL processor using 256 threads. Note that using one processor instead of the entire cluster

results in longer execution times, but it enables us to eliminate the effect of workload imbalance

across processors in this experiment. The execution time of the fine-grained parallel Read-Tarjan

algorithm decreases after activating each optimisation, because fewer redundant vertex and edge

visits are performed during the execution of this algorithm. When all optimisations are enabled,

the average speedup of our algorithm for simple cycle enumeration compared to its unoptimised

version is 2×. In the case of temporal cycle enumeration, the average speedup increases to 3.4×.

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

15:32 J. Blanuša et al.

As a result, our pruning improvements enable the fine-grained parallel Read-Tarjan algorithm to

be competitive with the fine-grained parallel Johnson algorithm.

9 CONCLUSIONS

This work has made three contributions to the area of parallel cycle enumeration. First, we have

introduced scalable fine-grained parallel versions of the state-of-the-art Johnson and Read-Tarjan

algorithms for enumerating simple cycles. In particular, we have shown that the novel fine-grained

parallel approach we contributed for parallelising the Johnson algorithm can be adapted to sup-

port the enumeration of temporal and hop-constrained cycles as well. Our fine-grained parallel

algorithms for enumerating the aforementioned types of cycles achieve a near-linear performance

scaling on a compute cluster with a total number of 256 CPU cores that can execute 1,024 simulta-

neous software threads.

Second, we have shown that our fine-grained parallel cycle enumeration algorithms are scalable

both in theory and in practice. In contrast, their coarse-grained parallel versions do not share this

property. When using 1,024 software threads, our fine-grained parallel algorithms are on average

an order of magnitude faster than their coarse-grained counterparts. In addition, the performance

gap between the fine-grained and coarse-grained parallel algorithms widens as we use more phys-

ical CPU cores. This performance gap also widens when increasing the time window in the case of

temporal cycle enumeration and when increasing the hop constraint in the case of hop-constrained

cycle enumeration.

Third, we have shown that, whereas our fine-grained parallel Read-Tarjan algorithm is work

efficient, our fine-grained parallel Johnson algorithm is not. In general, the former is competitive

against the latter because of the new pruning methods we introduced, yet the latter outperforms

the former in most experiments. In some rare cases, our fine-grained parallel Johnson algorithm

can suffer from synchronisation overheads. In such cases, our fine-grained parallel Read-Tarjan

algorithm offers a more scalable alternative.

REFERENCES

[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad Jamour. 2016. ScaleMine: Scalable

parallel frequent subgraph mining in a single large graph. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC’16). IEEE, 716–727. DOI:10.1109/SC.2016.60

[2] Udit Agarwal and Vijaya Ramachandran. 2016. Finding k simple shortest paths and cycles. In Proceedings of the 27th

International Symposium on Algorithms and Computation (ISAAC’16) (Leibniz International Proceedings in Informat-

ics (LIPIcs), Vol. 64), Seok-Hee Hong (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

8:1–8:12. https://doi.org/10.4230/LIPIcs.ISAAC.2016.8

[3] Charu C. Aggarwal and Haixun Wang (Eds.). 2010. Managing and Mining Graph Data. Advances in Database Systems,

Vol. 40. Springer US, Boston, MA. DOI:10.1007/978-1-4419-6045-0

[4] R. E. L. Aldred and Carsten Thomassen. 2008. On the maximum number of cycles in a planar graph. J. Graph Theory

57, 3 (Mar. 2008), 255–264. DOI:10.1002/jgt.20290

[5] Erik Altman. 2021. AML-Data. Retrieved from https://github.com/IBM/AML-Data. Accessed: 2022-05-30.

[6] David A. Bader. 1999. A Practical Parallel Algorithm for Cycle Detection in Partitioned Digraphs. Retrieved from

https://digitalrepository.unm.edu/ece_rpts/45

[7] V. K. Balakrishnan. 1997. Graph Theory. McGraw-Hill Professional, New York, NY.

[8] Albert-László Barabási and Márton Pósfai. 2016. Network Science. Cambridge University Press, Cambridge, UK, Chap-

ter The scale-free property, 1–57.

[9] Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti, Romeo Rizzi, and Gustavo Sacomoto.

