
13

Request, Coalesce, Serve, and Forget:

Miss-Optimized Memory Systems for Bandwidth-Bound

Cache-Unfriendly Applications on FPGAs

MIKHAIL ASIATICI and PAOLO IENNE, School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Applications such as large-scale sparse linear algebra and graph analytics are challenging to accelerate on

FPGAs due to the short irregular memory accesses, resulting in low cache hit rates. Nonblocking caches

reduce the bandwidth required by misses by requesting each cache line only once, even when there are

multiple misses corresponding to it. However, such reuse mechanism is traditionally implemented using an

associative lookup. This limits the number of misses that are considered for reuse to a few tens, at most.

In this article, we present an efficient pipeline that can process and store thousands of outstanding misses

in cuckoo hash tables in on-chip SRAM with minimal stalls. This brings the same bandwidth advantage

as a larger cache for a fraction of the area budget, because outstanding misses do not need a data array,

which can significantly speed up irregular memory-bound latency-insensitive applications. In addition, we

extend nonblocking caches to generate variable-length bursts to memory, which increases the bandwidth

delivered by DRAMs and their controllers. The resulting miss-optimized memory system provides up to 25%

speedup with 24× area reduction on 15 large sparse matrix-vector multiplication benchmarks evaluated on

an embedded and a datacenter FPGA system.

CCS Concepts: • Computer systems organization → Reconfigurable computing; • Hardware → Re-

configurable logic and FPGAs;

Additional Key Words and Phrases: High performance computing, reconfigurable computing, nonblocking

caches, DRAM, cuckoo hashing, irregular memory accesses

ACM Reference format:

Mikhail Asiatici and Paolo Ienne. 2021. Request, Coalesce, Serve, and Forget: Miss-Optimized Memory Sys-

tems for Bandwidth-Bound Cache-Unfriendly Applications on FPGAs. ACM Trans. Reconfigurable Technol.

Syst. 15, 2, Article 13 (November 2021), 33 pages.

https://doi.org/10.1145/3466823

1 INTRODUCTION

FPGAs rely on hardware specialization and massive parallelism to provide acceleration despite the

lower maximum clock frequency compared to CPUs, GPUs, and ASICs. However, this is feasible

only when the throughput of the memory system matches that of the datapath. Important classes

of applications such as sparse linear algebra and graph analytics are particularly challenging to

Authors’ address: M. Asiatici and P. Ienne, School of Computer and Communication Sciences Ecole Polytechnique Fédérale

de Lausanne (EPFL), EPFL IC IINFCOM LAP - INF 137 (Bâtiment INF) -Station 14 - CH-1015, Lausanne, Switzerland 1015;

emails: {mikhail.asiatici, paolo.ienne}@epfl.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1936-7406/2021/11-ART13 $15.00

https://doi.org/10.1145/3466823

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

https://doi.org/10.1145/3466823
mailto:permissions@acm.org
https://doi.org/10.1145/3466823

13:2 M. Asiatici and P. Ienne

Fig. 1. Total availability and utilization of DRAM-based external memory bandwidth under short irregular

access patterns. Thick big rectangles: eight-beat bursts transferred from external memory to the datapath

on the FPGA, color-coded by DRAM row. Shaded smaller rectangles: portions of data actually used by the

accelerators. Dashed lines: cycles where no transfers occur due to a DRAM row conflict. If requests from

the accelerators are forwarded directly to the memory (a), then most of the burst content will be discarded

and frequent row conflicts hamper the available DRAM bandwidth. Miss-optimized memory systems (b)

improve the utilization of each burst. In addition, sending variable-length bursts on the memory side (c)

reduce DRAM row conflicts, which further increase the effective bandwidth available to the accelerators.

accelerate precisely, because their memory access pattern is such that external memories operate

at a very low performance point. This results in underutilization of the parallel datapath and low

performance, reducing the attractiveness of hardware acceleration on FPGAs.

To tackle the problem, FPGAs provide local SRAM memories with large aggregate bandwidth

and low latency, which can implement custom memory hierarchies to mediate access to external

memory or store small datasets. When the hit rate of caches that can be realistically implemented

on FPGA is still too low, it is often possible to conceive application-specific optimizations. However,

such customized solutions are by definition expensive in design time and hard to integrate in

generic hardware generation methodologies such as high-level synthesis unless the access pattern

is perfectly known at compile-time [4, 10].

In this article, we will radically revisit the balancing between cache and miss handling logic to

optimize the throughput of read operations when a large fraction of cache misses is inevitable. In

addition, we will extend such miss-optimized memory systems (MOMSes) to interface with

memory using bursts, which better match the ideal access pattern expected by DRAM-based ex-

ternal memories. We introduce a generic approach that can provide significant speedup with little

design effort whenever the application can expose its massive parallelism by emitting thousands

of outstanding reads and is memory bandwidth bound and latency insensitive. The approach is or-

thogonal to application-specific optimizations and, thanks to its generality, might be particularly

valuable for solutions generated by high-level synthesis tools.

1.1 Irregular Short Accesses Directly on DRAM: Is It Even Worth Trying?

Custom memory hierarchy design and automatic generation usually rely on access patterns that

are regular (scratchpads), have temporal and spatial locality (caches) or are at least known at

compile-time (memory banking and address scrambling) [1, 4, 14, 45]. When access patterns are

irregular, data-dependent and have poor locality, one is left with maximizing memory-level par-

allelism (MLP) by generating enough outstanding memory operations to make DRAM access

fully pipelined. However, the throughput of the memory system is still limited to one operation

per cycle per DRAM channel, at best. This imposes severe limitations on the amount of datapath

parallelism that is worth implementing, limiting the advantage of using an FPGA.

In fact, one operation per cycle per DRAM channel is only a theoretical bound: The through-

put that can be realistically achieved is often significantly lower, especially when accesses are

irregular. If accesses are not only irregular but also narrow (such as 32- or 64-bit scalars), then

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:3

Fig. 2. Spatial locality. Reuse count for each 512-

bit block of data, for SpMV of pds-80 and for

the same number of read operations scanning

sequentially the same memory space. Despite

showing very different cache hit rates, both mem-

ory traces have similar amounts of data reuse

across the entire application execution.

Fig. 3. Temporal locality. Fraction of 512-bit

block references that have stack distance ≤ x , for

SpMV of pds-80 and a sequential memory trace.

A large fraction of the reuses that occur in pds-

80 are interleaved with references to many differ-

ent blocks. Blocks can be stored in a cache hop-

ing for future reuse; however, because large stack

distances are common, cache lines are likely to

be evicted before the next reuse, unless a large

cache is used.

the effective bandwidth gets reduced even further. Two separate mechanisms contributes to the

bandwidth degradation in those cases, as suggested in Figure 1(a). First, both DDR3 and DDR4

operate on bursts of eight beats, normally of 64 bits each [20, 21], which results in a minimum

access granularity of a full 512-bit burst. If accesses are narrower than the burst size, then the

remaining data returned from memory will be discarded, wasting memory bandwidth and energy.

In addition, serving uncorrelated streams of requests from multiple accelerators can only be done

by time-multiplexing the memory channel, canceling out any benefits due to parallelization when

memory bandwidth is the bottleneck. The only way to improve bandwidth utilization, and thus

performance, would be to use larger portions of each burst returned from memory.

The second mechanism relates to the organization of bits in DRAM: a few banks (8 and 16 for

DDR3 and DDR4, respectively), each consisting of a two-dimensional array of capacitors. Reading

data involves first precharging the bank’s bit lines toVdd/2, which is the average voltage between

that of logic 0 and logic 1. Then, the 1 kB row to be read is activated by connecting its capaci-

tors to the bank’s bit lines [20, 21]. Both operations are time-consuming and must be repeated

whenever the bank switches row; therefore, whenever such row conflicts are frequent, the actual

memory bandwidth decreases significantly. DRAM controllers reorder memory requests to reduce

the number of DRAM row conflicts [32]; however, because general-purpose controllers must also

minimize latency, the internal request queues are relatively shallow and the optimization is possi-

ble only for accesses close in time.

1.2 Exploiting Large-Distance Spatial Locality

To discuss the opportunities to increase the utilization of each 512-bit burst received from memory,

Figure 2 shows the histogram of the number of reuses of 512-bit blocks for an application with poor

locality—accesses to the dense vector of 32-bit integers during sparse matrix-vector multiplica-

tion (SpMV) with the pds-80 matrix from SuiteSparse [11] encoded in Compressed Sparse Row

(CSR). It also illustrates what would happen if the same number of read operations were performed

sequentially over the same address span. While both access patterns offer very similar opportuni-

ties for reuse, the sequential access pattern achieves a 15
16 = 94% hit rate on any cache with 512-bit

cache lines but the hit rate of SpMV on a 128-kB direct-mapped blocking cache is only 57%. In fact,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:4 M. Asiatici and P. Ienne

in a cache, eviction limits the time window where data reuse could occur. For the same two applica-

tions, Figure 3 shows the cumulative frequency of stack distances, i.e., the number of different 512-

bit blocks that have been referenced between two consecutive references to the same blocks [7]. For

example, for the memory trace: {389, 261, 124, 4938, 261, 389}, the stack distances for the last access

to blocks 261 and 389 are 2 and 3, respectively. While the stack distance of the sequential pattern is

always zero, the SpMV cumulative histogram grows very slowly, meaning that a large fraction of

reuses have large stack distance. With an ideal fully associative cache with N lines and Least Re-

cently Used (LRU) replacement, reaccessing a cache line with stack distances larger than N will

always be a miss; on a realistic cache, even reuses with stack distance lower than N could be misses.

1.3 Rediscovering Nonblocking Caches

The previous example shows that even applications with poor temporal locality may still have

some spatial locality, which caches struggle to harness due to large stack distances between reuses.

Even worst, a blocking cache actually hampers performance if the hit rate is too low to compensate

for the stall cycles due to the misses. Nonblocking caches reduce stall penalties by handling one

or more misses without stalling. In addition, they also group misses by cache line so that a single

cache line request can be used to serve all the respective misses. This is implemented by storing

each in-flight cache line in a miss status holding register (MSHR), each comprising multiple

subentries that contain the offset and source of the respective misses. This organization increases

bandwidth utilization and pushes the maximum MLP beyond the DRAM latency as long as there

are available MSHRs and subentries [29]. Indeed, the time window where a cache line could be

reused now includes the time between the first miss and the arrival of the data. In practice, for

the purpose of widening the reuse window, adding an MSHR with its subentries is equivalent to

adding one cache line to a fully associative cache; however, if the number of reuses is small, then

storing the miss metadata may require less bits than storing the entire cache line.

1.4 Scaling Up Nonblocking Caches

Nonblocking caches are extensively used in processors; however, MSHRs are usually searched

associatively to minimize latency, which limits their number to a few tens. In practice, there is often

little benefit in increasing the number of MSHRs beyond this limit on realistic CPUs [27, 36]. On

FPGAs, associative searches are even less scalable than in ASICs; yet, high-throughput massively

parallel FPGA accelerators that generate a large number of outstanding reads to hide memory

latency [8, 28] could potentially benefit from an MSHR-rich architecture even more than a general-

purpose processor.

In this article, we propose a novel miss handling architecture optimized for bandwidth-bound

FPGA accelerators that perform irregular accesses to external memory. The key idea is to reuse the

same wide memory response to serve multiple narrow requests from the accelerators (Figure 1(b))

on-the-fly, without relying on long-term storage in cache.

First, we show how we can efficiently implement and access thousands of MSHRs and suben-

tries on FPGA by using the abundant on-chip SRAM. This improves bandwidth utilization and is

equivalent to reordering narrow requests such that those that hit on the same DRAM burst are

handled together. By supporting thousands of outstanding misses, this reordering occurs across a

very large request window, which maximizes the chances of data reuse at a lower area cost than

an equivalent cache.

