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ABSTRACT
Enumerating simple cycles has important applications in computa-

tional biology, network science, and financial crime analysis. In this

work, we focus on parallelising the state-of-the-art simple cycle

enumeration algorithms by Johnson and Read-Tarjan along with

their applications to temporal graphs. To our knowledge, we are

the first ones to parallelise these two algorithms in a fine-grained

manner. We are also the first to demonstrate experimentally a linear

performance scaling. Such a scaling is made possible by our decom-

position of long sequential searches into fine-grained tasks, which

are then dynamically scheduled across CPU cores, enabling an op-

timal load balancing. Furthermore, we show that coarse-grained

parallel versions of the Johnson and the Read-Tarjan algorithms

that exploit edge- or vertex-level parallelism are not scalable. On a

cluster of four multi-core CPUs with 256 physical cores, our fine-

grained parallel algorithms are, on average, an order of magnitude

faster than their coarse-grained parallel counterparts. The perfor-

mance gap between the fine-grained and the coarse-grained parallel

algorithms widens as we use more CPU cores. When using all 256

CPU cores, our parallel algorithms enumerate temporal cycles, on

average, 260× faster than the serial algorithm of Kumar and Calders.

Code repository: https://github.com/IBM/parallel-cycle-enumeration
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Figure 1: Per-thread execution time of (a) the coarse-grained
parallel Johnson algorithm vs. (b) our fine-grained parallel
Johnson algorithm using the wiki-talk graph and a 12h time
window. Thanks to a perfect load balancing, our fine-grained
method is 3× faster on a 64-core CPU executing 256 threads.

1 INTRODUCTION
A graph-based data representation is desirable when analyzing

large and complex datasets because it exposes the connectivity of

the underlying data objects and enables the discovery of complex

relationships between them [42]. Analysing graph-structured data

has important applications in many domains, such as finance [39],

healthcare [64], cybersecurity [44], and advertising [65]. The exis-

tence of certain patterns, such as cycles, cliques, and motifs, in a

graph can reveal nontrivial relationships between different graph

objects [2]. As the volume of graph data continues to grow, the

discovery of such relationships becomes computationally challeng-

ing, necessitating more efficient algorithms and scalable parallel

implementations that can exploit modern multi-core processors.

Simple cycles and temporal cycles. This paper introduces
efficient parallel algorithms for enumerating simple cycles of di-

rected graphs. A simple cycle is a sequence of edges that starts and

ends with the same vertex and visits other vertices of the graph at

most once. Enumerating simple cycles has important applications in

computational biology [30, 34], network science [19, 68], software

bug tracking [56], and electronic design automation [21, 43, 49].

Furthermore, some graphs have their edges annotatedwith times-

tamps, which we refer to as temporal graphs. In such graphs one

can also look for temporal cycles [32], which are special cases of

simple cycles, in which the edges are ordered in time. For instance,

in financial transaction graphs, a temporal cycle represents a series

of transactions in which the money initially sent from one bank ac-

count returns back to the same account; the existence of such cycles

is a strong indicator of financial fraud such as money laundering,

tax avoidance [23, 58], and credit card fraud [51]. Finding temporal

cycles in temporal graphs also enables detecting circular trading,

which can be used for manipulating stock prices [24, 27, 45].

Parallelisation challenges. We focus on parallelising the algo-

rithms by Johnson [28] and Read-Tarjan [53] for finding cycles be-

cause these algorithms achieve the lowest time complexity bounds
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Table 1: Our fine-grained parallel Read-Tarjan algorithm is
the only solution that is both work efficient and scalable.

Parallel algorithm Work efficient Scalable
Coarse-grained parallel algorithms ✓

Our fine-grained parallel Johnson ✓

Our fine-grained parallel Read-Tarjan ✓ ✓

reported for directed graphs [38]. Both algorithms are recursively

formulated and construct a recursion tree in a depth-first fashion.

However, these algorithms employ different pruning techniques

to limit the size of their recursion trees. In practice, the Johnson

algorithm is faster than the Read-Tarjan algorithm because it uses

more aggressive recursion-tree pruning techniques [20, 38].

The naïve way of parallelising the aforementioned algorithms in-

volves searching for cycles starting from different vertices or edges

in parallel, which we refer to as the coarse-grained parallel meth-

ods. Such coarse-grained parallel approaches are straightforward

to implement using the popular vertex-centric [37, 40] and edge-

centric [55] graph processing frameworks. However, real-world

graphs often exhibit a power-law or a log-normal distribution of

vertex degrees [4, 11]. In such graphs, the execution time of coarse-

grained parallel approaches is dominated by searches that start

from a small set of vertices or edges as illustrated in Figure 1a. This

behaviour leads to a workload imbalance and limits scalability.

The shortcomings of coarse-grained parallel approaches can be

addressed by decomposing the search for cycles starting from a

given edge or vertex into finer-grained tasks. Fine-grained paral-

lelism has been exploited by other graph mining algorithms [1,

6, 15]. However, to our knowledge, it has not been applied to

asymptotically-optimal simple cycle enumeration algorithms, such

as the Johnson algorithm and the Read-Tarjan algorithm. In par-

ticular, the pruning efficiency of the Johnson algorithm depends

on a strictly sequential depth-first-search-based recursion tree ex-

ploration. As such, decomposing the Johnson algorithm into fine-

grained tasks is not possible without giving up some of its pruning

efficiency. In contrast, the Read-Tarjan algorithm does not require

a strictly sequential depth-first-search-based recursion tree explo-

ration, hence, it is easier to decompose into fine-grained tasks.

Contributions. In this paper, we contribute scalable parallel

versions of the Johnson and the Read-Tarjan algorithms. To our

knowledge, we are the first ones to parallelise these two algorithms

in a fine-grained manner. We are also the first to demonstrate an

almost linear performance scaling on a system that can execute

up to a thousand concurrent software threads. Such a scalability

is enabled by our decomposition of long sequential searches into

fine-grained tasks, which are then dynamically scheduled across

CPU cores, leading to an ideal load balancing as shown in Figure 1b.

To decompose the Johnson algorithm into fine-grained tasks, we

have relaxed its strictly depth-first-search-based exploration. In this

way, we have enabled it to perform multiple independent depth-

first searches in parallel. However, this additional flexibility is at the

expense of some pruning efficiency. Because of the reduced pruning

efficiency, our fine-grained parallel Johnson algorithm performs

more work than its serial version— i.e., it is not work-efficient.

In contrast, our fine-grained parallel Read-Tarjan algorithm does

not perform more work than its sequential version and is work

efficient. Nevertheless, both fine-grained algorithms are scalable

Table 2: Capabilities of the related work versus our own.
Competing algorithms either fail to exploit fine-grained par-
allelism or do it on top of asymptotically inferior algorithms.
Related work [32] [51] [47] [50] [22] Ours
Fine-grained parallelism ✓ ✓

Asymptotic optimality ✓ ✓ ✓ ✓

Temporal cycles ✓ ✓

Time-window constraints ✓ ✓ ✓

Cycle-length constraints ✓ ✓ ✓ ✓

both in theory and in practice. Table 1 shows the key results of our

theoretical analysis. Interestingly, despite not being work efficient,

our fine-grained Johnson algorithm outperforms our fine-grained

parallel Read-Tarjan algorithm in most of our experiments.

Paper structure. The remainder of this paper is organised as

follows. Section 2 discusses the related work. Section 3 introduces

the notation used, formally defines the concepts of work efficiency

and scalability, and covers state-of-the-art sequential algorithms

for finding simple cycles. Section 4 covers coarse-grained parallel

versions of the Johnson and the Read-Tarjan algorithms. Section 5

and Section 6 introduce our fine-grained parallel versions of the

Johnson and the Read-Tarjan algorithms, respectively. Section 7

discusses adaptations of our algorithms to compute temporal cycles.