2013. Optimal listing of cycles and st-paths in undirected graphs. In Proceedings of the 24th Annual ACM-SIAM Sym-

posium on Discrete Algorithms. SIAM, Philadelphia, PA, 1884–1896. DOI:10.1137/1.9781611973105.134

[10] Jovan Blanuša, Paolo Ienne, and Kubilay Atasu. 2022. Scalable fine-grained parallel cycle enumeration algorithms. In

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’22). ACM, Philadelphia, PA,

247–258. https://doi.org/10.1145/3490148.3538585

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

https://doi.org/10.1109/SC.2016.60
https://doi.org/10.4230/LIPIcs.ISAAC.2016.8
https://doi.org/10.1007/978-1-4419-6045-0
https://doi.org/10.1002/jgt.20290
https://github.com/IBM/AML-Data
https://digitalrepository.unm.edu/ece_rpts/45
https://doi.org/10.1137/1.9781611973105.134
https://doi.org/10.1145/3490148.3538585

Fast Parallel Cycle Enumeration Algorithms 15:33

[11] Jovan Blanuša, Radu Stoica, Paolo Ienne, and Kubilay Atasu. 2020. Manycore clique enumeration with fast set inter-

sections. Proc. Very Large Data Base 13, 12 (Aug. 2020), 2676–2690. DOI:10.14778/3407790.3407853

[12] Guy E. Blelloch and Bruce M. Maggs. 2010. Parallel Algorithms. CRC Press, London, England, Chapter 25, 25.1–25.40.

[13] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli

Zhou. 1996. Cilk: An efficient multithreaded runtime system. J. Parallel and Distrib. Comput. 37, 1 (Aug. 1996), 55–

69. DOI:10.1006/jpdc.1996.0107

[14] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J. ACM

46, 5 (Sept. 1999), 720–748. DOI:10.1145/324133.324234

[15] Richard P. Brent. 1974. The parallel evaluation of general arithmetic expressions. J. ACM 21, 2 (Apr. 1974), 201–206.

DOI:10.1145/321812.321815

[16] Anna D. Broido and Aaron Clauset. 2019. Scale-free networks are rare. Nat. Commun. 10, 1 (Dec. 2019), 1017.

DOI:10.1038/s41467-019-08746-5

[17] CORPORATE The MPI Forum. 1993. MPI: A message passing interface. In Proceedings of the ACM/IEEE Conference on

Supercomputing (Supercomputing’93). ACM Press, 878–883. DOI:10.1145/169627.169855

[18] Huanqing Cui, Jian Niu, Chuanai Zhou, and Minglei Shu. 2017. A multi-threading algorithm to detect and remove

cycles in vertex- and arc-weighted digraph. Algorithms 10, 4 (Oct. 2017), 115. DOI:10.3390/a10040115

[19] G. Danielson. 1968. On finding the simple paths and circuits in a graph. IEEE Trans. Circ. Theory 15, 3 (Sept. 1968),

294–295. DOI:10.1109/TCT.1968.1082837

[20] Apurba Das, Seyed-Vahid Sanei-Mehri, and Srikanta Tirthapura. 2020. Shared-memory parallel maximal clique enu-

meration from static and dynamic graphs. ACM Trans. Parallel Comput. 7, 1 (Apr. 2020), 1–28. https://doi.org/10.1145/

3380936

[21] P. Erdős and T. Gallai. 1959. On maximal paths and circuits of graphs. Acta Mathematica Academiae Scientiarum

Hungaricae 10, 3-4 (Sept. 1959), 337–356. DOI:10.1007/BF02024498

[22] Lisa K. Fleischer, Bruce Hendrickson, and Ali Pınar. 2000. On identifying strongly connected components in parallel.

In Parallel and Distributed Processing. Vol. 1800. Springer, Berlin, 505–511. DOI:10.1007/3-540-45591-4_68

[23] Pierre Fraigniaud and Dennis Olivetti. 2019. Distributed detection of cycles. ACM Trans. Parallel Comput. 6, 3 (Dec.

2019), 1–20. https://doi.org/10.1145/3322811

[24] Norman E. Gibbs. 1969. A cycle generation algorithm for finite undirected linear graphs. J. ACM 16, 4 (Oct. 1969),

564–568. DOI:10.1145/321541.321545

[25] Pierre-Louis Giscard, Paul Rochet, and Richard C. Wilson. 2017. Evaluating balance on social networks from their

simple cycles. J. Complex Netw. 5 (May 2017), 750–775. DOI:10.1093/comnet/cnx005

[26] Google Cloud. 2022. General-purpose machine family: N1 machine series. Retrieved from https://cloud.google.com/

compute/docs/general-purpose-machines. Accessed: 2022-11-14.