1.5 Beyond Single Memory Requests

Repurposing some on-chip memory from cache to MSHRs generally proves to be beneficial, espe-

cially when the DRAM controller supports fully pipelined accesses and exposes the entire DRAM

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:5

Fig. 4. Structure of a nonblocking cache. On a hit (steps [h1]–[h2]), it behaves just like any cache. On a

miss (steps [m1] to [m4]), the miss address and source/ID is stored in an MSHR [m2]. Only on the first miss

to a particular cache line, a memory request is additionally generated [m3]. When the cache line data are

received from memory [m4], they are stored in the cache and used to respond to all its pending misses.

burst through a wide data port. However, this is not the case on DRAM controllers with multiple

narrow ports, which are commonly found on System-on-a-Chip platforms. In those cases, individ-

ual memory requests do not provide enough opportunities for reuse and still result in data wastage

on the memory side as they are narrower than a DRAM burst. Similarly, when the memory system

is heavily optimized for bursts and individual accesses cannot be fully pipelined, optimizing the

reuse of individual memory requests is generally useful but leaves some performance on the table.

To address these scenarios, we show how to extend MSHRs to support bursts of variable length

on the memory controller side. When possible, we make bursts longer and exploit more of a DRAM

burst or row without being limited to the data width exposed by the specific memory controller.

Conversely, when spatial locality is insufficient, we keep burst short and minimize contention

in the controller or avoid transferring unnecessary DRAM bursts. We will show that supporting

bursts (1) makes MOMSes beneficial even behind DRAM controllers with multiple narrow ports

and (2) further boosts read throughput behind wide memory ports by increasing DRAM row uti-

lization and, when memory controllers are optimized for bursts, memory-level parallelism.1

Without loss of generality, we evaluate our MOMS on a simple parallel SpMV accelerator op-

erating on a set of SuiteSparse matrices [11], which we use as representative of latency-tolerant

and bandwidth-bound applications with various degrees of locality. We implemented our solution

on two systems that feature three different DRAM memory controller architectures: (1) on the

Xilinx ZC706 embedded board, which has two different DDR3 memory controllers and (2) on the

datacenter board with DDR4 memory available on the Amazon AWS F1 instances.

2 BACKGROUND

In this section, we provide some background on nonblocking caches (Section 2.1) and review the

main properties of the various on-chip memories available in modern FPGAs (Section 2.2).

2.1 Nonblocking Caches

Figure 4 shows the organization of a typical nonblocking cache. In addition to the cache array, a

nonblocking cache contains a miss handling architecture (MHA) based on an array of MSHRs,

1In the reminder of the article, unless otherwise stated, variable-length bursts will refer to the requests sent to the DRAM

controller—for example, under the form of AXI protocol bursts—rather than the DRAM bursts typical of the DDRx standards.

Since we assume that the DRAM controller is given, for example by the FPGA vendor, our MOMS can directly control only

the requests sent to the DRAM controller, not those to the DRAM module.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:6 M. Asiatici and P. Ienne

which keeps track of the in-flight misses. On the first miss of a cache line (a primary miss), the

address of the cache line is sent to memory and stored in an MSHR; the offset of the requested

word within the cache line, together with the request source/ID, is stored in a subentry for that

MSHR. Subsequent misses to the same cache line (secondary misses), only require the allocation

of a subentry on the same MSHR with no additional memory requests. When the missing cache

line is received, it is both stored in the cache and used to serve all of its pending misses [12].

2.2 FPGA On-Chip Memory

Modern FPGAs have at least three types of on-chip memory: flip flops, LUTRAM, and block RAM

(BRAM). Each bit of flip flop-based memory is exposed to the FPGA fabric, providing the highest

flexibility in terms of number, type, and width of memory ports and the largest bandwidth. How-

ever, flip flop bits are the least abundant and some LUTs must be consumed to implement their

access logic. LUTRAMs use LUTs to realize single-, dual-, or quad-port memories with medium

depth (32–64 entries). However, they compete with combinational logic for LUTs. BRAMs are ded-

icated memory resources implemented as hard logic. They provide higher memory density than

LUTRAMs and do not require any soft logic; however, they generally provide only two ports and

are optimized for narrow and deep memory arrays (at least 512 entries).The most recent FPGA fam-

ilies offer an additional type of on-chip memory (UltraRAM/URAM and eSRAM in Xilinx and Intel

FPGAs, respectively) with even higher density and lower design flexibility than block RAMs—for

example, Xilinx’s URAM blocks can only be configured as 72-bit wide, 4,096-entry deep memo-

riesand Intel’s eSRAMs have a 12-cycle read latency and one read and one write port per 72-bit

wide, 86,016-entry deep channel. Therefore, the challenge is to use URAM/eSRAM as much as

possible when available, followed by block RAM, LUTRAM, and flip flops.

3 KEY IDEAS

Increasing the maximum number of outstanding misses in a nonblocking cache requires scaling

up both the number of MSHRs and of subentries, which will be covered in Sections 3.1 and 3.2,

respectively. We then discuss, in Section 3.3, how to extend MSHRs from handling single cache

lines to a variable number of consecutive cache lines, which will be retrieved from memory using a

single burst request. Section 3.4 formalizes how to update the bounds of the burst request generated

by each MSHR as new misses are received. To maintain an acceptable circuit complexity and a

reasonable operating frequency, we accept that in some corner cases our architecture may send

out redundant memory requests. We show, however, in Section 3.5 that such cases are rare under

normal operating conditions, which makes handling variable-length bursts of consecutive cache

lines overall beneficial in the vast majority of scenarios.

3.1 Scalable MSHR Lookup and Storage

For each additional MSHR, the memory system can handle one more primary miss without stalling;

similarly, each additional subentry allows servicing an extra secondary miss with no added traffic

to the external memory. Each MSHR has modest storage requirements: ~20–30 bits for the cache

line tag and its valid bit, plus ~10–20 bits for offset and request ID for each of the ~4–8 subentries.

This is significantly smaller than a 512-bit cache line with its tag. Therefore, within a given on-chip

memory budget, bandwidth-bound applications with irregular memory access patterns could ben-

efit more from an increase of the number of MSHRs or subentries, which increase MLP, rather than

from an expansion of the cache. In practice, however, scaling up the fully associative MSHR array

(Figure 5(a)) also requires additional comparators and a wider multiplexer, which increase area

and hurt the critical path. Moreover, on FPGA, associative MSHRs can be mapped efficiently only

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:7

Fig. 5. MSHR-rich architectures for FPGAs. Because of the associative lookup, a traditional architecture (a)

does not scale beyond a few MSHRs and MSHRs can only be mapped to flip flops. Using a set-associative

memory with a single hash function (b) allows MSHRs to be mapped to block RAM but stalling on every

collision results in low load factors. Cuckoo hashing (c) reduces the probability of collision and a stash (d)

allows collisions to be handled in the background when the unit is idle.

to the scarce flip flops; LUTRAM- or block RAM-based Content-Addressable Memory (CAM)

implementations require 20–300 memory bits per CAM bit [18]. However, an n-way set associative

cache can be implemented with n block RAM modules.

A set-associative MSHR memory (Figure 5(b)), indexed by the lowest significant bits of the tag,

can be easily mapped to block RAM and, as long as there are no collisions, lookups, insertions, and

deletions can be performed in a single step. Stalling is the simplest collision handling mechanism;

however, we will show in Section 6.2 that this strongly limits the maximum load factor. Using linear

probing would result in expected constant time lookup, insertion, and deletion, and, whenever any

operation cannot be completed in a single step, incoming misses must be stalled.

To overcome these limitations, we propose to store MSHRs using cuckoo hashing (Figure 5(c)).

Cuckoo hashing uses d hash tables and d hash functions h0, . . . ,hd−1; each key x can be stored

in any hash table in bucket Hi [hi (x)]. Lookups and deletions require worst case constant time:

Both involve one lookup per hash table, plus one update for deletions. For insertions, key x can

be inserted in any hash table whose bucket hi (x) is empty. If all possible locations Hi [hi (x)] are

occupied, then a collision occurs: The new key x displaces an existing entry to one of its alternative

locations. If all possible buckets of the displaced entry are also occupied, then the process is re-

peated recursively until an entry can be inserted into an empty bucket. This means that insertions

can still require more than one operation, during which no other misses can be handled. Expected

amortized insertion time is constant as long as the load factor is bounded; the bound is 50% for d =

2 and grows very quickly with d [13]. To de-amortize insertion, Kirsch et al. proposed to temporar-

ily store displaced entries in a small content-searchable queue (stash) [24] (Figure 5(d)). As soon as

the input interface is idle, the module tries to insert the oldest entry from the stash; if this results

in a collision, then another entry from a different hash table is moved to the stash. By doing so,

entry reinsertion effectively happens in the background without slowing down incoming requests;

incoming allocations are stalled only when the stash gets full.

3.2 Flexible Subentry Storage

For their explicitly addressed MSHR architecture, Farkas and Jouppi propose to use a fixed number

of subentry slots per MSHR (Figure 6(a)) and to stall the miss handling architecture whenever all

slots of an MSHR are used. However, waiting for the specific MSHR that is full to be deallocated

may take a long time, during which the nonblocking cache may miss opportunities for merging

requests to in-flight cache lines to serve them with no extra memory bandwidth cost. Increasing

the number of slots per MSHR would reduce the probability of stall at the expense of an increase

in area or, in other words, a decrease in load factor due to increased internal fragmentation. To

mitigate these drawbacks, we propose a hybrid approach (Figure 6(b)): We store subentries in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:8 M. Asiatici and P. Ienne

Fig. 6. Subentry organization in memory. Allocating a fixed number of subentries to every MSHR (a) results

in a difficult tradeoff between a low maximum load factor and a high probability of stall, especially if there

is a large variation in the number of secondary misses per cache line. Using a separate buffer to store blocks

of subentries organized as linked lists (b) provides greater flexibility at a modest cost.

Fig. 7. MSHR memory range and structure. Portions of cache lines that have been requested by some acceler-

ators are shown in gray. MSHRs usually refer to single cache lines (a). Increasing the memory range covered

by each MSHR to a set of cache lines that will be requested as a burst (b) reduces DRAM row conflicts but

may result in data wastage as the size of the burst increases. By dynamically adjusting the range of the burst

(c), we make memory accesses more sequential than in (a) while minimizing data wastage.

a separate buffer and we dynamically allocate blocks of subentries to each MSHR. Specifically,

the subentry buffer, mapped to block RAM, contains NR subentry rows, each comprising ns slots.

Each MSHR is initially assigned one subentry row; whenever a row gets full, an additional row is

allocated for that MSHR. Subentry rows are logically organized as a linked list: The head pointer

is stored in the MSHR buffer and each subentry row contains a field for the pointer to the next

row. We will evaluate the benefits of the linked-list architecture in Section 6.3.

3.3 Generalizing MSHRs from Single Cache Lines to Variable-Length Memory Areas

In nonblocking caches, MSHRs have the granularity of single cache lines (Figure 7(a)). Since cache

lines are handled fully independently from each other, there are no guarantees that cache lines that

are close in the address space, thus most likely on the same DRAM row, will be requested close to

each other in time. If the separation between the requests is larger than the reorder window of the

DRAM controller, then unnecessary row conflicts will occur.

A simple way to make use of larger portions of DRAM rows would be to increase the granularity

of each MSHR to multiple cache lines (Figure 7(b)). Burst transfers can then be used to request such

cache line groups efficiently. However, any cache line within the burst that is not actually needed

will cause bandwidth and energy wastage. As we show in Section 6.4, this often results in lower

performance than operating with single memory requests.