Section 8 provides an experimental evaluation of all the parallel

algorithms covered in this work. Section 9 presents our conclusions.

2 RELATEDWORK
Simple cycle enumeration algorithms. Enumeration of simple

cycles of graphs is a classical computer science problem [5, 20, 28,

36, 38, 53, 59, 61, 62, 66]. The backtracking-based algorithms by

Johnson [28], Read and Tarjan [53], and Szwarcfiter and Lauer [59]

achieve the lowest time complexity bounds reported in the lit-

erature for enumerating simple cycles in directed graphs. These

algorithms implement advanced recursion tree pruning techniques

to improve on the brute-force Tiernan algorithm [62]. Section 3.4

covers such pruning techniques in further detail. A cycle enumer-

ation algorithm that is asymptotically faster than the aforemen-

tioned algorithms [28, 53, 59] has been proposed in Birmelé et

al. [5], however, it is applicable only to undirected graphs. The

algorithms for simple cycle enumeration can be specialised to find

temporal cycles, such as in Kumar and Calders [32], and our paral-

lel algorithms lend themselves to the same specialisation. Simple

cycles can also be enumerated by computing the powers of the

adjacency matrix [14, 29, 48] or by using circuit vector space algo-

rithms [18, 38, 67], but the complexity of such approaches grows

exponentially with the length of the cycles or the size of the graphs.

Cycle-length and time-window constraints. To make cycle

enumeration problem tractable, it is common to search for cycles

under some constraints. For instance, the length of the cycles—i.e.,

the maximum number of edges in the cycle, can be constrained,

such as in Gupta and Suzumura [22], Peng et al. [47], and Qiu et

al [51]. In temporal graphs, it is also common to search for cycles

within a sliding time window, such as in Kumar and Calders [32]

and Qiu et al [51]. Constraining the length of the cycles or the

size of the time windows effectively narrows down the search to

a spatial or temporal neighbourhood, respectively. In this work,
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Table 3: Summary of the notation used in the paper.

Symbol Description
𝑢 → 𝑣 A directed edge connecting vertex 𝑢 with 𝑣 .

𝑛, 𝑒 Number of vertices and edges in a graph.

𝛿 Size of a time window.

𝑐 Number of simple cycles in a graph.

𝑠 Number of maximal simple paths in a graph.

Π The current simple path explored by an algorithm.

Blk The set of blocked vertices.

Blist The unblock list data structure.

𝑝 Number of threads used for parallel algorithms.

𝑇𝑝 (𝑛) Execution time of a parallel algorithm.

𝑊𝑝 (𝑛) Amount of work a parallel algorithm performs.

we focus on temporal graphs, therefore, we use time window con-

straints when enumerating both simple and temporal cycles. Note

that length-constrained simple cycles can also be enumerated us-

ing incremental algorithms, such as in Qiu et al. [51]. However,

this algorithm is based on the brute-force Tiernan algorithm [62],

which makes it slower than nonincremental algorithms that use

recursion tree pruning techniques [47]. In addition, because in-

cremental algorithms maintain auxiliary data structures, such as

paths, to be able to construct cycles incrementally, they are not as

memory-efficient as nonincremental algorithms [47]. Table 2 offers

comparisons between the capabilities of these methods and ours.

Parallel and distributed algorithms for cycle enumeration.
Cui et al. [13] proposed amulti-threaded algorithm for detecting and

removing simple cycles of a directed graph. The algorithm divides

the graph into its strongly-connected components and each thread

performs a depth-first search on a different component to find cycles.

However, sizes of the strongly-connected components in real-world

graphs can vary significantly [41], which leads to a workload im-

balance. Rocha and Thatte [54] proposed a distributed algorithm

for simple cycle enumeration based on the bulk-synchronous par-

allel model [63], but it searches for cycles in a brute-force manner.

Qing et al. [50] introduced a parallel algorithm for finding length-

constrained simple cycles. It is the only other fine-grained parallel

algorithm we are aware of in the sense that it can search for cycles

starting from the same vertex in parallel. However, the way this

algorithm searches for cycles is similar to the way the brute-force

Tiernan algorithm [62] works. To our knowledge, we are the first

ones to introduce fine-grained parallel versions of asymptotically-

optimal simple cycle enumeration algorithms, which do not rely

on a brute-force search, as we show in Table 2.

3 BACKGROUND
This section introduces the main theoretical concepts used in this

paper and provides an overview of the most prominent simple cycle

enumeration algorithms. The notation used is given in Table 3.

3.1 Preliminaries
We consider a directed graph G(V, E) having a set of verticesV
and a set of directed edges E = {𝑢 → 𝑣 | 𝑢, 𝑣 ∈ V}. The set of
neighbors of a given vertex 𝑣 is defined asN(𝑣) = {𝑤 | ∀ 𝑣 → 𝑤 ∈
E}. An outgoing edge of a given vertex 𝑣 is defined as 𝑣 → 𝑤 and

an incoming edge is defined as 𝑢 → 𝑣 , where 𝑣 → 𝑤,𝑢 → 𝑣 ∈ E. A
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(b) Time window [10 : 15]
Figure 2: Two snapshots of a temporal graph associated with
two different time windows of size 𝛿 = 5. The solid arrows
indicate the edges that belong to the respective timewindows.

path between the vertices 𝑣0 and 𝑣𝑘 , denoted as 𝑣0 → 𝑣1 . . . → 𝑣𝑘 ,

is a sequence of vertices such that there exists an edge between

two consecutive vertices of the sequence. A simple path is a path

with no repeated vertices. A simple path is maximal if the last

vertex of the path has no neighbors or all of its neighbors are

already in the path [16]. A cycle is a path of non-zero length from

a vertex 𝑣 to the same vertex 𝑣 . A simple cycle is a cycle with

no repeated vertices except for the first and the last vertex. The

number of maximal simple paths and the number of simple cycles

in a graph are denoted as 𝑠 and 𝑐 , respectively (see Table 3). Note

that 𝑠 can be exponentially larger than 𝑐 [61]. The goal of simple
cycle enumeration is to compute all simple cycles of a directed

graph G, ideally without computing all maximal simple paths of it.

A temporal graph is a graph that has its edges annotated with

timestamps. [46]. In temporal graphs, a temporal cycle is a simple

cycle, in which the edges appear in the increasing order of their

timestamps. A simple cycle or a temporal cycle of a temporal graph

occurs within a timewindow [𝑡𝑤1 : 𝑡𝑤2] if every edge of that cycle
has a timestamp 𝑡𝑠 such that 𝑡𝑤1 ≤ 𝑡𝑠 ≤ 𝑡𝑤2. Figure 2 shows the

simple cycles of a temporal graph that occur within two different

time windows of size 𝛿 = 5. This graph contains one simple cycle in

the time window [2 : 7] (Figure 2a), which is also a temporal cycle,

and two simple cycles in the time window [10 : 15] (Figure 2b).

3.2 Task-level parallelism
The parallel algorithms described in this paper can be implemented

using shared-memory parallel processing frameworks, such as

TBB [31], Cilk [8], and OpenMP [52]. These frameworks enable

decomposition of a program into tasks that can be independently

executed by different software threads. In our setup, tasks are dy-

namically created and scheduled. A parent task can create several

child tasks. A dynamic task management system assigns the tasks

created to the work queues of available threads. Furthermore, a

work-stealing scheduler [8, 9, 31] enables a thread that is not exe-

cuting a task to steal a task from the work queue of another thread.

Stealing tasks enables dynamic load balancing and ensures full

utilisation of the threads when there are sufficiently many tasks.