[27] Roberto Grossi. 2016. Enumeration of paths, cycles, and spanning trees. In Encyclopedia of Algorithms. Springer, New

York, NY, 640–645. DOI:10.1007/978-1-4939-2864-4_728

[28] A. Gupta and C. Selvidge. 2005. Acyclic modeling of combinational loops. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design (ICCAD’05). IEEE, San Jose, CA, 343–348. DOI:10.1109/ICCAD.2005.1560091

[29] Anshul Gupta and Toyotaro Suzumura. 2021. Finding All Bounded-Length Simple Cycles in a Directed Graph. Re-

trieved from https://arXiv:2105.10094

[30] László Hajdu and Miklós Krész. 2020. Temporal network analytics for fraud detection in the banking sector. In Pro-

ceedings of the ADBIS, TPDL, and EDA Common Workshops and Doctoral Consortium. Springer, Cham, Switzerland,

145–157. DOI:10.1007/978-3-030-55814-7_12

[31] M. d. Nazrul Islam, S. M. Rafizul Haque, Kaji Masudul Alam, and M. d. Tarikuzzaman. 2009. An approach to improve

collusion set detection using MCL algorithm. In Proceedings of the 12th International Conference on Computers and

Information Technology. IEEE, Dhaka, Bangladesh, 237–242. DOI:10.1109/ICCIT.2009.5407133

[32] Joseph JaJa. 1992. Introduction to Parallel Algorithms. Addison Wesley, Boston, MA.

[33] Jaroslaw Jankowski, Radosłlaw Michalski, and Piotr Bródka. 2017. Spreading processes in multilayer complex network

within virtual world. https://www.nature.com/articles/sdata2017144

[34] Zhi-Qiang Jiang, Wen-Jie Xie, Xiong Xiong, Wei Zhang, Yong-Jie Zhang, and Wei-Xing Zhou. 2013. Trading networks,

abnormal motifs and stock manipulation. Quant. Finance Lett. 1, 1 (Dec. 2013), 1–8. DOI:10.1080/21649502.2013.802877

[35] Donald B. Johnson. 1975. Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4, 1 (Mar. 1975),

77–84. DOI:10.1137/0204007

[36] T. Kamae. 1967. A systematic method of finding all directed circuits and enumerating all directed paths. IEEE Trans.

Circ. Theory 14, 2 (June 1967), 166–171. DOI:10.1109/TCT.1967.1082699

[37] Steffen Klamt and Axel von Kamp. 2009. Computing paths and cycles in biological interaction graphs. BMC Bioinform.

10, 1 (Dec. 2009), 181. DOI:10.1186/1471-2105-10-181

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

https://doi.org/10.14778/3407790.3407853
https://doi.org/10.1006/jpdc.1996.0107
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/321812.321815
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1145/169627.169855
https://doi.org/10.3390/a10040115
https://doi.org/10.1109/TCT.1968.1082837
https://doi.org/10.1145/3380936
https://doi.org/10.1007/BF02024498
https://doi.org/10.1007/3-540-45591-4_68
https://doi.org/10.1145/3322811
https://doi.org/10.1145/321541.321545
https://doi.org/10.1093/comnet/cnx005
https://cloud.google.com/compute/docs/general-purpose-machines
https://doi.org/10.1007/978-1-4939-2864-4_728
https://doi.org/10.1109/ICCAD.2005.1560091
http://arxiv.org/abs/2105.10094
https://doi.org/10.1007/978-3-030-55814-7_12
https://doi.org/10.1109/ICCIT.2009.5407133
https://www.nature.com/articles/sdata2017144
https://doi.org/10.1080/21649502.2013.802877
https://doi.org/10.1137/0204007
https://doi.org/10.1109/TCT.1967.1082699
https://doi.org/10.1186/1471-2105-10-181

15:34 J. Blanuša et al.

[38] Alexey Kukanov. 2007. The foundations for scalable multicore software in intel threading building blocks. ITJ 11, 04

(Nov. 2007), 309–322. DOI:10.1535/itj.1104.05

[39] Rohit Kumar and Toon Calders. 2018. 2SCENT: An efficient algorithm for enumerating all simple temporal cycles.

Proc. Very Large Data Base 11, 11 (July 2018), 1441–1453. DOI:10.14778/3236187.3236197

[40] Jérôme Kunegis. 2013. KONECT: The Koblenz network collection. In Proceedings of the 22nd International Conference

on World Wide Web (WWW’13). ACM Press, Rio de Janeiro, Brazil, 1343–1350. DOI:10.1145/2487788.2488173

[41] Yung-Keun Kwon and Kwang-Hyun Cho. 2007. Analysis of feedback loops and robustness in network evolution based

on Boolean models. BMC Bioinform. 8 (2007), 430. DOI:10.1186/1471-2105-8-430

[42] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved from

https://snap.stanford.edu/data. Accessed: 2022-05-30.

[43] Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and Xueqi Cheng. 2020.