To strike a balance between DRAM row utilization and bandwidth wastage, we propose to have

each MSHR covering multiple cache lines but to dynamically adjust the bounds of the burst requested

to memory based on the cache lines that are actually needed (Figure 7(c)). In particular, each MSHR

collects misses to 2N cache lines, which corresponds to the maximum burst length. Two additional

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:9

ALGORITHM 1: MSHR burst offset handling

Input : A miss at address addr = (tag, burstOffset, cacheLineOffset)

Result : Updated MSHR buffer

1 M←MSHRBuffer.lookup(tag);

2 if M does not exist then

/* primary miss: allocate new MSHR */

3 M.tag = tag;

4 M.minBurstOffset = burstOffset;

5 M.maxBurstOffset = burstOffset;

6 M.queuePtr = enqPtr;

7 M.ignoreNextResponse = false;

8 MSHRBuffer.add(M);

9 OutputQueue.enq(M);

10 else if M.minBurstOffset ≤ burstOffset ≤ M.maxBurstOffset then

/* (a) already within the request: do nothing */

11 else if deqPtr < M.queuePtr < enqPtr then

/* (b) adjust request bounds */

12 M.minBurstOffset = min(burstOffset, M.minBurstOffset);

13 M.maxBurstOffset = max(burstOffset, M.maxBurstOffset);

14 MSHRBuffer.update(M);

15 OutputQueue.update(M.queuePtr, M);

16 else

/* (c) request should be adjusted but has already been sent */

17 M.ignoreNextResponse = true;

18 M.minBurstOffset = 0;

19 M.maxBurstOffset = maxBurstLength-1;

20 OutputQueue.enq(M);

21 MSHRBuffer.update(M);

22 end

fields in the MSHR, minBurstOffset and maxBurstOffset, store the indexes of the first and last

cache line that have at least one pending miss. These indexes define the bounds of the shortest

contiguous burst that can serve all the pending misses.

3.4 Dynamically Adjusting Burst Bounds

Algorithm 1 describes how we implement miss handling with variable-length MSHRs. On a pri-

mary miss, a new MSHR is allocated and a memory request is inserted in the output queue; its

burst initially covers only the primary miss’ cache line. To enable future updates of the request,

we store its address in the output queue (queuePtr) in the MSHR; queuePtr is initialized to the

queue’s enqueue pointer, enqPtr. Secondary miss handling is described in Figure 8 and imple-

mented by the circuit in Figure 9. Secondary misses that are covered by the current burst bounds

(Figure 8(a)) require no updates to the MSHR. If the current burst does not cover the new miss,

then burst offsets can be adjusted as long as the memory request is still in the output queue—i.e.,

it has not been sent to memory yet (Figure 8(b)). We compare queuePtr to the current enqPtr and

deqPtr to determine whether the request can still be updated.

Once the request has been sent out to memory, its burst bounds cannot be updated any more

(Figure 8(c)). To handle secondary misses that fall in this case, we could, in principle, request an

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:10 M. Asiatici and P. Ienne

Fig. 8. Burst update policies. Requests that fall within the current burst range (a) do not require any updates;

otherwise, burst bounds can be updated if the burst memory request is still in the output queue (b). If the

memory request has already left the queue (c), then the current burst is invalidated and a new burst of

maximum length is requested.

Fig. 9. Burst bounds update circuit. The updated MSHR on the right overwrites the current MSHR on the

left in the following cycle; tag and queuePtr are never modified after MSHR allocation. Considering that

realistic burst offsets and queue pointers are on 1–4 bits and 9–12 bits, respectively (see Sections 6.4 and 6.5),

the policies shown in Figure 8 can be implemented with a relatively lightweight circuit.

additional burst only for the new cache line. However, if the second burst is not guaranteed to

cover the entire burst range, then the problem may appear again once the second burst has also

been sent out to memory. In the worst case, up to 2N memory requests per MSHR may be needed.

Since each burst would need a separate minBurstOffset and maxBurstOffset, the size of each

MSHR would dramatically increase. Moreover, since we would also need to look up all the bursts

associated to a given MSHR to determine whether any of them covers the new secondary miss or

whether any of them can still be updated, the circuit in Figure 9, often already on the critical path

of the entire system, would become even more complex.

To handle the cases shown in Figure 8(c) with an acceptable impact on the critical path, we take

the pragmatic tradeoff of marking the in-flight request as invalid and we ask again for the full

memory region—essentially, we take this for an indication of sufficiently high spatial locality. As

discussed in Section 5, this policy allows us to achieve the same operating frequency as single-

request MSHRs. However, discarding responses cause bandwidth wastage and should be reduced

to a minimum, which is achieved by having MSHRs spend the largest fraction of their lifetime in

the output queue rather than in the memory controller. If (1) accelerators generate more memory

requests than the memory controller can sustain and (2) there are more MSHRs than maximum

in-flight requests in the memory controller, then this happens naturally, as the next section will

show.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:11

3.5 Minimizing Burst Invalidations

Consider a memory controller that can sustain nmem memory requests per cycle, accelerators that

overall can generate nacc requests per cycle and a memory system that has Nb banks to handle nb

requests per cycle, with nb ≥ nacc > nmem . Without loss of generality, we consider the hit rate to

be negligible, thus all requests will be misses: If not, then nacc is replaced by nmiss = (1 −H)nacc ,

where H is the hit rate. At startup, the MSHR buffer is empty; therefore, all requests are primary

misses. This means that each accelerator request will allocate an MSHR and generate a memory

request; therefore, the number of allocated MSHRs will increase by nacc −nmem per cycle. In other

words, as long as nacc > nmem , accelerator requests naturally tend to accumulate inside the MSHR

and subentry buffers without having to forcefully stall them. As the number of allocated MSHRs

grows, so does the probability for future misses to be secondary rather than primary, which in

turn increases the average number of accelerator requests that each memory response will serve.

As a result, the MSHR allocation rate decreases to (nacc − ns) − nmem per cycle, ns being the

secondary misses per cycle. If MSHRs and subentries were unlimited, then the system will tend

to ns,eq = nacc − nmem , i.e., each memory response is reused nacc

nmem
times on average and the

number of MSHRs remains constant at some value NMSH R,eq . If the system runs out of MSHRs or

subentries before reaching equilibrium, then it will start to stall incoming requests: This reduces

nacc to nacc ′ and moves the equilibrium point to ns,eq′ = nacc ′ − nmem < ns,eq . The larger the

MSHR and subentry buffers, the closer ns,eq′ will be to the ideal ns,eq .

An application with good locality will reach ns,eq very quickly with few MSHRs; the poorer

the locality, the higher NMSH R,eq . If Nmem, I F is the total number of in-flight requests that the

memory controller can sustain, then each memory request will spend
Nmem, I F

NMS H R,eq
of its lifetime inside

the memory controller and the rest inside the MSHR buffer output queue. Therefore, the higher

NMSH R,eq , the more likely the burst bounds of an MSHR can still be adjusted without having to

invalidate the first burst, and NMSH R,eq will naturally tend to be higher for applications with poor

locality where most of the full burst will likely not be used.

To reduce invalidations on regular applications that tend to have a low NMSH R,eq , we tried

to artificially stall memory requests until a minimum number of used MSHRs was reached or

a timeout since the last received request expired. In practice, excessive stalling was usually more

harmful than invalidations unless extensive application-specific fine tuning of the minimum MSHR

occupation and the timeout were performed, which is incompatible with the desired generality of

the proposed memory system.

4 DETAILED ARCHITECTURE

Figure 10 shows the top-level view of our miss-optimized memory system. To simplify the design

and to maximize the scope for memory access optimization, our controller can return responses

out of order, which is not unusual among high performance memory systems [15, 16]. Therefore,

requests must be tagged with an ID, which will be used to match it with the corresponding re-

sponse. Requests received from each of the Ni input channels are redistributed across Nb banks by

means of a crossbar. We use a multi-banked structure to handle multiple requests and responses

per cycle. We maximize workload balancing among banks by interleaving requests among them in

the finest possible way: Requests pertaining to consecutive MSHR memory ranges (i.e., the dashed

area in Figure 7(c)) are served by different banks. Each bank consists of a set-associative cache, an

MSHR buffer, a subentry buffer, and a data buffer. Data for requests that hit in the cache are imme-

diately returned to the crossbar, while misses are handled and stored by the MSHR and subentry

buffer. The MSHR buffer has been extended to handle bursts by implementing Algorithm 1, which

defines how to allocate and update MSHRs and how to manage the output queue. The queue depth

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:12 M. Asiatici and P. Ienne

Fig. 10. Top-level view of our MOMS. A crossbar steers memory requests from Ni accelerators to Nb banks

according to their address. Each bank consists of a cache, an MSHR buffer with updatable queue, a subentry

buffer, and a data buffer. The multi-ported memory interface multiplexes each memory interface among

banks.

corresponds to the size of the MSHR buffer: Even if each MSHR can generate an additional mem-

ory request with the full burst, it does so only if the partial burst has already left the queue, so the

queue will never host more than one request per MSHR at a time.

The external memory interface can handle nmem ≥ 1 memory ports, where nmem is a divisor of

nb . It includes one arbiter/demultiplexer per memory port, each connected to
nb

nmem
banks. There-

fore, each bank is statically assigned to a memory port, each of which currently uses a round-robin

arbiter to pick requests from its banks. This simple solution avoids having to instantiate another

crossbar and works well if ports are symmetric (as in our experimental system) and requests are

reasonably well distributed among banks. The memory interface can be easily modified when these

assumptions do not hold.

4.1 MSHR Buffer

For the MSHR buffer, we use one block RAM per hash table, with the address of the MSHR

memory range (burst tag) as key. We use universal hash functions in the form ha (x) =
(ax mod 2wt) div 2wt−wM with wt being the number of bits of the tag, wM = log2 (M) where M
is the number of buckets per hash table, and a is a random positive odd integer with a < 2w

t [42].

Each bucket contains a valid bit, the missing burst tag, and the address of the first subentry row in

the subentry buffer as described in Section 3.2. The stash is a content-associative memory made of

flip-flops. To integrate the stash in the pipeline, we include the stash entries among the locations

that are searched and updated during lookups or that can be deallocated when a response is re-

ceived. On an MSHR hit (i.e., secondary misses), we use the circuit in Figure 9 to update the burst

bounds if necessary and possible

4.2 Subentry Buffer

Figure 11 shows implementation and operation of the subentry buffer. A subentry consists of an

(ID, burst offset, cache line offset) tuple; a subentry row contains (a) ns subentry slots, (b) the

number of allocated subentries, and (c) a pointer to the next subentry row with its valid bit. To

allocate a subentry, the first subentry row is retrieved from the buffer. If the row is not full (1), then

the new entry is appended and the row is written back to the buffer. If the row is full (2), then a

new row must also be allocated. We use a FIFO (free row queue, FRQ) to store the addresses of the

empty rows, and allocating a row simply means extracting the first element of the FRQ. The FRQ

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:13

Fig. 11. Block diagram and operation of the subentry buffer. For requests, the subentry buffer receives ID,

burst offset, cache line offset, and the address of the first subentry row (head row) from the respective MSHR.

The head row is first retrieved from the buffer. If it is not full (1), then the row is updated with the new entry

and written back to the buffer. If the row is full (2), then the new entry is inserted in a new row, whose address

is stored in the previous row. When a response is received (3), all subentries are retrieved by traversing the

subentry row list. After all subentries have been forwarded to the response generator, the row is deallocated

by pushing its address to the free row queue.

Fig. 12. Retrieval of responses from the data buffer. The response token, generated once the entire burst has

been received, locates the response data inside the data buffer (yellow). Responses to the individual pending

misses can be generated by iterating over all subentries and extracting the relevant word (purple) based on

burst and cache line offsets.

is also shared with the MSHR buffer to allow the allocation of the first subentry row for newly

allocated MSHRs. When the FRQ gets empty, further allocations are stalled.