3.3 Work efficiency and scalability
We use the notions of work efficiency and scalability to analyse

parallel algorithms [7]. We refer to the time to execute a parallel

algorithm on a problem of size 𝑛 using 𝑝 threads as 𝑇𝑝 (𝑛). The size
of a graph is determined by the number of vertices 𝑛 as well as the

number of edges 𝑒 , but we will refer only to 𝑛 for simplicity. The

depth of an algorithm is the length of the longest sequence of depen-

dent operations in the algorithm. The time it takes to execute such

a sequence is equal to the execution time of the parallel algorithm

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

249



SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Jovan Blanuša, Paolo Ienne, and Kubilay Atasu

using an infinite number of threads, denoted by 𝑇∞. In addition,

the work performed by a parallel algorithm that uses 𝑝 threads is

the sum of the execution times of the individual threads. The work
efficiency and the scalability are formally defined as follows.

Definition 3.1. (Work efficiency) A parallel algorithm is work

efficient if and only if𝑊𝑝 (𝑛) ∈ 𝑂 (𝑇1 (𝑛)).
Definition 3.2. (Scalability) A parallel algorithm is scalable if and

only if lim

𝑛→∞

(
lim

𝑝→∞
𝑇𝑝 (𝑛)
𝑇1 (𝑛)

)
= 0.

Informally, a work efficient parallel algorithm performs no more

work than its serial version. Moreover, scalability implies that, for

large enough inputs, increasing the number of threads increases the

speedup of the parallel algorithm with respect to its serial version.

We also define the notion of strong scalability as follows [25].

Definition 3.3. (Strong scalability) A parallel algorithm is strongly

scalable if and only if

𝑇1 (𝑛)
𝑇𝑝 (𝑛)

= Θ(𝑝) for large enough 𝑛.

Whereas Definition 3.2 implies that the speedup 𝑇1 (𝑛)/𝑇𝑝 (𝑛)
achieved by a parallel algorithm with respect to its serial execution

is infinite when the number of threads 𝑝 is infinite, Definition 3.3

implies that the speedup is always in the order of 𝑝 . Another related

concept is weak scalability, which requires the speedup to be in

the order of 𝑝 when the input size per thread is constant. Note that

both strong scalability and weak scalability guarantee scalability.

3.4 Simple cycle enumeration algorithms
The following algorithms for simple cycle enumeration perform re-

cursive searches to incrementally update simple paths that can lead

to cycles. Each algorithm iterates the vertices or edges of the graph

and independently constructs a recursion tree to enumerate all the

cycles starting from that vertex or edge. The difference between

these algorithms is to what extent they reduce the redundant work

performed during the recursive search, which we discuss next.

The Tiernan algorithm [62] enumerates simple cycles using

a brute-force search. It recursively extends a simple path Π by ap-

pending a neighbor 𝑢 of the last vertex 𝑣 of Π provided that 𝑢 is

not already in Π. A clear downside of this algorithm is that it can

repeatedly visit vertices that can never lead to a cycle. When search-

ing for cycles in the graph shown in Figure 3a starting from vertex

𝑣0, this algorithm would explore the path 𝑏1, . . . , 𝑏𝑘 2𝑚 times. From

each vertex𝑤𝑖 and 𝑢𝑖 , with 𝑖 ∈ {1, . . . ,𝑚}, the Tiernan algorithm

would explore this path only to discover that it cannot lead to a

simple cycle. As noted by Tarjan [61], the Tiernan algorithm ex-

plores every simple path and, consequently, all maximal simple

paths of a graph. Exploring a maximal simple path takes 𝑂 (𝑛 + 𝑒)
time because a path can contain up to 𝑛 vertices, and the Tiernan

algorithm explores every outgoing edge of every vertex in that

path. Given a graph with 𝑠 maximal simple paths (see Table 3), the

worst-case time complexity of the Tiernan algorithm is𝑂 (𝑠 (𝑛+𝑒)).
The Johnson algorithm [28] improves upon the Tiernan al-

gorithm by avoiding the vertices that cannot lead to simple cycles.

For this purpose, the Johnson algorithm maintains a set of blocked

vertices Blk that are avoided during the search. In addition, a list of

vertices Blist [𝑤] is stored for each vertex𝑤 . Whenever a vertex𝑤

is unblocked (i.e., removed from Blk) by the Johnson algorithm, the

𝑣0
𝑣1

. . . . . .

. . . . . .

. . .

. . .

. .
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(a) Example graph (b) Recursion tree

𝑣 𝑢 Vertex 𝑣 in 𝐵𝑙𝑖𝑠𝑡[𝑢]
Vertex in 𝐵𝑙𝑘

Figure 3: (a) An example graph, and (b) the recursion tree
constructed when searching for cycles in (a) starting from
vertex v0. The nodes of the recursion tree represent the re-
cursive calls of the depth-first search. The dotted path of the
right subtree is explored only by the Read-Tarjan algorithm.

vertices in Blist [𝑤] are also unblocked. This unblocking process

is performed recursively until no more vertices can be unblocked,

which we refer to as the recursive unblocking procedure.

A vertex 𝑣 is blocked (i.e. added to Blk) when visited by the

algorithm. If a cycle is found after recursively exploring every

neighbor of 𝑣 that is not blocked, the vertex 𝑣 is unblocked upon

backtracking. Otherwise, if no cycles are found by exploring the

neighbors of 𝑣 , 𝑣 is not unblocked immediately upon backtracking.

The Blist data structure is updated to enable unblocking of 𝑣 in a

later step by adding 𝑣 to the list Blist [𝑤] of every neighbor𝑤 of 𝑣 .

This delayed unblocking of vertices enables the Johnson algorithm

to discover each cycle in𝑂 (𝑛+𝑒) time in theworst case [28]. Because

this algorithm also requires𝑂 (𝑛+𝑒) time to determine that there are

no cycles, its worst-case time complexity is𝑂 ((𝑛 + 𝑒) (𝑐 + 1)). Note
that because 𝑠 can be exponentially larger than 𝑐 [61], the Johnson

algorithm is asymptotically faster than the Tiernan algorithm.

In the example shown in Figure 3a, every simple path Π that

starts from 𝑣0 and goes through 𝑏1, . . . , 𝑏𝑘 vertices is a maximal

simple path, and thus, it cannot lead to a simple cycle. The John-

son algorithm would block 𝑏1, . . . , 𝑏𝑘 immediately after visiting

this sequence once and then keep these vertices blocked until it

backtracks to 𝑣1, at which point, the algorithm would have finished

exploring both subtrees shown in Figure 3b. As a result, the Johnson

algorithm visits 𝑏1, . . . , 𝑏𝑘 vertices only once, rather than 2𝑚 times

the Tiernan algorithm would visit them. Note that because these

vertices get blocked during the exploration of the left subtree of

the recursion tree, they are not going to be visited again during

the exploration of the right subtree. Effectively, a portion of the

right subtree is pruned (see the dotted path in Figure 3b) based on

the updates made on Blist during the exploration of the left sub-

tree. This strictly sequential depth-first exploration of the recursion

tree is critically important for achieving a high pruning efficiency,

but it also makes scalable parallelisation of the Johnson algorithm

extremely challenging, which we are going to cover in Section 5.

The Read-Tarjan algorithm [53] also has a worst-case time

complexity of 𝑂 ((𝑛 + 𝑒) (𝑐 + 1)). This algorithm maintains a cur-

rent path Π between a starting vertex and a frontier vertex. A

recursive call of this algorithm iterates the neighbors of the current

frontier vertex and performs a depth-first search (DFS). Assume



Scalable Fine-Grained Parallel Cycle Enumeration Algorithms SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

that 𝑣0 is the starting vertex and 𝑣1 is the frontier vertex of Π (see

Figure 3a). From each neighbor 𝑦 ∈ {𝑣0, 𝑣2} of 𝑣1, a DFS tries to

find a path extension Π𝐸 back to 𝑣0 that would form a simple cy-

cle when appended to Π. In the example shown in Figure 3a, the

algorithm finds two path extensions, one indicated as Π𝐸 and one

that consists of the edge 𝑣1 → 𝑣0. The algorithm then explores

each path extension by iteratively appending the vertices from it to

the path Π. For each vertex 𝑥 of a path extension added to Π, the
algorithm also searches for an alternate path extension from that

vertex 𝑥 to 𝑣0 using a DFS. In the example given in Figure 3a, the

algorithm iterates through the vertices of the path extension Π𝐸

and finds an alternate path extension Π′
𝐸
from the neighbor 𝑢1 of

𝑣2. If an alternate path extension is found, a child recursive call is

invoked with the updated current path Π, which is 𝑣0 → 𝑣1 → 𝑣2
in our example. Otherwise, if all the vertices in Π𝐸 have already

been added to the current path Π, Π is reported as a simple cycle.