FlowScope: Spotting money laundering based on graphs. Proceedings of the AAAI Conference on Artificial Intelligence

34 (Apr. 2020), 4731–4738. https://doi.org/10.1609/aaai.v34i04.5906

[44] G. Loizou and P. Thanisch. 1982. Enumerating the cycles of a digraph: A new preprocessing strategy. Info. Sci. 27, 3

(Aug. 1982), 163–182. DOI:10.1016/0020-0255(82)90023-8

[45] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. 2010. Pregel: A system for large-scale graph processing. In Proceedings of the ACM SIGMOD International

Conference on Management of Data. ACM, Indianapolis, Indiana, 135–146. DOI:10.1145/1807167.1807184

[46] Prabhaker Mateti and Narsingh Deo. 1976. On algorithms for enumerating all circuits of a graph. SIAM J. Comput. 5,

1 (Mar. 1976), 90–99. DOI:10.1137/0205007

[47] Nav Mathur. 2017. Graph Technology for Financial Services. Technical Report. Neo4J. 1–14 pages. Retrieved from https:

//neo4j.com/use-cases/financial-services. Accessed: 2022-05-30.

[48] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a vertex: A survey of vertex-centric frame-

works for large-scale distributed graph processing. ACM Comput. Surv. 48, 2 (Nov. 2015), 1–39. DOI:10.1145/2818185

[49] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2014. Graph structure in the web — revisited:

A trick of the heavy tail. In Proceedings of the 23rd International Conference on World Wide Web (WWW’14). ACM

Press, 427–432. DOI:10.1145/2567948.2576928

[50] S. Noel, E. Harley, K. H. Tam, M. Limiero, and M. Share. 2016. CyGraph: Graph-based analytics and visualization for

cybersecurity. In Handbook of Statistics. Vol. 35. Elsevier, Oxford, UK, 117–167. DOI:10.1016/bs.host.2016.07.001

[51] Gabriele Oliva, Roberto Setola, Luigi Glielmo, and Christoforos N. Hadjicostis. 2018. Distributed cycle detection and

removal. IEEE Trans. Control Netw. Syst. 5, 1 (Mar. 2018), 194–204. https://doi.org/10.1109/TCNS.2016.2593264

[52] Girish Keshav Palshikar and Manoj M. Apte. 2008. Collusion set detection using graph clustering. Data Min. Knowl.

Disc. 16, 2 (Apr. 2008), 135–164. DOI:10.1007/s10618-007-0076-8

[53] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in temporal networks. In Proceedings

of the 10th ACM International Conference on Web Search and Data Mining. ACM, Cambridge, UK, 601–610.

DOI:10.1145/3018661.3018731

[54] You Peng, Ying Zhang, Xuemin Lin, Wenjie Zhang, Lu Qin, and Jingren Zhou. 2019. Towards bridging theory

and practice: hop-constrained s-t simple path enumeration. Proc. Very Large Data Base 13, 4 (Dec. 2019), 463–476.

DOI:10.14778/3372716.3372720

[55] J. Ponstein. 1966. Self-avoiding paths and the adjacency matrix of a graph. SIAM J. Appl. Math. 14, 3 (Mar. 1966),

600–609. DOI:10.1137/0114051

[56] Sri Harsha Pothukuchi and Amit Dhuria. 2021. Deterministic loop breaking in multi-mode multi-corner static timing

analysis of integrated circuits. Patent No. 11003821.

[57] Zhu Qing, Long Yuan, Zi Chen, Jingjing Lin, and Guojie Ma. 2020. Efficient parallel cycle search in large graphs.

In Database Systems for Advanced Applications. Vol. 12113. Springer International, Cham, Switzerland, 349–367.

DOI:10.1007/978-3-030-59416-9_21

[58] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and Jingren Zhou. 2018. Real-time

constrained cycle detection in large dynamic graphs. Proc. Very Large Data Base 11, 12 (Aug. 2018), 1876–1888.

DOI:10.14778/3229863.3229874

[59] Michael J. Quinn. 2004. Parallel Programming in C with MPI and openMP. McGraw-Hill, Dubuque, Iowa.

[60] R. C. Read and R. E. Tarjan. 1975. Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Net-

works 5, 3 (July 1975), 237–252. DOI:10.1002/net.1975.5.3.237

[61] Rodrigo Caetano Rocha and Bhalchandra D. Thatte. 2015. Distributed cycle detection in large-scale sparse graphs. In

Proceedings of the Simpósio Brasileiro de Pesquisa Operacional (SBPO’15). SOBRAPO, Porto de Galinhas, Pernambuco,

Brasil, 1–12. DOI:10.13140/RG.2.1.1233.8640

[62] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-centric graph processing using

streaming partitions. In Proceedings of the 24th ACM Symposium on Operating Systems Principles. ACM, 472–488.