When a response is received, the corresponding MSHR is deallocated from the MSHR buffer

and its subentry rows retrieved from the buffer. The response generator parses the subentry rows,

retrieves the data from the data buffer, and emits one response per allocated subentry. The row is

then recycled by inserting its address into the FRQ and the process is repeated for the entire linked

list of rows.

4.3 Data Buffer

The data buffer store bursts received from memory. Because responses are treated in-order inside

the pipeline, the data buffer can be implemented as a simple circular buffer in LUTRAM or block

RAM. After storing the burst in the circular buffer, the module forwards its base address (pointer),

size (burst length), and tag to the pipeline. The MSHR buffer will use the tag to deallocate the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:14 M. Asiatici and P. Ienne

MSHR pertaining to the burst and retrieve its subentries; base address and size are then used by

the subentry buffer to generate the responses as shown in Figure 12. When all pending misses have

been served, burst pointer and size are used to deallocate the burst data inside the data buffer.

4.4 Pipeline Efficiency and Throughput

As long as an MSHR has a single subentry row, the primary and all secondary misses can be handled

without stalling the pipeline as they require no more than one read and one write per dual-ported

block RAM: lookup in the MSHR buffer, allocation of the MSHR for primary misses, lookup in the

subentry buffer for secondary misses, and row update in the subentry buffer. Each block RAM has

a data forwarding circuit to ensure that we always read the most up-to-date data despite reads

having two-cycle latency. MSHR collisions are handled transparently when the unit is idle, as long

as there are free entries in the stash. Allocating an additional subentry row requires stalling the

pipeline for one cycle to perform two writes: (1) inserting the pointer of the newly allocated row

into the tail of the list and (2) writing the new subentry into the newly allocated row. Allocating

a subentry on an MSHR that has more than one row requires traversing the linked list, which

costs an extra read per additional row. The traversal cost can be significant for MSHRs with many

subentries: To mitigate it, we use an 8-entry fully associative cache indexed by the head pointer of

the subentry list to jump directly to the tail whenever possible. In our subentry architecture, the

tradeoff between internal fragmentation and stall cycles, which depend on the number of suben-

tries per row, remains; however, the cost of a full subentry row is reduced from completely stalling

the pipeline until the full MSHR is deallocated to a few bubbles in the pipeline. Responses whose

MSHR has a single subentry row can also be handled without stalls; each additional subentry row

costs one stall cycle.

Most of the operations are therefore fully pipelined, with the caveat that a single pipeline is

shared between accelerator requests and memory responses. However, the more secondary misses

we can merge to the same memory burst and the longer the bursts, the fewer independent mem-

ory responses we will have to handle, reducing the cost of pipeline sharing. Ultimately, Nb fully

pipelined banks can supply up to Nb − nbursts,mem responses per cycle, where nbursts,mem is the

average number of bursts per cycle returned by the external memory.

5 EXPERIMENTAL SETUP

Our memory controller is written in Chisel 3 and is fully parametric in terms of, e.g., number

of inputs, banks, MSHR cuckoo hash tables, MSHRs per hash table, subentry rows and number of

subentries per row, cache size and associativity, input and output data size. Even though it has been

evaluated on two Xilinx platforms (described more in detail in Section 5.2), it is written in platform-

independent RTL. We compiled it using Vivado 2017.4 for the experiments on the ZC706 platform

and Vivado 2019.1 for the AWS F1 FPGA. In the remainder of this section, we will introduce the

sparse matrix-vector accelerators and the matrices that we used as a benchmark (Section 5.1) and

then present the FPGA boards where we ran our analysis, with special emphasis on the properties

of the memory systems (external DRAM memories and respective controllers) (Section 5.2). We

conclude in Section 5.3 by discussing the top-level system design and illustrating how the MOMS

can be floorplanned among multiple FPGA dies.

5.1 SpMV Accelerators

As a benchmark, we implemented a simple accelerator for SpMV, an important kernel in a broad

range of scientific applications [3] and to which many sparse graphs algorithms can be mapped

[23]. Moreover, SpMV can easily generate a wide range of access patterns depending on the ma-

trix sparsity pattern. Our accelerator, shown in Figure 13, is an almost direct implementation of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:15

Fig. 13. Structure of our benchmark sparse matrix-vector multiplication accelerator. Xilinx AXI DMAs are

used to stream all CSR vectors accessed sequentially. The values of the col array are used to compute the

addresses of the vector elements that are retrieved through our memory controller.

ALGORITHM 2: Sparse matrix-vector multiplication (SpMV)

1: for r ← 0 to ROWS − 1 do

2: out[r]← 0

3: for i ← idx[r] to idx[r + 1] do

4: out[r]← out[r] +val[i] ×vect[col[i]]
5: end for

6: end for

Algorithm 2 for SpMV of a CSR-encoded sparse matrix; we do not include any SpMV-specific opti-

mizations as our controller aims for a generic architectural solution for any applications with irreg-

ular memory access pattern. Indices are 32-bit unsigned integers while values are single-precision

floating point values. All CSR vectors, accessed sequentially, are provided via AXI4-Stream through

Xilinx AXI DMA IPs; the dense vector, accessed randomly, is read through an AXI4-MM port con-

nected to our memory controller. The 8,192-entry reorder buffer provides the vector values to the

multiply-accumulation pipeline, which is based on floating-point Xilinx IPs. We use the index vec-

tor to clear the accumulator every time a new row begins, and the output vector is streamed to

DRAM through a DMA. Each accelerator can process one non-zero matrix element (NZ) per

cycle; we parallelize the SpMV by interleaving rows across multiple accelerators.

Table 1 shows the properties of our benchmark matrices, which are essentially the largest bench-

marks used in prior work on SpMV [3]. All benchmarks are available on SuiteSparse [11]. We use

the stack distance, introduced in Section 1.2, to characterize the regularity of the access pattern to

the dense vector.

5.2 FPGA Boards

Tables 2 and 3 show the main properties of the FPGAs and the memory systems used in our exper-

iments. The ZC706 is an embedded board that contains a Zynq-7000 SoC with an FPGA and two

ARM cores. The SoC is connected to 1 GB of DDR3 on the processing system (PS) side through

the ARM hardened memory controller and 1 GB of DDR3 on the programmable logic (PL) side

through the Xilinx MIG soft controller. For the PS memory, we only used the four HP ports as we

found them to be enough to achieve the peak memory bandwidth: Using the ACP port brings no

performance advantage and complicates the design as the number of ports is not anymore a power

of two. However, the FPGA system available on the Amazon AWS F1 instances consists of a Virtex

UltraScale+ FPGA connected to four DDR4 channels driven by Xilinx MIG controllers. Because the

maximum number of outstanding reads per channel is limited to about half of the average number

of cycles of latency, the quoted peak bandwidth of 59.9 GiB/s can only be achieved using bursts of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:16 M. Asiatici and P. Ienne

Table 1. Properties of the Benchmark Matrices We Used

Benchmark

Vector
size
(MB)

Rows
(M)

Non-zero
elements
(M)

Stack distance percentiles

75% 90% 95%

amazon-2008 2.81 0.735 5.16 6 6.63k 19.3k

cit-Patents 14.4 3.78 16.5 91.1k 129k 151k

cont11_i 7.48 1.47 5.38 2 2 3

dblp-2010 1.24 0.326 1.62 2 348 4.68k

eu-2005 3.29 0.863 19.2 5 26 69

flickr 3.13 0.821 9.84 3.29k 8.26k 14.5k

in-2004 5.28 1.38 16.9 0 4 11

ljournal 20.5 5.36 79.0 19.3k 120k 184k

mawi1234 70.8 18.6 38.0 20.9k 176k 609k

pds-80 1.66 0.129 0.928 26.3k 26.6k 26.6k

rail4284 4.18 0.004 11.3 0 13.3k 35.4k

road_usa 91.4 23.9 57.7 31 601 158k

webbase_1M 3.81 1.00 3.10 2 19 323

wikipedia-20061104 12.0 3.15 39.4 47.3k 105k 137k

youtube 4.33 1.13 5.97 5.8k 20.6k 32.6k

We found the stack percentiles [7] to be a better predictor of performance than,

e.g., sparsity. All vectors are of single-precision floating point values. The

number of columns corresponds to the vector size divided by 4 bytes and,

except for pds-80 and rail4284, it corresponds to the number of rows.

Table 2. Specifications of the FPGAs Used in Our Experiments

Platform ZC706 Amazon AWS F1

FPGA Zynq-7000 xc7z045 Virtex UltraScale+ xcvu9p

LUTs 218,600 1,182,000

Flip-Flops 437,200 2,364,000

DSPs 900 6,840

36 kib BRAMs 545 (2.4 MiB) 2,160 (9.5 MiB)

URAMs 0 960 (33.8 MiB)

SLRs 1 3

Table 3. Specifications of the External Memory Systems Used in Our Experiments

Platform ZC706
AWS F1

Memory controller PS PL

Memory technology DDR3 DDR3 DDR4

Total size (GiB) 1 1 64

DDR IO data width (bits) 32 64 64

Memory channels 1 1 4

Controller ports 5 (4 HP, 1 ACP) 1 4 (1 per channel)

Controller data width (bits) 64 512 512

Controller clock frequency (MHz) 150 200 250

Peak measured bandwidth (GiB/s) 3.9 12.0 59.9

length two or larger; if only single requests are used, the maximum measured bandwidth drops to

32.0 GiB/s.

Compared to the ZC706 FPGA, the AWS F1 FPGA contains 5.4× more CLBs (LUTs and FFs),

4.0× more BRAM blocks, and 33.8 MiB of URAM. However, 25% of those resources are locked in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:17

Fig. 14. SLR partitioning of SpMV accelerator and MOMS on the AWS F1 FPGA. The thick lines represent

the SLR boundaries. For the sake of clarity, the irregular read and DMA networks are shown separately

even though they are implemented simultaneously side by side. Each memory channel is shared among four

MOMS banks and the DMAs of four accelerators using an AXI SmartConnect.

FPGA regions reserved to the AWS shell and thus unavailable to the designer. The remaining 75%

are spread unevenly among three dies (or Super Logic Regions, SLRs, in Xilinx’s terminology) as

only the central and bottom SLR are partially occupied by the shell. The DDR4 controllers are also

spread among SLRs, with the top and bottom SLR hosting one controller each and two controllers

in the central SLR [2]. Because inter-die interconnects (Xilinx’s Super Long Lines or SLLs) are

particularly scarce and slow, achieving high resource utilization on multi-SLR devices is especially

challenging and needs to be explicitly taken care of during system design. In the next section,

we will illustrate how the MOMS modules and the accelerators have been assigned to memory

controllers and, in the case of the AWS F1 FPGA, SLRs to achieve high performance and resource

utilization even on high-end multi-SLR FPGAs.