In our example, the Read-Tarjan algorithm explores both Π𝐸 and

Π′
𝐸
path extensions, and each one leads to the discovery of a cycle.

The Read-Tarjan algorithm also maintains a set of blocked ver-

tices Blk for recursion-tree pruning. However, differently from the

Johnson algorithm, Blk only keeps track of the vertices that cannot

lead to new cycles when exploring the current path extension. The

vertices in Blk are avoided while searching for additional path ex-

tensions that branch from the current path extension. For instance,

the left subtree of the recursion tree shown in Figure 3b demon-

strates the exploration of the path extension Π𝐸 shown in Figure 3a.

During the exploration of Π𝐸 , vertices 𝑏1, . . . , 𝑏𝑘 are added to Blk
immediately after visiting𝑤1, and they are not visited again while

exploring Π𝐸 . However, when exploring another path extension Π
′
𝐸

in the right subtree, the vertices 𝑏1, . . . , 𝑏𝑘 are visited once again

(see the dotted path of the right subtree). As a result, the Read-

Tarjan algorithm visits 𝑏1, . . . , 𝑏𝑘 twice instead of just once. As we

are going to show in Section 6, this drawback becomes an advantage

when parallelising the Read-Tarjan algorithm because it enables

independent exploration of different subtrees of the recursion tree.

Time window constraints can be supported trivially by all

three algorithms covered. Such constraints restrict the search for

simple cycles to those that occur within a time window of a given

size 𝛿 . When a search for cycles starting from an edge with a times-

tamp 𝑡 is invoked, these algorithms consider only the edges with

timestamps that belong to the time window [𝑡 : 𝑡 + 𝛿]. In conse-

quence, fewer vertices are visited during the search for cycles.

4 COARSE-GRAINED PARALLEL METHODS
The most straightforward way of parallelising the Johnson and the

Read-Tarjan algorithms is to search for cycles that start from differ-

ent vertices or edges in parallel. Each such search can then execute

on a different thread and construct its own recursion tree. Such

a coarse-grained approach to parallelising the cycle enumeration

algorithms is work efficient. However, it is not scalable, which we

prove in this section.

Proposition 4.1. The coarse-grained parallel Johnson and Read-
Tarjan algorithms are work efficient.

The proof of Proposition 4.1 is trivial, and we omit it for brevity.

Theorem 4.2. The coarse-grained parallel Johnson and Read-
Tarjan algorithms are not scalable.
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(b) Recursion tree

Figure 4: (a) A graph with an exponential number of simple
cycles, all of which can be found by starting from the edge
v0 → v1. (b) The recursion tree of the Johnson algorithm
for n = 6 constructed when the algorithm starts from the
edge v0 → v1. Whereas a coarse-grained parallel algorithm
explores the complete recursion tree using a single thread,
our fine-grained parallel algorithms can explore different
regions of the search tree in parallel using several threads.

Proof. In this case, 𝑇∞ (𝑛) represents the worst-case execution
time of a search for cycles that starts from a single vertex or edge,

and it depends on the number of cycles discovered during this

search. In the worst case, a single recursive search can discover all

cycles of a graph. An example of such graph is given in Figure 4a,

where each vertex 𝑣𝑖 , with 𝑖 ∈ {1, . . . , 𝑛 − 1}, is connected to 𝑣0
and to every vertex 𝑣 𝑗 such that 𝑗 > 𝑖 . In that graph, any subset of

vertices 𝑣2, . . . , 𝑣𝑛−1 defines a different cycle. Therefore, the total
number of cycles in this graph is equal to the number of all such

subsets 𝑐 = 2
𝑛−2

. Before the search for cycles, both the Johnson

and the Read-Tarjan algorithm find all vertices that start a cycle,

which is only 𝑣0 in this case. Therefore, the search for cycles will be

performed only by one thread. Because all cycles of the graph are

discovered by a single thread, this thread performs all the work the

sequential algorithm would perform, which leads to𝑇∞ (𝑛) = 𝑇1 (𝑛).
Because it holds that lim

𝑛→∞
𝑇∞ (𝑛)/𝑇1 (𝑛) = 1, the coarse-grained

algorithms are not scalable based on Definition 3.2. □

Summary. Theorem 4.2 shows that the main drawback of the

coarse-grained parallel algorithms is their limited scalability. This

limitation is apparent for the graph shown in Figure 4a, which has

an exponential number of cycles in 𝑛. When using a coarse-grained

parallel algorithm on this graph, all the cycles will be discovered by

a single thread. Because only one thread can be effectively utilised,

increasing the number of threads will not result in a reduction of

the overall execution time of the coarse-grained parallel algorithm.

Figure 1 shows the load imbalance exhibited by the coarse-grained

parallel algorithms in practice. Section 8 demonstrates the limited

scalability of coarse-grained parallel algorithms in further detail.

5 FINE-GRAINED PARALLEL JOHNSON
To address the load imbalance issues that manifest themselves

in the coarse-grained parallel Johnson algorithm, we introduce

the fine-grained parallel Johnson algorithm. The main goal of our

fine-grained algorithm is to enable several threads to explore a

recursion tree concurrently as shown in Figure 4b, where each

thread executes a subset of the recursive calls of this tree. However,

enabling several threads to explore the recursion tree concurrently
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(b) Recursion tree

Figure 5: (a) An example graph and (b) the recursion tree of
our fine-grained parallel Johnson algorithm when searching
for cycles that start from vertex v0, which can redundantly
traverse the vertices b1, . . . , bm several times. The serial John-
son algorithm would traverse these vertices only once.

is in conflict with the sequential depth-first exploration required

by the Johnson algorithm to achieve a high pruning efficiency.

Thenaïve approach.A straightforwardway of enabling concur-

rent exploration of the recursion tree is to break the dependencies

between different paths of the recursion tree by creating new copies

of the Blk and Blist data structures when invoking child recursive

calls. In such a case, there would be no data sharing between dif-

ferent recursive calls, and different calls would store inconsistent

copies of the data structures. As a result, a recursive call would

be unaware of the vertices visited and blocked by other calls that

precede it in the depth-first order except for its direct ancestors in

the recursion tree. Hence, this approach exhaustively explores all

maximal simple paths in the graph, and is identical to the brute-

force solution of Tiernan (see Section 3.4). When enumerating the

simple cycles of the graph shown in Figure 5a starting from 𝑣0, this

approach would explore all 4 × 2
𝑚−1

maximal simple paths instead

of just four that would be visited by the Johnson algorithm.

Our approach. To enable different threads to concurrently ex-

plore the recursion tree in a depth-first fashion while also taking

advantage of the powerful pruning capabilities of the Johnson al-

gorithm, each thread executing our fine-grained parallel Johnson

algorithm maintains its own copy of the Π , Blk, and Blist data

structures. Because a thread maintains a copy of the blocked vertex

set Blk, it will not fruitlessly visit the vertices that it has already

blocked. Yet, different threads will store inconsistent copies of the

Blk and Blist data structures, which could lead to some redundant

work. This redundant work could happen when different threads

are exploring the same infeasible region as depicted in Figure 5b.