DOI:10.1145/2517349.2522740

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

https://doi.org/10.1535/itj.1104.05
https://doi.org/10.14778/3236187.3236197
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1186/1471-2105-8-430
https://snap.stanford.edu/data
https://doi.org/10.1609/aaai.v34i04.5906
https://doi.org/10.1016/0020-0255(82)90023-8
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1137/0205007
https://neo4j.com/use-cases/financial-services.
https://doi.org/10.1145/2818185
https://doi.org/10.1145/2567948.2576928
https://doi.org/10.1016/bs.host.2016.07.001
https://doi.org/10.1109/TCNS.2016.2593264
https://doi.org/10.1007/s10618-007-0076-8
https://doi.org/10.1145/3018661.3018731
https://doi.org/10.14778/3372716.3372720
https://doi.org/10.1137/0114051
https://doi.org/10.1007/978-3-030-59416-9_21
https://doi.org/10.14778/3229863.3229874
https://doi.org/10.1002/net.1975.5.3.237
https://doi.org/10.13140/RG.2.1.1233.8640
https://doi.org/10.1145/2517349.2522740

Fast Parallel Cycle Enumeration Algorithms 15:35

[63] SAS. 2021. SAS OPTGRAPH Procedure: Graph Algorithms and Network Analysis. Retrieved from https://

documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/procgralg/procgralg_optgraph_examples.htm. Accessed: 2022-05-

30.

[64] Avinash Sodani. 2015. Knights landing (KNL): 2nd Generation Intel Xeon Phi processor. In Proceedings of the IEEE Hot

Chips 27 Symposium (HCS’15). IEEE, 1–24. DOI:10.1109/HOTCHIPS.2015.7477467

[65] Toyotaro Suzumura and Hiroki Kanezashi. 2021. Anti-Money Laundering Datasets: InPlusLab Anti-Money Launder-

ing Datasets. Retrieved from https://github.com/IBM/AMLSim. Accessed: 2022-05-30.

[66] J. Szwarcfiter and P. Lauer. 1976. A search strategy for the elementary cycles of a directed graph. BIT Numer. Math. 16

(1976), 192–204.

[67] Robert Tarjan. 1973. Enumeration of the elementary circuits of a directed graph. SIAM J. Comput. 2, 3 (Sept. 1973),

211–216. DOI:10.1137/0202017

[68] James C. Tiernan. 1970. An efficient search algorithm to find the elementary circuits of a graph. Commun. ACM 13,

12 (Dec. 1970), 722–726. DOI:10.1145/362814.362819

[69] Leslie G. Valiant. 1990. A bridging model for parallel computation. Commun. ACM 33, 8 (Aug. 1990), 103–111.

DOI:10.1145/79173.79181

[70] Fei Wang, Peng Cui, Jian Pei, Yangqiu Song, and Chengxi Zang. 2020. Recent advances on graph analytics and its

applications in healthcare. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. ACM, 3545–3546. DOI:10.1145/3394486.3406469

[71] Jim Webber. 2021. Powering Real-Time Recommendations with Graph Database Technology. Technical Report. Neo4J.

1–7 pages. Retrieved from https://neo4j.com/use-cases/real-time-recommendation-engine. Accessed: 2022-05-30.

[72] Herbert Weinblatt. 1972. A new search algorithm for finding the simple cycles of a finite directed graph. J. ACM 19, 1

(Jan. 1972), 43–56.

[73] J. T. Welch. 1965. Numerical applications: Cycle algorithms for undirected linear graphs and some immediate appli-

cations. In Proceedings of the 20th National Conference. ACM Press, 296–301. DOI:10.1145/800197.806053

[74] Xiaoping Zhou, Xun Liang, Jichao Zhao, and Shusen Zhang. 2018. Cycle-based network centrality. Sci. Rep. 8, 1 (Dec.

2018), 11749. DOI:10.1038/s41598-018-30249-4

Received 20 February 2023; revised 7 July 2023; accepted 7 July 2023

ACM Transactions on Parallel Computing, Vol. 10, No. 3, Article 15. Publication date: September 2023.

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/procgralg/procgralg_optgraph_examples.htm
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://github.com/IBM/AMLSim
https://doi.org/10.1137/0202017
https://doi.org/10.1145/362814.362819
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/3394486.3406469
https://neo4j.com/use-cases/real-time-recommendation-engine.
https://doi.org/10.1145/800197.806053
https://doi.org/10.1038/s41598-018-30249-4