5.3 Top-level System Organization

On the ZC706 board, we consider two different configurations, which we take as representative

of realistic use cases in commercial FPGA systems. In the PL system, the dense vector is stored

in the PL DDR while sequential vectors are read from the PS memory; the opposite is done in

the PS system. In the PL system, it is the highest performing memory, exposed through a single,

wide port, that is accessed irregularly. Since the PL DDR is often the system bottleneck due to the

irregular accesses, we maximize its bandwidth by operating at 200 MHz. Ultimately, the system

throughput is limited to ≈2.4 multiply-accumulations (MACC) per cycle by the bandwidth

of the PS memory that hosts the sequential vectors. Therefore, four accelerators and four banks

are enough to saturate it. On the PS system, the sequential accesses on the PL DDR allow up to

≈8 MACC/cycle, while the PS DDR limits the throughput to ≈6.5 (150 MHz) or ≈4.9 (200 MHz)

MACC/cycle if each 32-bit word returned by the PS DDR is used exactly once (which, we found,

is often an optimistic assumption). Since the performance is always limited by the PS DDR whose

bandwidth does not increase past 150 MHz, we ran the system at 150 MHz. This eases timing

closure and allowed us to implement eight accelerators and eight banks connected to the four

64-bit HP ports.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:18 M. Asiatici and P. Ienne

As discussed in Section 5.2, the external memory bandwidth of the AWS F1 board is about 4×
larger than that of the ZC706. Considering that the four memory channels are symmetric, we do

not artificially introduce any asymmetry and share all of them between DMAs and MOMS. Since

each MACC requires at least 12 bytes—one 32-bit value from each of the vectors val, col, and

vec, neglecting the 8 bytes per row of row and out—the maximum theoretical performance with

a DDR4 bandwidth of 59.9 GiB/s is of 21.4 MACC/cycle. However, even though the AWS F1 FPGA

offers more resources than the ZC706 one, they are harder to exploit as they are scattered among

three SLRs. It is indeed required to (1) spread the logic as uniformly as possible among SLRs while

(2) minimizing the number of SLR crossings, under the constraints that (a) the top SLR has about

60% more resources than the other two and (b) the central SLR has two memory controllers while

the others have only one. In addition, the sequential accesses performed by the DMAs (Figure 13)

should be as balanced as possible among memory channels.

Figure 14 shows the system organization that allowed the implementation of 16 accelerators

and 16 banks running at 250 MHz. This is the highest performing system that we could implement,

which makes our experimental setup on the AWS F1 FPGA resource-bound—mostly due to the AXI

DMAs and fixed infrastructure, as discussed in Section 6.8—unlike the ZC706 that was bandwidth-

bound.

To minimize SLR crossings, we implement the crossbar in the central SLR and MOMS banks in

the same SLR as the respective memory controller. Therefore, the central SLR hosts the crossbar

and eight banks while the top and bottom SLR have four banks each. As for the sequential accesses,

we assign four accelerators’ DMAs per memory channel. Also for SLR crossing minimization, we

keep accelerators in the same SLR as the respective DMAs’ memory channel whenever possible.

We make an exception for the accelerators connected to the central SLR’s channels, which are

moved to the least congested top SLR. All of the SLR crossings use a pair of AXI Register Slices

configured as fully registered on the source SLR and registered input on the destination SLR: This

makes all SLLs buffered on both ends with no combinational logic in between, which gives the

highest performance [43].

6 EXPERIMENTAL RESULTS

As discussed in Section 1, our MOMS increases DRAM bandwidth utilization by increasing reuse

at two levels: (1) of individual responses from the DRAM controller by serving as many incoming

requests as possible with the same data requested only once and (2) of DRAM bursts and rows by

organizing requests to the DRAM controller in contiguous bursts.

In Sections 6.1 to 6.3, we first characterize the reuse mechanism (1) alone. Because it is largely

independent from the properties of the DRAM controller and memory, we focus on a single system

configuration, the PL system on ZC706. Indeed, on the ZC706, MSHRs and subentries compete

for the same kind of resource as the cache: block RAM. Therefore, we can quantitatively explore

the benefit of reallocating some of the resources normally allocated to the cache to implement

instead more MSHRs and subentries, which are the new design points introduced by MOMSes.

However, the AWS F1 system uses both BRAM and URAM for cache, MSHRs, and subentries, which

makes it harder to visualize and quantitatively analyze the tradeoff. We complement the analysis

by showing the advantages of cuckoo hashing for MSHR storage and linked-list architecture for

subentries in Sections 6.2 and 6.3, respectively.

In Sections 6.4 to 6.7, we introduce the reuse mechanism (2) and evaluate it on the three memory

systems presented in Section 5.2. In particular, in Section 6.4 we discuss the tradeoffs involved in

choosing the maximum burst length and the advantages of using variable-length bursts instead

of always requesting bursts of the maximum length. We then analyze the performance impact of

adding bursts on MOMSes with different amounts of MSHRs and subentries (Section 6.5) and on

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:19

Fig. 15. Area of the memory system and normalized execution time for all benchmarks and a broad range of

nonblocking cache architectures. For the MOMS architectures, we indicate the number and depth of cuckoo

hash tables in each of the four banks, whereas the cache size refers to the entire multi-banked structure.

Charts are sorted by increasing vector size and have been truncated at 1.3 cycles/NZ. On half of the bench-

marks, all the Pareto-optimal designs are MOMSes, except for the smallest possible but low-performing

design with no cache and associative MSHRs. For the other benchmarks, our MOMS provides additional

Pareto-optimal designs, especially on the low area side.

specific benchmarks (Section 6.6) and present insights on how bursts improve (and, in a few cases,

harm) performance (Section 6.7).

We conclude with Section 6.8 by discussing the area cost of MOMSes and the trends with respect

to the number of MSHR and subentries and to the maximum burst length.

6.1 More Cache or More MSHRs?

We ran our benchmarks on a set of different traditional associative nonblocking caches and MOMS.

We used 4-way set associative caches except in the smallest caches due to the limited minimum

block RAM depth (see Section 6.8). For the traditional nonblocking caches, we only consider the

best architecture that can run at 200 MHz, with 16 MSHRs with 8 subentries each. For MOMSes,

we fixed the number of subentries per row to three, since, due to the finite choice of block RAM

port widths, they occupy the same amount of block RAMs as two and provide a good compromise

between utilization and stall cycles (see Section 6.3). We also fixed the stash size to two entries,

which provides timing closure in all cases. We explored the number and depth of MSHR hash

tables, as well as the depth of the subentry buffer.

Figure 15 summarizes the results. Our MOMSes provide the highest performance benefit to the

benchmarks with the highest stack distance percentile (90% and 95%), i.e., the most challenging

ones for caches. With rail4284, misses to multiple cache lines are so frequent that even the small-

est MOMS with no cache at all performs 25% better than the largest traditional nonblocking cache,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:20 M. Asiatici and P. Ienne

Fig. 16. Throughput as a function of cache hit rate, colored by number of MSHRs per bank, for all cache sizes

(a) on all benchmarks and (b) highlighting a single benchmark (youtube). While traditional caches need high

hit rates to achieve high throughputs, adding MSHRs and subentries shift the throughput/hit rate curves

upwards and reduce their sensitivity on the cache hit rate, which improves performance especially at low

cache hit rates.

which has a 24× larger area. On mawi1234, a small cache is enough to capture any existing tempo-

ral locality; after that, investing 2% of block RAMs for a single MSHR cuckoo hash table provides

higher returns than any further increase in cache size. Pds-80, flickr, youtube, and ljournal offer a

more gradual area-delay tradeoff and can benefit from the largest MSHR solutions, which consti-

tute most of the Pareto-dominant points. On these benchmarks, we achieve 10% to 25% throughput

increase with the same area or 35% to 60% area reduction at constant throughput. Dblp-2010, eu-

2005, in-2004, and webbase_1M have higher locality and thus benefit more than other benchmarks

from larger caches; however, the simplest MOMS with no cache, which uses 3× fewer BRAMs

than the smallest cache, is enough to saturate the PS DRAM bandwidth only by merging memory

requests. On eu-2005 and in-2004, the performance gain provided by the cache-less MOMSes is

limited by handling the subentry linked lists. Applications with higher temporal locality may thus

benefit from an increase of subentries per row. Benchmarks with few non-zero elements per row

such as mawi1234 and road_usa have a lower maximum performance due to the higher bandwidth

requirements for the sequential vectors; however, they are among the eight benchmarks that do

not saturate the PS DRAM bandwidth without a MOMS.

Figure 16(a) shows the relation between cache hit rate and throughput (thus the inverse of the

horizontal axis of Figure 15) as a function of the number of MSHRs per bank, for all benchmarks

and cache sizes. In traditional caches, the throughput grows essentially linearly with the cache hit

rate and only benchmarks that achieve high hit rate can reach peak throughput. The more MSHRs

are added, the more the throughput increases at low cache hit rates, making the cache array less

critical. This is particularly evident on benchmarks with gradual area-performance tradeoff in

Figure 15 such as youtube, shown in Figure 16(b): Increasing the number of MSHRs shifts the

throughput/hit rate curve upwards, increasing performance especially when the hit rate is low.

Generally, for a given benchmark and cache size, we observed no significant differences in

DRAM and cache bandwidth utilization between traditional caches and MOMSes. In contrast, there

is a significant difference in the average number of accelerator requests that are served with each

memory response, which explains the vast majority of the performance differences that appear

in Figure 15. This means that the main contribution of MOMSes to throughput is the increase of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:21

Fig. 17. Achievable MSHR storage load factor for

several MSHR architectures on the ZC706 PL sys-

tem. The 5 × 512 system with a 4-entry stash

did not meet timing constraints. Single-hash ar-

chitectures cannot utilize more than 40% of the

storage space. Cuckoo hashing can handle colli-

sions more efficiently and three hash tables are

enough to achieve more than 80% average and

90% peak load factors, even without stash.

Fig. 18. Number of cycles lost due to stalls for

collision resolution during the execution of a uni-

formly distributed benchmark. A 4-entry stash,

which occupies less than 0.1% of LUTs and FFs,

reduces the number of stall cycles by 30%.

the opportunities for data reuse: Indeed, the 64 MSHRs of the traditional cache (16 per bank) are

generally enough to fill the memory request pipeline, whose latency is about 45 cycles.

There are only two scenarios where MOMSes have a visible impact also on the DRAM bandwidth

utilization: on designs without cache array and on the rail4284 benchmark. Without cache array,

even the smallest 1× 512 MOMS has a 16% geometric mean and up to 44% higher DRAM bandwidth

utilization compared to the traditional architecture. On rail4284, the DRAM bandwidth mismatch

between MOMSes and traditional architectures remains within 41–48% even when the cache array

is present, while it is negligible on all the other benchmarks. We believe that both cases are due to

more frequent stalls resulting from one of the MSHRs running out of subentries in the traditional

architecture. This reduces the MSHR utilization below the threshold required to fill the memory

request pipeline. Except on rail4284, even a small cache array can take over most of the workload

associated to cache lines with high locality, making it less likely for MSHRs to use all of their eight

subentries. Cache-less MOMSes are affected much less by high-locality cache lines thanks to our

dynamic subentry allocation.

6.2 Number of MSHR Hash Tables and Stash Size

Figure 17 analyzes the performance of the MSHR storage architectures described in Section 2.2. We

focus on the PL system on ZC706 as trends on the other systems are similar. For each architecture,

we measure average and peak utilization of the MSHR storage space. To make sure the benchmark

always uses all of the available MSHRs, we use a synthetic 1M × 1M matrix with 5M uniformly

distributed non-zero elements generated with the Python function scipy.sparse.random(1e6,
1e6, 5e-6), no cache, and each bank contains 4,096 subentry rows with three subentries each.

All architectures have 2048 MSHRs per bank or the closest possible value.

Because any collisions result in a stall that lasts until one of the colliding MSHRs is deallocated,

all of the single-hash architectures achieve poor utilization: Even by introducing a stash to

tolerate up to four collisions, a 4-way set-associative architecture does not go beyond 30% average

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:22 M. Asiatici and P. Ienne

Fig. 19. Average and maximum subentry utiliza-

tion during the execution of ljournal with a 3 ×
512 cuckoo MSHR on the ZC706 PL system. Al-

locating a fixed number of subentries per MSHR

results in less than 1% average utilization and re-

source waste. Linked-list architectures provide a

more efficient usage of the subentry memory.