However, because the threads executing our fine-grained parallel

algorithm still take advantage of the powerful pruning methods

of the Johnson algorithm, the amount of work performed will be

significantly lower than that of the brute-force Tiernan algorithm.

Copy-on-steal. Our fine-grained parallel Johnson algorithm

implements each recursive call as a separate task. If a child task and

its parent task are executed by the same thread, the child task reuses

the Π , Blk, and Blist data structures of the parent task. However, if
a child task has been stolen—i.e., it is executed by a thread other
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Figure 6: (a) An example graph and (b) the recursion tree of
our fine-grained parallel Johnson algorithm when searching
for cycles that start from v0. The thread T2 can prune the
dotted part of the tree by avoiding b3 and b4 that the thread
T1 has blocked after creating the task stolen by T2.

than the thread that created it, a new copy of these data structures

are allocated by the child task. In this way, each thread of our fine-

grained parallel algorithmmaintains its own copy of the Π , Blk, and
Blist data structures. We refer to this mechanism as copy-on-steal.

The problem with copying data structures between different

threads upon task stealing is that the thread that has created the

stolen task can modify its data structures before another thread

steals this task. This inconsistency has to be somehow managed.

A straightforward solution to this problem is to execute the stolen

task after restoring the data structures to the state they were in

when the stolen task was created. Even though such an approach

would guarantee correct execution, the stealing thread would not

be able to reuse the blocked vertices that have been discovered

between the time the task was created and the time the task was

stolen. For example, in Figure 6, assume that we are searching for

simple cycles that start from 𝑣0. While visiting 𝑣1, the thread 𝑇1
creates two new tasks, continues its depth-first search for simple

cycles from vertex𝑤1 using the first task it has created, and pushes

the second task it has created into its work queue to be continued

from the vertex 𝑢1. Suppose that the thread 𝑇2 steals this second

task from 𝑇1 while 𝑇1 is visiting 𝑤3. At this point, 𝑇1 has blocked

the vertices 𝑏1, 𝑏2, 𝑏3, and 𝑏4 because it has discovered that it is

not possible to construct a simple cycle that ends in 𝑣0 while going

through 𝑏1, 𝑏2, 𝑏3, and 𝑏4, once 𝑣1 and𝑤1 have been visited. If 𝑇2
discards the changes 𝑇1 has made to its data structures, it would

still be able to discover the simple cycle that goes through 𝑏1 and

𝑏2 all the way to 𝑣0. However,𝑇2 would have to visit vertices 𝑏3 and

𝑏4 even though𝑇1 has already concluded that these vertices cannot

lead to a simple cycle that ends in 𝑣0, once 𝑣1 has been visited.

Therefore, a naïve state restoration will lead to unnecessary work.

We have developed an alternative solution that makes it possible

for the stealing thread to capitalise on the information already

discovered by the thread from which it stole the task, henceforth

referred to as the victim thread. The stealing thread first determines

its initial path Π2 by removing the vertices the victim thread has

added to its path Π1 since the stolen task was created. The stealing

thread then invokes the recursive unblocking procedure for each

vertex 𝑣 ∈ Π1 \ Π2, which removes these vertices from the set of

blocked vertices Blk and recursively unblocks the vertices from
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the blocked list Blist [𝑣] of each such 𝑣 . For instance, in Figure 6,

the stealing thread 𝑇2 invokes recursive unblocking for vertices

𝑤3,𝑤2, and𝑤1 because the victim thread 𝑇1 has added them to its

current path after the stolen task was created. As a result of the

recursive unblocking procedure, 𝑇2 unblocks the vertices 𝑏1 and

𝑏2, but the vertices 𝑏3 and 𝑏4 remain blocked. The vertices that

remain blocked are the ones that cannot take part in a cycle that

has Π2 as a prefix because these vertices can only be unblocked by

invoking the recursive unblocking procedure for the vertices in Π2.

Therefore, some of the blocked vertices discovered by the victim

thread can be avoided by the stealing thread, which would not have

been possible if the stealing thread simply discarded the changes

the victim thread has made to its Blk and Blist data structures.
Synchronization. Without countermeasures, the copy-on-steal

method can suffer from race conditions because the Π, Blk, and Blist
data structures can be concurrently accessed by a victim thread and

several stealing threads. For instance, if a stealing thread copies the

data structures of a victim thread while the victim thread performs

a recursive unblocking, the stealing thread could end up copying

data that is not in a stable state. To prevent such conditions, we

define critical sections and implement coarse-grained locking by

maintaining a mutex per thread. The lock is acquired when the vic-

tim thread enters the recursive unblocking procedure or when the

stealing threads attempt to copy the Π, Blk, and Blist data structures
from the victim thread. The lock is released when the recursive

unblocking or the copy operation is complete. In this way, the race

conditions are eliminated and a correct execution is guaranteed.

Theoretical analysis. We now show that the fine-grained par-

allel Johnson algorithm is not work efficient, but scalable.

Theorem 5.1. The fine-grained parallel Johnson algorithm is not
work efficient.

Proof. According to Lemma 3 presented by Johnson [28], a ver-

tex cannot be unblocked more than once unless a cycle is found,

and once a vertex is visited, it can be visited again only after being

unblocked. As a result, a vertex is visited and unblocked at most 𝑐

times by the Johnson algorithm. In the fine-grained parallel John-

son algorithm executed using 𝑝 threads, each thread maintains a

separate set of the data structures used for managing the blocked

vertices (Blk and Blist). Because the threads are unaware of each-
others blocked vertices, each vertex is visited at most 𝑝𝑐 times,

𝑐 times by each thread. Additionally, a vertex cannot be visited

more than 𝑠 times because each maximal simple path of a graph is

explored by a different thread in the worst case, and during each

simple path exploration, a vertex is visited at most once. There-

fore, the maximum number of times a vertex can be visited by the

fine-grained parallel Johnson algorithm is min {𝑠, 𝑝𝑐}. When the

Johnson algorithm visits a vertex, it also iterates through its out-

going edges, thus visiting all 𝑛 vertices executes in 𝑂 (𝑛 + 𝑒) time.

Prior to executing the recursive search, this algorithm checks if

the input graph contains at least one cycle using a single thread.

This check can be performed in𝑂 (𝑛 + 𝑒) time. As a result, the work

performed by the fine-grained parallel Johnson algorithm is

𝑊𝑝 (𝑛) ∈


𝑂 (𝑛 + 𝑒) , if 𝑐 = 0,

𝑂 (𝑝𝑐 (𝑛 + 𝑒)) , if 𝑝 < 𝑠/𝑐 and 𝑐 ≠ 0,

𝑂 (𝑠 (𝑛 + 𝑒)) , otherwise.

(1)

When 𝑐 > 0, 𝑝 > 1, and 𝑠 > 𝑐 , the work performed by the fine-

grained parallel Johnson algorithm𝑊𝑝 (𝑛) is greater than the exe-

cution time 𝑇1 (𝑛) of the sequential Johnson algorithm. Thus, the

fine-grained parallel Johnson algorithm is not work efficient. □

The work inefficiency of the fine-grained parallel Johnson al-

gorithm occurs if more than one thread performs the work the

sequential Johnson algorithm would perform between the discov-

ery of two cycles. We illustrate this behaviour using the graph from

Figure 5a, which contains 𝑐 = 4 cycles and 𝑠 = 𝑐 × 2
𝑚−1

maxi-

mal simple paths, each starting from vertex 𝑣0. When discovering

each cycle, the fine-grained parallel Johnson algorithm explores

an infeasible region of the recursion tree, as shown in Figure 5b,

in which vertices 𝑏1, . . . , 𝑏𝑚 are visited. If this infeasible region is

explored using a single thread, each vertex 𝑏𝑖 , with 𝑖 ∈ {1, . . . ,𝑚},
will be visited exactly once. However, if 𝑝 threads are exploring

the same infeasible region of the recursion tree, vertices 𝑏1, . . . , 𝑏𝑚
will be visited up to 𝑝 times because the threads are unaware of

each-others blocked vertices. In this case, the fine-grained parallel

Johnson algorithm performs more work than necessary, and, thus,

it is not work efficient. Additionally, each infeasible region of the

recursion tree that visits vertices 𝑏1, . . . , 𝑏𝑘 can be executed by at

most 𝑠/𝑐 = 2
𝑚−1

threads because there are 2
𝑚−1

maximal simple

paths that can be explored in each infeasible region. In this case,

each vertex 𝑏𝑖 , with 𝑖 ∈ {1, . . . ,𝑚}, is visited up to 𝑠 times, and,

thus, the fine-grained parallel Johnson algorithm behaves as the

Tiernan algorithm (see Section 3.4).