Fig. 20. Number of cycles lost due to subentry-

related stalls. Stalls occur when (a) filling all

subentries of an MSHR for the fixed architec-

tures or (b) handling the linked list or running

out of subentry rows for the linked list architec-

tures. The smallest linked list architecture has

three times fewer stall cycles than the largest

fixed architecture despite having three times

fewer subentries.

Fig. 21. Number of external memory requests during the execution of ljournal with a 3 × 512 cuckoo MSHR

and no cache. By increasing subentry utilization, linked list architectures increase the number of accelerator

requests that can be served by the same external memory request, resulting in a 37% decrease of external

memory traffic.

and 45% peak load factors. Even a simple 2-way cuckoo hash table achieves 50% average and

70% peak utilization, and three ways enough to reach more than 80% average utilization, which

is consistent with prior findings on cuckoo hashing [13]. Interestingly, using a 3-way 512-entry

architecture (1,536 MHSRs) has higher absolute utilization than a 2-way, 1,024-entry organization

(2,048 MSHRs). For three or more ways, adding a stash does not affect MSHR utilization but

decreases the number of stall cycles by up to 30% with a 4-entry stash (Figure 18), which is the

largest stash that we could implement within the 200 MHz constraint.

6.3 Subentry Organization

We performed a similar analysis for the memory organization of the subentries, as described in

Section 3.2. We use the ljournal benchmark, which has a large number of secondary misses, and a

MOMS with no cache and a 3 × 512 cuckoo MSHR buffer per bank on the PL system on ZC706. As

shown in Figure 19, with a fixed number of subentries per MSHR, stalls are so frequent (Figure 20)

that they prevent misses from accumulating in the buffers, resulting in very low utilization but also

fewer opportunities for request merging and thus a higher traffic to external memory (Figure 21).

We believe this problem is more pronounced in a MOMS-rich architecture than in a traditional

nonblocking cache, because it is far more likely to encounter at least one MSHR that needs more

than a given number of subentries when handling thousands of misses rather than a few tens

of them. Our linked list-based architectures provide much higher average and maximum buffer

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:23

Fig. 22. Speedup obtained in MOMSes by sending bursts of memory requests compared to single-request

MOMSes, both with dynamically adjusted burst bounds (cf. Section 3.4) and always requesting full bursts

(geometric mean across all benchmarks and all configurations). Using bursts of a suitable size is beneficial

to all systems and minimizing each burst’s length is always better than using bursts of fixed length.

utilization, fewer stall cycles and decrease the number of DRAM memory requests by a factor 1.3×
to 2×, with evident great energy impact.

6.4 Introducing Variable-Length Bursts

For all systems, we consider three configurations in terms of MSHRs and subentries. All config-

urations on the ZC706 have six subentries per row, while those on the AWS F1 have eight, since

the two extra subentries can be implemented using the same amount of URAMs for the subentry

buffer given the large width of URAM primitives.

The ZC706 PS systems use a 512-entry, 64-bit wide data buffer per bank. We considered (1) one,

(2) two, and (3) four 512-entry MSHR cuckoo hash tables with (1) 512, (2) 1,024, and (3) 2,048

subentry rows per bank. To each configuration, we add 8, 16, 32, 64 kiB of cache per bank (4-way

set associative, except for the 2-way 8 kiB), or no cache. Finally, variants with maximum burst

length of (i) 2, (ii) 4, (iii) 8, and (iv) 16 beats are generated for each of those 15 architectures.

Similarly, the 60 ZC706 PL systems have (1) one 512-, (2) three 512-, and (3) four 1,024-entry

MSHR cuckoo hash tables with (1) 512, (2) 2,048, and (3) 4,096 subentry rows per bank; 32–256 kiB

of cache per bank or no cache, and the maximum burst lengths from 2 to 16. PL systems have a

32-entry, 512-bit wide data buffer per bank.

The AWS F1 systems are similar to the ZC706 PL systems as they both connect to 512-bit wide

memory ports. The main differences arise from the use of URAM for the subentry buffer and the

cache: Because of the larger minimum width and depth of URAM compared to BRAM (72 × 4,096

vs 36 × 512), we only consider 256 kiB of cache per bank or no cache and subentry buffers always

have 4,096 rows.

We will compare each of these architectures to alternative generic memory systems: (1) single-

request MOMSes—with same amount of MSHRs, subentry rows, and cache and (2) a traditional

nonblocking cache with 16 associatively-searched MSHRs, each with 8 subentries, with the closest

BRAM utilization on ZC706 and with 256 kiB of cache per bank on AWS. Systems (2) are the

same baselines used in Section 6.1 and contain the maximum number of MSHRs and subentries

that ensure timing closure at 200 MHz (ZC706 PL) or 250 MHz (AWS F1) and that result in a FF

utilization similar to the MOMS architectures (all systems; see Section 6.8).

Figure 22 shows the speedup of using bursts compared to restricting to single memory requests.

Adjusting burst bounds is always useful, on all design points. On the ZC706 PS system, four beats

of 64 bits (256 bits) corresponds to the PS DDR burst size (8 × 32 bits), which makes even fixed

bursts of up to four beats beneficial compared to single requests which waste 75% of the burst

content. Still, trimming bursts yields even higher speedups as contention among the memory con-

troller ports is minimized. This effect does not appear on the ZC706 PL and AWS systems as single

responses already consist of full DRAM bursts.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:24 M. Asiatici and P. Ienne

The maximum burst length controls the tradeoff between using larger parts of DRAM bursts/

rows and wasting bandwidth due to requesting unnecessary data, either between pending misses

on distant cache lines or due to frequent burst invalidations (cf. Figure 7 and 8). This tradeoff

explains the bitonic speedup curve on both ZC706 systems and the single useful maximum burst

length on the AWS system.

Overall, the ZC706 PS system gains the most from using bursts. Indeed, restricting to single

64-bit memory requests leaves few opportunities for reuse among 32-bit accelerator requests. The

ZC706 PL systems benefit from bursts only through DRAM row conflict minimization, which still

brings significant speedup on specific design points as discussed in Section 6.6. In addition to

higher DRAM row utilization, the AWS memory system benefits from bursts through an increase

of MLP, since single requests are not sufficient to fully pipeline memory accesses and can only

exploit about 50% of the peak bandwidth. However, the larger available bandwidth per PE makes

the bandwidth optimizations between MOMS and DRAM controller generally less critical than on

the ZC706.

6.5 Impact of Bursts across the MOMS Design Space

We further analyze the architectures with the ideal maximum burst length for the respective

system—4 for ZC706 PL systems and 8 for ZC706 PS and AWS systems, respectively. Figure 23

compares the throughput of traditional caches, single-request and burst MOMSes for different

cache sizes and MSHR count.

If the memory controller has multiple narrow ports (ZC706 PS system), then repurposing some

BRAMs from cache to MSHRs/subentries never pays off unless bursts are used. The speedup in-

creases with the number of MSHRs and at four cuckoo hash tables becomes comparable to the

single-request results on the PL system. Even there, bursts provide additional speedup on most of

the architectures, especially where single-request architectures were the most useful. This includes

the most lightweight system, whose baseline with the closest area has no cache at all, and on inter-

mediate configurations with 3 × 512 MSHRs/bank and moderate cache size. On AWS, we cannot

compare traditional caches at constant BRAM utilization, since both caches and MSHRs/subentries

use both BRAM and URAM. Complementing caches with MOMSes is always useful compared to

being limited to a few tens of associative MSHRs and there is no clear best architecture between

single-request and burst MOMSes. Burst MOMSes have a significant advantage with no cache and

few MSHRs, where bandwidth maximization is more critical and, for a fixed number of MSHRs,

burst MSHRs can handle more cache lines than single-request ones. Single-request MOMSes ap-

pear to be more beneficial than burst MOMSes when paired to a cache, which suggests that more

sporadic misses are better handled individually; however, they also seem to interfere more unpre-

dictably with DMAs as the 4 × 1,024 single-request MOMSes starved accelerators of sequential

data more often than 3× 512, resulting in lower performance, which was not the case for the burst

MOMSes. This phenomenon can only occur on AWS as on the ZC706 systems DMAs and MOMSes

were connected to different memories.

6.6 Benchmark-related Trends due to Bursts

Figure 24 shows the throughput on individual benchmarks provided by the best-performing

MOMS on each system. Small and/or regular benchmarks, characterized by high cache hit rate,

benefit more from a larger cache than from more MSHRs, which is reasonable. Where caches are

less effective, bursts make MOMSes useful also on the PS system, achieving up to 3.4× speedup. On

the ZC706 PL system, burst architectures improve the performance of MOMSes on 10 benchmarks

out of 15, in six cases by more than twice. The trend is confirmed by the absolute performance

on the traditional nonblocking cache: The speedup is the highest on the benchmarks where the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:25

Fig. 23. Throughput, in geometric mean across all benchmarks, of a traditional nonblocking cache, a single-

request MOMS and variable-length burst MOMS with maximum burst length of 4 for the ZC706 PL system

and 8 for the ZC706 PS and AWS systems. For the ZC706 systems, without URAM, we additionally compare

each MOMS to the traditional nonblocking cache with the closest BRAM utilization to analyze performance

within a fixed area budget. Bursts are key enablers for MOMSes on memory controllers with multiple narrow

ports (ZC706 PS) where single-request MOMSes performs worse than the traditional nonblocking cache with

the closest area. On the ZC706 PL system, bursts bring further speedups to most data points where the single-

request system was already reasonably effective. On AWS, single request MOMS generally perform better

except with no cache and few MSHRs, where bandwidth is critical and burst MSHRs can handle more cache

lines, or with cache and many MSHRs, where single request MOMSes have more interference with DMAs.

traditional nonblocking cache was performing worse. On AWS, the smallest cache-less burst

MOMS (c1) generally performs better than the single-request one, by up to a factor 2.8×. On the

same design point, the best of the two MOMSes—which uses at most 7% and 5% of the available

BRAMs and URAMs, respectively—achieves 49% to 124% (average 72%) of the performance of the

traditional cache that uses 2.3× more on-chip memory bits. When it includes a large cache (c2),

the single-request MOMS generally handles the fewer misses better than the burst MOMS, which

may introduce unnecessary cache lines that pollute the cache.

6.7 Analysis of Burst Usage

To better understand the mechanisms behind the improvement of memory access performance

on most of the benchmarks and investigate the reasons for the slowdown on some benchmarks,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:26 M. Asiatici and P. Ienne

Fig. 24. Throughput of traditional nonblocking cache, single-request MOMS and burst MOMS on individ-

ual benchmarks for architectures where burst MOMSes have the largest speedup compared to traditional

caches. Benchmark are sorted by increasing burst MOMS speedup compared to traditional caches. For AWS,

we include an architecture where the single-request MOMS performs particularly well (c2). On ZC706, burst

MOMSes are beneficial to most of the largest and/or irregular benchmarks, where traditional caches have

the lowest performance. On AWS, burst MOMSes are particularly useful where memory bandwidth is more

critical (c1); when the memory bottleneck is less evident, single-request MOMSes introduce less caches pol-

lution and perform slightly better than both traditional caches and burst MOMSes (c2).

we simulated a bad and a good performing benchmark on the ZC706 PS and PL systems and

analyzed how many of the cache lines requested from memory are actually used. More specifically,

Figure 25 shows, for each burst length, how many of the requested cache lines have been actually

used at least once and how many have been wasted, normalized by the total number of requested

cache lines.

By construction, in bursts of two or more beats, at least two distinct cache lines will be always

used. Invalidated bursts are completely discarded; hence, the bars corresponding to zero used cache

lines count the number of cache lines wasted because of invalidations. Bursts of maximum length

can never be invalidated. Data wastage in bursts where two or more cache lines have been used are

instead due to requests hitting cache lines covered by the same MSHR but that are not consecutive.

In the well-performing benchmarks, a large share of useful data is retrieved through bursts of all

lengths, which the memory controller can serve more efficiently than single requests, especially

in the PS system. Indeed, even if the total share of wasted data is similar in both PS benchmarks,

and higher than in the ZC706 PL system, the speedup provided by bursts is significantly higher in

road_usa than in eu-2005.

Where using bursts is particularly beneficial, most of the bursts converge to their optimal length

(according to the policy described in Section 3.4) by the time requests are sent to memory as

invalidations are almost non-existing. Conversely, on the regular benchmarks, single requests are

more dominant and bursts of maximum length are almost exclusively due to prior invalidations. In

those cases, the cache already filters most of the memory accesses and the few remaining misses

are better served by single-request architectures.

6.8 Resource Utilization

Table 4 shows the resource utilization of the entire system, with MOMS and baseline traditional

nonblocking cache described in Section 6.1. We do not consider the case of a blocking cache,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:27

Fig. 25. Distributions of requested, used, and wasted cache lines per burst as a function of the burst length,

normalized by the total number of cache lines requested from memory, for the same ZC706 systems evalu-

ated in Figure 24. Pie charts: used and wasted cache lines, aggregated over all burst lengths. Top (bottom)

row: benchmarks where introducing bursts is advantageous (harmful) compared to single-request systems.

Benchmarks that get the highest speedup from bursts obtain a large share of useful data through bursts of

all possible sizes. When the performance is poor, invalidations and single requests are more frequent.

because it performs significantly worse than the nonblocking cache for modest area savings. For

MOMSes, we provide ranges that correspond to the configurations presented in Section 6.4.

Indicatively, the minimum cache that is worth implementing due to the minimum block RAM

depth—a single 32 kB way (512 lines × 512 data bits)—has similar block RAM requirements as 3 ×
512 MSHRs with 3 × 2048 subentries. In general, on the ZC706, the cache requires 8.5 block RAMs

per 32 kB per cache way, the MSHR buffer requires 0.5 block RAMs per 512 MSHRs per cuckoo hash

table for storage plus 0.5 block RAMs per 512 MSHRs for the request queue to the external memory

arbiter, and the subentry buffer requires 1 block RAM per 512 subentry rows of up to 3 subentries

each, plus 1 block RAM every 1,024 subentry rows for the FRQ. Each cuckoo hash function also

uses 1 DSP block. On the AWS F1 FPGA, we used URAM for the cache data and the subentry buffer.

While the FPGA has 4× more memory bits in URAMs than BRAMs, the larger minimum depth of

each block, 4,096 entries instead of 512, increases the minimum size of the cache and subentry

buffer that are worth implementing to 256 kiB and 4,096 rows, respectively, per bank. Such cache

requires 8 URAMs and 4 BRAMs (for tag and valid arrays) instead of 68 BRAMs if URAMs were

not available. As for the subentry buffer, 4,096 rows of eight subentries each require 3 URAMs for

all the maximum burst lengths that we considered, instead of 25–29 BRAMs.

BRAMs and URAMs are the dominant resource in MOMSes and traditional caches and,

especially the former, has large variations depending on the number of MSHRs, subentries, and

cache size. On ZC706, cache-less MOMSes have up to 90–95% fewer BRAMs than traditional

caches (in Section 6.1, we take the ZC706 PL system as representative to illustrate the trend more

in detail); on AWS, 60% fewer URAMs. The FF utilization of MOMSes is comparable and generally

slightly lower than that of the traditional cache, as FFs are repurposed from MSHR and subentry

storage to, mostly, pipeline registers. The LUT utilization is 5–85% higher in MOMSes due to more

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:28 M. Asiatici and P. Ienne

Table 4. Resource Utilization of MOMSes and Traditional Cache with 16 MSHRs

with Eight Subentries Each per Bank, Compared to the Resource Utilization

of the Rest of the Experimental System

LUT FF DSP BRAM

A) 4 accelerators 19k 23k 32 62

B) Fixed infrastructure 39k 37k 0 1

C) MOMS 23k–27k 30k–35k 4–16 12–363

D) Traditional cache 20k 30k 0 253

A + B + C 81k–85k 90k–95k 36–48 75–426

Utilization of A + B + C 37–39% 21–22% 4–5% 14–78%

(a) PL system on ZC706

LUT FF DSP BRAM

A) 8 accelerators 38k 51k 64 124

B) Fixed infrastructure 73k 71k 0 1

C) MOMS 20k–35k 26k–36k 8–32 24–322

D) Traditional cache 19k 36k 0 202

A + B + C 131k–146k 148k–158k 72–96 149–447

Utilization of A + B + C 60–67% 34–36% 8–11% 27–82%

(b) PS system on ZC706

LUT FF DSP BRAM URAM

A) 16 accelerators 142k 140k 128 696 0

B) Fixed infrastructure 575k 694k 12 275 43

C) MOMS 104k–135k 151k–165k 16–64 152–314 48–176

D) Traditional cache 76k 155k 0 42 128

A + B + C 821k–852k 985k–999k 156–204 1123–1285 91–219

Utilization of A + B + C 69–72% 44–45% 2.3–3.0% 54–59% 5.0–23%

Bottom SLR 69–71% 42% 1.7–2.2% 55–59% 3.8–14%

Middle SLR 51–55% 36–37% 0.6–1.7% 25–33% 7.5–41%

Top SLR 89–91% 54% 4.5–5.0% 83–87% 3.8–14%

(c) AWS F1

Fixed infrastructure, which uses 50–70% of LUTs and FFs of the entire system, includes AXI

SmartConnects, soft memory controllers and, in (c), AWS shell. For MOMSes, we report ranges

corresponding to the configurations discussed in Section 6.4. Accelerators on the ZC706 systems use

DMAs with 64-bit data ports as they are connected to 64-bit memory controllers (PL) or to be able to fit 8

accelerators (PS), while on the AWS system they use more resources as they are 512-bit wide as the

memory controllers. On ZC706, the smallest MOMSes has very similar LUT and FF utilization than the

traditional cache baseline while consuming 90–95% fewer BRAMs. On AWS, the cache-less architecture

save 60% of the URAMs.

complex logic. Still, even the largest MOMS uses at most 16% of FPGA LUTs, which is dwarfed by

the 30–50% of LUTs locked in fixed infrastructure. Overall, the LUT and FF utilization of MOMSes

is comparable to that of accelerators. In addition to traditional caches, MOMSes use at most 5% of

the available DSPs for cuckoo hashing. On AWS, despite multiple SLRs, we achieve timing closure

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:29

Table 5. Resource Utilization of the 16-bank

MOMS on AWS F1 with 256 kiB Cache,

3 × 512 MSHR, 8 × 4096 Subentries Per Bank

as a Function of the Maximum Burst Length

LUT FF DSP BRAM URAM

1 109k 153k 48 218 176

2 124k 159k 48 242 176

4 125k 160k 48 250 176

8 129k 161k 48 250 176

16 132k 163k 48 250 176

The overhead of burst handling is mostly due to the

logic shown in Figure 9 and to the burst offset bits

in each MSHR and is within 21% for LUTs, 7% for

FFs, and 15% for BRAM.

Table 6. Resource Utilization of the 16-bank MOMS

on AWS F1 with 256 kiB Cache and 8 × 4096

Subentries Per Bank, Maximum Burst Length of 8,

as a Function of the Number of MSHRs

LUT FF DSP BRAM URAM

1 × 512 121k 157k 16 202 176

3 × 512 129k 161k 48 250 176

4 × 1024 132k 164k 64 314 176

The number of MSHRs mostly affects BRAM and DSP

utilization, which are used for MSHR storage and cuckoo

hashing, respectively. However, LUTs and FFs, used in the

logic that handles MSHR lookup and update, change by at

most 10% and 4%, respectively. Similar trends are observed

on the ZC706 systems when also the number of subentries

changes as they are also stored in BRAM.

at 250 MHz with around 70% LUT and 60% BRAM utilization across the entire device and 80–90%

on the top SLR.

Table 5 shows the impact of maximum burst length on the resource utilization. The burst han-

dling logic shown in Figure 9 has at most a 21% LUT and 7% FF overhead, while the minimum and

maximum burst offset bits in each MSHR account for a worst-case 15% BRAM overhead. Most of

the BRAM variability that appears in Table 4 is in fact due to the number of MSHRs and subentries,

as illustrated in Table 6, in addition to the cache size.

7 RELATED WORK

We contrast our approach to prior research on miss handling architectures (Section 7.1), memory

systems customized for irregular memory access patterns (Section 7.2) or that are automatically

generated for a specific applications (Section 7.3), memory request reordering (Section 7.4), and

coalescing (Section 7.5).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:30 M. Asiatici and P. Ienne

7.1 Miss Handling Architectures

The first non-blocking cache was proposed by Kroft in 1981 [26]. Farkas and Jouppi [12] evaluate

a number of alternative MHA, including the explicitly-addressed MSHRs that inspired our MOMS.

They observed that non-blocking caches can reduce the miss stall cycles per instruction by a factor

4 to 10 compared to blocking caches, that the most aggressive architectures (such as explicitly-

addressed) are beneficial even for large cache sizes, and that overlapping as many misses as possible

allows processors to maximize the benefit provided by non-blocking caches.

Tuck et al. [36] introduced a novel MHA for single processor cores with very large instruction

windows. They propose a hierarchical MHA, with a small explicitly-addressed MSHR file for each

L1 cache bank and a larger shared MSHR file. MSHRs are explicitly-addressed and shared MSHRs

have more subentries than the dedicated ones. On a number of SPEC2000 benchmarks running on

a 512-entry instruction window superscalar single-core processor, dedicated files with 16 MSHRs

and 8 subentries and a shared file with 30 MSHRs and 32 subentries achieve speedups that are close

to those provided by an unlimited MHA. However, we believe that a set of parallel accelerators

is fundamentally different from a single-core processor even with a large instruction window for

two reasons: (a) parallel accelerators with, for instance, decoupled access/execution architectures

[8, 28] could generate even more requests per cycle with no fundamental limitations on the total

number of in-flight operations, and (b) requests to be merged can come from the same as well as

a different accelerator, so it is important to have a shared MHA to maximize the merging oppor-

tunities. Our results indeed showed that, for parallel accelerators with massive MLP, small caches

with thousands of MSHRs can achieve similar or even better performance of larger caches with

few MSHRs.

7.2 Memory Systems for Irregular Memory Accesses

Several pieces of work aimed at improving the efficiency of traditional caches on non-contiguous

memory accesses. Impulse [6] introduces an additional address translation stage to remap data that

is sparse in the physical/virtual memory space into contiguous locations in a shadow address space.

However, it is a processor-centric system that relies on the intervention from the OS to manage

the shadow address space. Traversal caches [35] optimize repeated accesses to pointer-based data

structures on FPGA. Such approach is however limited to pointer-based data structures that are

repeatedly accessed and that can fit entirely in the FPGA block RAM. Brugger et al. [5] present an

ASIC-based accelerator for link assessment, a graph algorithm. Since the accesses to DRAM are

irregular and short, they propose to reorganize the DRAM chips to expose a data width that is 8×
narrower, which results in 8× lower data wastage with every memory access. We tackle the same

problem by using each wide data block returned from DRAM to serve multiple incoming requests,

which is directly applicable to commercial DRAM modules and controllers.

7.3 Automatic Generation of Application-Specific Memory Systems

Another line of work explored the automatic generation of application-specific memory systems.