Lemma 1. The depth 𝑇∞ (𝑛) of the fine-grained parallel Johnson
algorithm is in 𝑂 (𝑛 + 𝑒).

Proof. The worst-case depth of this algorithm occurs when

a thread performs copy-on-steal and explores a path of length 𝑛.

Performing copy-on-steal requires 𝑂 (𝑛 + 𝑒) operations because at
most 𝑛 vertices in Π and Blk, and at most 𝑒 pairs of vertices in Blist
are accessed during the copy-on-steal. Exploring the path of length

𝑛 requires 𝑂 (𝑛 + 𝑒) operations because a recursive call that visits a
vertex 𝑣 of this path also iterates through every outgoing edge of 𝑣 .

As a result, the depth of this algorithm is 𝑇∞ (𝑛) ∈ 𝑂 (𝑛 + 𝑒). □

Theorem 5.2. The fine-grained parallel Johnson algorithm is scal-
able when lim

𝑛→∞
𝑐 = ∞.

Proof. For this algorithm,𝑇1 (𝑛) ∈ 𝑂 ((𝑛+𝑒) (𝑐+1)) and𝑇∞ (𝑛) ∈
𝑂 (𝑛 + 𝑒) (see Lemma 1). Given our assumption that lim

𝑛→∞
𝑐 = ∞,

we have lim

𝑛→∞
𝑇∞ (𝑛)
𝑇1 (𝑛)

= lim

𝑛→∞
𝑛 + 𝑒

(𝑛 + 𝑒) (𝑐 + 1) = 0. Therefore, this

algorithm is scalable based onDefinition 3.2. Note that it is sufficient

for 𝑐 to increase sublinearly in 𝑛 for this proof to hold. □

Even though the fine-grained parallel Johnson algorithm is scal-

able, a strong or weak scalability is not guaranteed due to the work

inefficiency of this algorithm. Nevertheless, our experiments show

that this algorithm is strongly scalable in practice (see Figure 9).

Summary.Our relaxation of the strictly depth-first-search-based
recursion-tree exploration reduces the pruning efficiency of the

Johnson algorithm. In the worst case, the fine-grained parallel John-

son algorithm could perform as much work as the brute-force

Tiernan algorithm does—i.e., 𝑂 (𝑠 (𝑛 + 𝑒)). However, in practice this

worst-case scenario does not happen (see Section 8). In addition,
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our fine-grained parallel Johnson algorithm can suffer from syn-

chronisation issues in some rare cases (see Section 8) because our

copy-on-steal mechanism can lead to long critical sections. In the

next section, we introduce a fine-grained parallel algorithm that is

scalable, work efficient, and less prone to synchronisation issues.

6 FINE-GRAINED PARALLEL READ-TARJAN
In this section, we show that the Read-Tarjan algorithm is straight-

forward to parallelise in a scalable and work efficient way. Because

the Read-Tarjan algorithm allocates a new copy of the 𝐵𝑙𝑘 set dur-

ing each path extension computation, a recursive call can compute

different path extensions in an arbitrary order. Additionally, dis-

covery of a new path extension results in the invocation of a single

recursive call, and these calls can be executed in an arbitrary order.

Consequently, several threads can concurrently explore different

paths of the same recursion tree constructed by the Read-Tarjan

algorithm for a given starting edge. There are no data dependencies

or ordering requirements between different calls apart from those

that exist between a parent and a child. To exploit the parallelism

available during the recursion tree exploration, we execute each

recursive call and each path extension computation as a separate

task that can be independently scheduled. We refer to the resulting

algorithm as the fine-grained parallel Read-Tarjan algorithm.

To prevent different threads from concurrently modifying the

current path Π being explored, each task receives a copy of Π from

its parent task. To improve the pruning efficiency, each task also

receives a copy of the blocked vertex set Blk from its parent task.

However, unlike the Johnson algorithm, the fine-grained parallel

Read-Tarjan algorithm does not communicate the Blk sets from

child tasks back to their parent tasks. This parallel algorithm also

takes advantage of the copy-on-steal mechanism (see Section 5)

to eliminate unnecessary copy operations between tasks executed

by the same thread. However, because the Read-Tarjan algorithm

does not use the Blist data structures and the recursive unblocking

procedure used by the Johnson algorithm, the critical sections of

the fine-grained parallel Read-Tarjan algorithm is much shorter

than those of the fine-grained parallel Johnson algorithm.

Theoretical analysis. We now show that the fine-grained par-

allel Read-Tarjan algorithm is both work efficient and scalable.

Theorem 6.1. The fine-grained parallel Read-Tarjan algorithm is
work efficient.

Proof. Because the Read-Tarjan algorithm executes 𝑂 (𝑐) re-
cursive calls [53], and each path extension exploration invokes at

most one recursive call, our fine-grained parallel Read-Tarjan al-

gorithm is executed using 𝑂 (𝑐) tasks. Each task executes a DFS

that explores at most 𝑛 vertices and 𝑒 edges. Additionally, each task

receives a copy of Π and Blk, and because these data structures

contain at most 𝑛 vertices, the overhead of copying them is 𝑂 (𝑛).
Therefore, this algorithm performs𝑂 (𝑛 + 𝑒) work per task. Because
the same amount of work is performed even if there are no cycles

in the graph, the total amount of work this algorithm performs is

𝑊𝑝 (𝑛) = 𝑂 ((𝑛 + 𝑒) (𝑐 + 1)). As a result, based on Definition 3.1, the

fine-grained parallel Read-Tarjan algorithm is work efficient. □

Using the graph from Figure 5a, threads of the fine-grained

parallel Read-Tarjan algorithm that start from 𝑣0 independently

explore four different path extensions Π𝐸 = 𝑣1 → 𝑢𝑖 → 𝑣2 → 𝑣0,

with 𝑖 ∈ {1 . . . 4}. When exploring a path extension Π𝐸 , each thread

invokes a DFS starting from 𝑣2 to explore a different infeasible

region of the search tree as shown in Figure 5b. Because the DFS

would fail to find any other path extensions, the same infeasible

region will not be explored more than once. Therefore, the amount

of work the fine-grained parallel Read-Tarjan algorithm performs

does not increase compared to its single-threaded execution.

Lemma 2. The depth 𝑇∞ (𝑛) of the fine-grained parallel Read-
Tarjan algorithm is in 𝑂 (𝑛(𝑛 + 𝑒)).

Proof. In the worst case, a thread executing this algorithm in-

vokes a recursive call for each vertex of its longest simple cycle,

which has a length of at most 𝑛. Each recursive call executes a DFS

that can visit 𝑛 vertices and 𝑒 edges of the graph. Therefore, the

depth of this algorithm is 𝑇∞ (𝑛) ∈ 𝑂 (𝑛(𝑛 + 𝑒)). □

The worst-case depth of the fine-grained parallel Read-Tarjan

algorithm can be observed when this algorithm is executed on the

graph given in Figure 4a. This graph has 𝑐 = 2
𝑛−2

cycles and the

length of its longest cycle 𝑣0 → 𝑣1 . . . → 𝑣𝑛−1 → 𝑣0 is 𝑛. The

algorithm invokes a recursive call for each vertex of the cycle and

performs a DFS in each such call, which leads to 𝑇∞ ∈ 𝑂 (𝑛(𝑛 + 𝑒)).

Theorem 6.2. The fine-grained parallel Read-Tarjan algorithm is
strongly scalable when lim

𝑛→∞
𝑐/𝑛 = ∞.

Proof. Because the fine-grained parallel Read-Tarjan algorithm

is work-efficient, we can apply Brent’s rule [10] as follows:

𝑇1 (𝑛)
𝑝

≤ 𝑇𝑝 (𝑛) ≤
𝑇1 (𝑛)
𝑝

+𝑇∞ (𝑛).

Substituting𝑇1 (𝑛) with𝑂 ((𝑐+1) (𝑛+𝑒)) and𝑇∞ (𝑛) with𝑂 (𝑛(𝑛+𝑒))
(see Lemma 2), for a positive constant 𝐶0, it holds that

1

/(
1

𝑝
+ 𝑇∞ (𝑛)
𝑇1 (𝑛)

)
= 1

/(
1

𝑝
+ C0

𝑛

𝑐 + 1

)
≤ 𝑇1 (𝑛)
𝑇∞ (𝑛) ≤ 𝑝.

Given that lim

𝑛→∞
𝑐/𝑛 = ∞, there exist 𝑛0 > 0,𝐶1 > 0 such that if

𝑛 > 𝑛0, then (𝑐 + 1)/𝑛 > 𝐶1𝑝 . Thus, for every 𝑛 > 𝑛0, it holds

that 𝑘𝑝 ≤ 𝑇1 (𝑛)
𝑇∞ (𝑛) ≤ 𝑝 , where 𝑘 = 𝐶1/(𝐶0 + 𝐶1) < 1. As a result,

𝑇1 (𝑛)
𝑇∞ (𝑛) = Θ(𝑝), which, based on Definition 3.3, completes the proof.

Note that this proof requires 𝑐 to grow superlinearly with 𝑛. □

Summary. The pruning efficiency of the Read-Tarjan algorithm

is not affected by the fine-grained parallelisation. The fine-grained

parallel Read-Tarjan algorithm performs𝑂 ((𝑛+𝑒) (𝑐 +1)) work: the
same as the work performed by its serial version. In addition, the

synchronization overheads of the fine-grained parallel Read-Tarjan

algorithm are not as significant as those of the fine-grained Johnson

algorithm because of its shorter critical sections. Furthermore, this

algorithm is the only asymptotically-optimal parallel algorithm for

cycle enumeration for which we have proved strong scalability.

7 EXTENSIONS TO TEMPORAL CYCLES
To efficiently enumerate temporal cycles, we take advantage of

the 2SCENT algorithm contributed by Kumar and Calders [32],

which is based on the Johnson algorithm. The 2SCENT algorithm

introduces two highly effective optimisations, called closing times
and path bundling. The closing times optimisation extends the

concept of the blocked vertex set Blk to keep track of the blocked
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temporal edges. The path bundles optimisation enables a single

search to simultaneously explore several temporal paths that share

a common sequence of vertices. To enable efficient temporal cycle

enumeration, we have incorporated both optimisations into our

coarse- and fine-grained parallel algorithms introduced in the prior

sections. Given that our parallel algorithms for temporal cycle

enumeration are based on our parallel formulations of the Johnson

and the Read-Tarjan algorithms, our conclusions regarding the

work efficiency and scalability, summarised in Table 1, remain valid.

However, we omit the respective proofs due to space constraints.

The 2SCENT algorithm also uses a preprocessing step that re-

duces the number of vertices visited during its search for cycles.

However, this preprocessing step has a strictly sequential formu-

lation because it processes the edges in the increasing order of

their timestamps. Moreover, the time complexity of the prepro-

cessing step of the 2SCENT algorithm is in the order of the time

complexity of its recursive search for cycles. In our own implemen-

tation, we use a lighter-weight linear-time preprocessing algorithm,

inspired by the algorithms for computing strongly-connected com-

ponents [17, 60], which can be parallelised in a scalable manner.

Our scalable preprocessing method computes a cycle-union
for each starting edge, which is the set of vertices that take part

in one or more temporal cycles starting from that edge. The cycle-

union of a given starting edge 𝑣0 → 𝑣1 is computed as the intersec-

tion between the set of vertices reachable from vertex 𝑣1 and the

set of vertices from which vertex 𝑣0 is reachable. When computing

temporal cycles, we say that a vertex 𝑢 is reachable from a vertex

𝑣 if there exists a simple path from 𝑣 to 𝑢, in which the edges ap-

pear in the increasing order of their timestamps. When performing

the reachability analysis under time window constraints, we only

consider the paths that belong to a time window of a given size 𝛿 .

This preprocessing method is lightweight because each cycle-union

can be computed in 𝑂 (𝑛 + 𝑒) time, similarly to the computation

of a strongly-connected component [17] of a graph, and it is also

straightforward to parallelise because the cycle-unions can be com-

puted independently for each starting edge or starting vertex.

8 EXPERIMENTAL EVALUATION
This section evaluates the performance of our coarse- and fine-

grained parallel versions of the Johnson and the Read-Tarjan al-

gorithms on temporal graphs. As Table 2 shows, we are the only

ones to offer fine-grained parallel versions of the state-of-the-art

algorithms by Johnson and Read-Tarjan. However, all the methods

covered in Table 2 can be parallelised using the coarse-grained

approach we described in Section 4, which we use as our main com-

parison point. Furthermore, we provide direct comparisons with

2SCENT [32] because it is the only other work that supports time

window constraints and can perform temporal cycle enumeration.

Because exhaustive enumeration of simple cycles is not tractable

in general, it is common to search for cycles under some constraints

(see Table 2). In the experiments, we use time-window constraints

when searching for both simple and temporal cycles. Our experi-

ments are performed using the temporal graphs listed in Table 4.

The TR, FR, and MS graphs are from Harvard Dataverse [26], the NL
graph is from Konect [33], the AML graph is from the AML-Data
repository [3], and the rest are from SNAP [35]. We control the

Table 4: Temporal graphs. The time span T is in days. Fig-
ure 7a and 7b use the timewindow sizes 𝛿s and 𝛿t, respectively.

Graph n e T 𝛿s 𝛿t
bitcoinalpha (BA) 3.3 k 24 k 1901 71h 3000h

bitcoinotc (BO) 4.8 k 36 k 1903 75h 1000h

CollegeMsg (CO) 1.3 k 60 k 193 3h 96h

email-Eu-core (EM) 824 332 k 803 4h 144h

mathoverflow (MO) 16 k 390 k 2350 30h 288h

transactions (TR) 83 k 530 k 1803 72h 800h

higgs-activity (HG) 278 k 555 k 6 3000s 72h

askubuntu (AU) 102 k 727 k 2613 20h 336h

superuser (SU) 138 k 1.1 M 2773 5h 168h

wiki-talk (WT) 140 k 6.1 M 2277 12h 144h

friends2008 (FR) 481 k 12 M 1826 1300s 5h

wiki-dynamic (NL) 1 M 20 M 3602 29s 1000s

messages (MS) 313 k 26 M 1880 / 4h

AML-Data (AML) 10 M 34 M 30 48h 720h

stackoverflow (SO) 2.0 M 48 M 2774 3h 66h

complexity of cycle enumeration by selecting the time-window

size 𝛿 appropriately for each graph. The window sizes used in our

experiments are given in Table 4. We do not report simple cycle

enumeration results for the MS graph because, in this case, our

algorithms did not finish in 12ℎ even if we set 𝛿 = 1𝑠 . Note that

we use larger time windows when enumerating temporal cycles

because the complexity of enumerating temporal cycles is lower.

The experiments are performed on a cluster of four Intel Xeon Phi

7210 - Knights Landing (KNL) processors [57].
1
An Intel KNL CPU

has 64 physical cores and supports 256 simultaneous threads, which

makes it an ideal platform for evaluating the scalability of parallel

algorithms. This cluster enables execution of 1024 simultaneous

threads on 256 physical CPU cores. We use the Threading Building
Blocks (TBB) [31] library for parallelising the algorithms on a single

processor, and we distribute the execution of the algorithms across

multiple processors using the Message Passing Interface (MPI) [12].

When using distributed execution, each processor stores a copy of

the input graph in its main memory and searches for cycles starting

from a different set of graph edges. The starting edges are divided

among the processors such that when the edges are ordered in the

ascending order of their timestamps, 𝑘 consecutive edges in that

order are assigned to 𝑘 different processors. Each processor then

uses its own dynamic scheduler to balance the workload of the

recursive searches that start from its given set of starting edges.

The granularity of the tasks has a significant impact on the

performance of the parallel cycle enumeration algorithms. Fig-

ure 7 compares the coarse- and fine-grained parallel versions of

the Johnson and the Read-Tarjan algorithms. These comparisons

are provided for both simple cycle enumeration and temporal cycle

enumeration, respectively in Figures 7a and 7b. We observe that

our fine-grained parallel algorithms outperform the coarse-grained

parallel algorithms by an order of magnitude both for simple cycle

enumeration and for temporal cycle enumeration. This behavior is

a clear outcome of the scalability of our fine-grained parallelisation.

Figure 8 shows the impact of the time window size on the fine-

grained and coarse-grained parallel Johnson algorithms when per-

forming temporal cycle enumeration. Note that enumerating cycles

1
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation or

its subsidiaries in the United States and other countries.
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(b) Performance of the parallel algorithms for finding all temporal cycles within a time window of size 𝛿𝑡 given in Table 4.

Figure 7: Comparisons between the fine-grained and the coarse-grained parallel versions of the Johnson and the Read-Tarjan
algorithms for (a) simple and (b) temporal cycle enumeration using 1024 threads. The numbers above the bars show the
execution time of each algorithm relative to that of the fine-grained parallel Johnson algorithm for the same benchmark.
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Figure 8: The speed-up of the fine-grained parallel Johnson algorithm with respect to the coarse-grained parallel Johnson
algorithm for different time window sizes. Larger time windows increase the performance gap between the two algorithms.

in larger time windows is more challenging because larger time

windows contain a larger number of cycles. Interestingly, increasing

the size of the time window increases the performance gap between

the fine-grained and the coarse-grained Johnson algorithms.

The work performed by the algorithms evaluated can be quanti-

fied based on the number of edges visited during their execution.

Based on this metric, our fine-grained parallel Johnson algorithm on

average performs 6.1% more work than the work-efficient coarse-

grained parallel Johnson algorithm does when enumerating simple

cycles. The maximum difference observed is around 14%. The dif-

ference is always less than 1% when enumerating temporal cycles.

The evaluation of the scalability of the coarse-grained parallel
and fine-grained parallel algorithms is performed in Figure 9. All

three algorithms evaluated perform temporal cycle enumeration

and use up to 1024 software threads.We also report the performance

of the 2SCENT algorithm [32]. In this setting, the only difference

between our single-threaded Johnson algorithm and 2SCENT is the

scalable pre-processing method we introduced in Section 7.

The performance of the fine-grained parallel Johnson and Read-

Tarjan algorithms improves linearly until 256 threads. When we use

more than 256 threads, the CPU cores start performing simultane-

ous multithreading, which leads to a sublinear performance scaling.

In case of the WT graph, our fine-grained parallel versions of the

Johnson and the Read-Tarjan algorithms are respectively 435× and

470× faster than their serial versions when we use 1024 threads. In

addition, our fine-grained parallel Johnson algorithm is on average

260× faster than 2SCENT when 2SCENT completes in 24 hours.

The Johnson and the Read-Tarjan algorithms have compara-

ble performances as shown in Figure 7. However, our fine-grained

parallel Read-Tarjan algorithm is slightly slower than our fine-

grained parallel Johnson algorithm. This behaviour is expected

given that the Read-Tarjan algorithm performs more edge visits

than the Johnson algorithm despite having the same worst-case

time complexity (see Section 3.4). In our experiments, the fine-

grained parallel Read-Tarjan algorithm on average performs 47%

more edge visits than the fine-grained parallel Johnson algorithm.

The simple cycle enumeration results for AML are clear outliers.

The coarse-grained parallel Read-Tarjan algorithm performs 2.4×
more edge visits than the coarse-grained parallel Johnson algorithm,

yet it is 7.7× slower due to a more severe load imbalance. However,

our fine-grained parallel Johnson algorithm is 2.3× slower than our

fine-grained parallel Read-Tarjan algorithm. In this case, the fine-

grained parallel Johnson algorithm is only 37× faster than its serial

version. However, the fine-grained parallel Read-Tarjan algorithm

exhibits a good scaling and is 214× faster than its serial version.

Our analysis has shown that such a role reversal is not caused by

the work inefficiency of our fine-grained parallel Johnson algorithm,

which performs only 10% more edge visits than its serial version

when enumerating the simple cycles of AML. The reason is the

synchronization overheads exerted on our fine-grained parallel

Johnson algorithm by recursive unblocking (see Section 5). In fact,

the synchronization overheads of our fine-grained parallel Johnson

algorithm are visible only when enumerating the simple cycles

of AML, which can be explained by a very low cycle-to-vertex

ratio observed in this case. Because a vertex is blocked if it cannot

take part in a cycle, the probability of a vertex being blocked is

higher when the cycle-to-vertex ratio is lower. In consequence,

more vertices are unblocked during the recursive unblocking of

the fine-grained parallel Johnson algorithm, which leads to longer

critical sections andmore contention on the locks. Nevertheless, our

fine-grained parallel Johnson algorithm achieves a good trade-off

between pruning efficiency and lock contention in most cases.
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Figure 9: Effect of the number of threads on the performance of temporal cycle enumeration algorithms. The baseline is our
fine-grained parallel Johnson algorithm. The relative performance of 2SCENT [32] is shown when it completes in 24h. Note
that the 2SCENT implementation is single-threaded and the single-threaded execution results are not available for all graphs.

9 CONCLUSIONS
This work has made three contributions to the area of parallel cy-

cle enumeration. First, we have introduced fine-grained parallel

versions of the Johnson and the Read-Tarjan algorithms for enu-

merating simple and temporal cycles. We have shown that our

fine-grained parallel algorithms are scalable both in theory and in

practice. We have evaluated our algorithms on 15 temporal graph

datasets, and demonstrated a near-linear performance scaling on

a compute cluster with a total number of 256 CPU cores that can

execute 1024 simultaneous threads, where our parallel algorithms

achieved an up to 470× speedup with respect to their serial versions.

Secondly, we have shown that the coarse-grained parallel ver-

sions of the Johnson and the Read-Tarjan algorithms are not scalable.

When using 1024 simultaneous software threads, our fine-grained

parallel algorithms are on average an order of magnitude faster

than the coarse-grained parallel algorithms. In addition, the perfor-

mance gap between the fine-grained and coarse-grained parallel

algorithms increases as we use more physical cores. The perfor-

mance gap increases as we increase the time window size as well.

Thirdly, we have shown that our fine-grained parallel Johnson

algorithm is not work efficient. Yet, it outperforms our fine-grained

parallel Read-Tarjan algorithm in most of our experiments. In some

rare cases, our fine-grained parallel Johnson algorithm can suffer

from synchronisation overheads. In such cases, our fine-grained

parallel Read-Tarjan algorithm offers a more scalable alternative.
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