Bayliss et al. [4] proposed a methodology that automatically generates reuse buffers for affine

loop nests, which reduce the amount of memory requests and of DRAM row conflicts. However,

the approach is restricted to kernels consisting of an affine loop nest whose bounds are known

at compile time. TraceBanking [45] does not rely on static compiler analysis and uses a memory

trace to generate a banking scheme that is provably conflict-free. It also supports non-affine loop

nests but requires the dataset to fit entirely in the block RAM. ConGen [22] focuses on optimizing

DRAM accesses without relying on any local buffering on FPGA. It uses a memory trace to gener-

ate a mapping from the addresses generated by the application to DRAM addresses such that the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

Request, Coalesce, Serve, and Forget 13:31

number of row conflicts is minimized. Cong et al. [10] restructure local buffers in HLS applications

to make DRAM-BRAM memory transfers more efficient. EASY [9] uses an SMT solver to minimize

the number of BRAM bank arbiters for multi-threaded HLS accelerators. All of these contributions

rely on exact information about the application’s memory access pattern at hardware compile time

or need the entire dataset to fit in on-chip memory or at least to be processable in a tiled fashion.

Our approach is application-agnostic, fully dynamic, does not require that the dataset accessed

irregularly resides in local buffers and does not make any assumptions on the access pattern prop-

erties. MATCHUP [41] and LMC [44] use static analysis on HLS code and runtime profiling, re-

spectively, to generate application-specific cache systems. Those generators could instantiate our

architecture behind their caches to transparently boost read bandwidth towards external memory

when the hit rate remains low and applications are latency-tolerant.

7.4 Request Reordering in Memory Controllers

All modern DRAM controllers implement some form of memory operation reordering such as the

first-ready first-come first-serve policy that prioritizes row hits [32] or one of the many alterna-

tives [17, 19, 30, 31, 33, 34, 37]. All these approaches must also minimize latency and thus rely

on associative lookups over shallow request queues that provide only a local view of the memory

accesses. We target throughput-oriented applications that can trade a few more cycles on the miss

path for greater bandwidth through deeper request reordering.

7.5 Request Coalescing

Coalescing aims at increasing bandwidth utilization between datapath and DRAM by merging

multiple narrow memory accesses into fewer, wider ones. Modern GPUs dynamically coalesce

accesses from the same instruction executed by different threads [38] in the same warp, and the

load-store units instantiated by the Intel FPGA OpenCL compiler can perform both static and

dynamic burst coalescing [40]. To increase the opportunities for coalescing and thus the utilization

of the bandwidth to the GPU L1 cache, Kloosterman et al. propose an inter-warp coalescer [25].

Wang et al. [39] proposed a dynamic coalescing unit for HMC memories in a multi-core system,

implemented on a small RISC-V core. Incoming requests are stored in a binary tree and forwarded

to the HMC after a timeout or after receiving 128 bytes of requests. All of these approaches have

a very short window where coalescing can occur, at most a few requests wide. We showed that

explicitly-addressed MSHRs also perform coalescing, on wider request windows and over multiple

bursts at the same time (one per MSHR).

8 CONCLUSION

It is commonly assumed that some form of local buffering such as caching is the only way to opti-

mize random accesses to external memory, which is testified by the vast effort in maximizing the hit

rate under all possible scenarios. Nonblocking caches are one of the few architectures that attempt

to at least mitigate the impact of misses: Notably, they reduce pipeline stalls and make a single

cache line request to serve as many misses as possible, avoiding redundant requests. MOMSes scale

up the concept to three orders of magnitude more misses, greatly increasing the average number

of cache line reuses. We do so by efficiently mapping tens of thousands of MSHRs and subentries to

the abundant FPGA on-chip RAM and by fully pipelining all stages of miss handling with minimal

stalls. Besides scaling up the number of MSHRs and subentries, we additionally show how to extend

MSHRs from handling a single to a few contiguous cache lines, which can be requested from mem-

ory as a burst. This requires minimal changes to the architecture and results in a higher memory

bandwidth available to the MOMS as DRAM memories and controllers serve bursts more efficiently

than single irregular requests. We evaluate our MOMS on an embedded and on a datacenter FPGA

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

13:32 M. Asiatici and P. Ienne

system with three types of DDR3 and DDR4 memory controllers using 15 sparse matrix-vector

multiplication benchmarks. Our findings suggest that large MSHR arrays can either be paired to

a cache or replace the cache altogether, bringing the same advantages on read bandwidth as a

(larger) cache but at a lower area cost. Handling bursts has a limited area overhead and results in

significant speedups, especially behind DRAM controllers with multiple narrow ports, commonly

found on SoC platforms, and on memory controllers that can be fully pipelined only using burst

requests. Therefore, we believe MOMSes open up new opportunities to increase performance of

bandwidth-bound, latency-insensitive applications with irregular memory access patterns.

REFERENCES

[1] Michael Adler, Kermin E. Fleming, Angshuman Parashar, Michael Pellauer, and Joel Emer. 2011. LEAP scratchpads: Au-

tomatic memory and cache management for reconfigurable logic. In Proceedings of the 19th ACM/SIGDA International

Symposium on Field Programmable Gate Arrays. 25–28.

[2] Amazon.com, Inc. 2020. AWS Shell Interface Specification. Retrieved from https://github.com/aws/aws-fpga/blob/

master/hdk/docs/AWS_Shell_Interface_Specification.md.

[3] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P. Sadayappan. 2014. Fast sparse matrix-

vector multiplication on GPUs for graph applications. In Proceedings of the international conference for high perfor-

mance computing, networking, storage and analysis. 781–792.

[4] Samuel Bayliss and George A. Constantinides. 2011. Application specific memory access, reuse and reordering for

SDRAM. In Proceedings of the 7th International Symposium on Applied Reconfigurable Computing. 41–52.

[5] Christian Brugger, Valentin Grigorovici, Matthias Jung, Christian De Schryver, Christian Weis, Norbert Wehn, and

Katharina Anna Zweig. 2017. A memory centric architecture of the link assessment algorithm in large graphs. IEEE

Des. Test 35, 1 (2017), 7–15.

[6] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang, Erik Brunvand, Al Davis, Chen-Chi Kuo, Ravin-

dra Kuramkote, Michael Parker, Lambert Schaelicke, and Terry Tateyama. 1999. Impulse: Building a smarter memory

controller. In Proceedings of the 5th International Symposium on High-Performance Computer Architecture. 70–79.

[7] Calin Cascaval and David A. Padua. 2003. Estimating cache misses and locality using stack distances. In Proceedings

of the 17th Annual International Conference on Supercomputing. 150–159.

[8] Tao Chen and G. Edward Suh. 2016. Efficient data supply for hardware accelerators with prefetching and access/

execute decoupling. In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture. Taipei,

Taiwan, 46.

[9] Jianyi Cheng, Shane T. Fleming, Yu Ting Chen, Jason H. Anderson, and George A. Constantinides. 2019. EASY: Effi-

cient Arbiter SYnthesis from Multi-threaded Code. In Proceedings of the 27th ACM/SIGDA International Symposium on

Field Programmable Gate Arrays. 142–151.

[10] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. 2017. Bandwidth optimization through on-chip memory re-

structuring for HLS. In Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC’17). IEEE, 1–6.

[11] Timothy A. Davis and Yifan Hu. 2011. The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38,

1 (2011), 1.

[12] K. I. Farkas and N. P. Jouppi. 1994. Complexity/Performance tradeoffs with non-blocking loads. In Proceedings of the

21st Annual International Symposium on Computer Architecture. 211–222.

[13] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. 2005. Space efficient hash tables with worst case

constant access time. Theory Comput. Syst. 38, 2 (2005), 229–248.

[14] Nithin George, Hyoukjoong Lee, David Novo, Tiark Rompf, Kevin Brown, Arvind Sujeeth, Martin Odersky, Kunle

Olukotun, and Paolo Ienne. 2014. Hardware system synthesis from domain-specific languages. In Proceedings of the

24th International Conference on Field-Programmable Logic and Applications. Munich, 1–8.

[15] Intel Inc. 2016. Hybrid Memory Cube Controller IP Core User Guide. Intel Inc.

[16] Intel Inc. 2018. Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P) Reference Manual. Intel

Inc.

[17] Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana. 2008. Self-optimizing memory controllers: A reinforce-

ment learning approach. In Computer Architecture News, Vol. 36. ACM, 39–50.

[18] Muhammad Irfan, Zahid Ullah, and Ray C. C. Cheung. 2019. Zi-CAM: A power and resource efficient binary content-

addressable memory on FPGAs. Electronics 8, 5 (2019), 584.

[19] Bruce Jacob, Spencer Ng, and David Wang. 2010. Memory Systems: Cache, DRAM, disk. Morgan Kaufmann.

[20] JEDEC. 2012. DDR3 SDRAM Standard JESD79-3F. Retrieved from https://www.jedec.org/standards-documents/docs/

jesd-79-3d.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://www.jedec.org/standards-documents/docs/jesd-79-3d

Request, Coalesce, Serve, and Forget 13:33

[21] JEDEC. 2017. DDR4 SDRAM Standard JESD79-4B. Retrieved from https://www.jedec.org/standards-documents/docs/

jesd79-4a.

[22] Matthias Jung, Deepak M. Mathew, Christian Weis, Norbert Wehn, Irene Heinrich, Marco V. Natale, and Sven O.

Krumke. 2016. Congen: An application specific dram memory controller generator. In Proceedings of the 2nd Interna-

tional Symposium on Memory Systems. 257–267.

[23] Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of Linear Algebra. SIAM.

[24] Adam Kirsch and Michael Mitzenmacher. 2007. Using a queue to de-amortize cuckoo hashing in hardware. In Proceed-

ings of the 45th Annual Allerton Conference on Communication, Control, and Computing, Vol. 75. 751–758.

[25] John Kloosterman, Jonathan Beaumont, Mick Wollman, Ankit Sethia, Ron Dreslinski, Trevor Mudge, and Scott Mahlke.

2015. WarpPool: Aharing requests with inter-warp coalescing for throughput processors. In Proceedings of the 48th

Annual International Symposium on Microarchitecture. 433–444.

[26] David Kroft. 1981. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the 8th Annual Inter-

national Symposium on Computer Architecture. 81–87.

[27] Sheng Li, Ke Chen, Jay B. Brockman, and Norman P. Jouppi. 2011. Performance Impacts of Non-blocking Caches in

Out-of-order Processors. HPL Tech Report.

[28] Feng Liu, Soumyadeep Ghosh, Nick P. Johnson, and David I. August. 2014. CGPA: Coarse-grained pipelined accelera-

tors. In Proceedings of the 51st Design Automation Conference. 1–6.

[29] Mario D. Marino and Kuan-Ching Li. 2017. System implications of LLC MSHRs in scalable memory systems. Micro-

process. Microsyst. 52 (2017), 355–364.

[30] Sally A. McKee, Assaji Aluwihare, Benjamin H. Clark, Robert H. Klenke, Trevor C. Landon, Christopher W. Oliver,

Maximo H. Salinas, Adam E. Szymkowiak, Kenneth L. Wright, William A. Wulf, et al. 1996. Design and evaluation of

dynamic access ordering hardware. In Proceedings of the International Conference on Supercomputing. 125–132.

[31] Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-aware batch scheduling: Enhancing both performance and

fairness of shared DRAM systems. In Computer Architecture News, Vol. 36. ACM, 63–74.

[32] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter R. Mattson, and John D. Owens. 2000. Memory access scheduling.

In Proceedings of the 27th International Symposium on Computer Architecture (ISCA’00). 128–138. https://doi.org/10.

1109/ISCA.2000.854384

[33] Hemant G. Rotithor, Randy B. Osborne, and Nagi Aboulenein. 2006. Method and apparatus for out of order memory

scheduling. US Patent US7127574.

[34] Jun Shao and Brian T. Davis. 2007. A burst scheduling access reordering mechanism. In Proceedings of the IEEE 13th

International Symposium on High Performance Computer Architecture. 285–294.

[35] Greg Stitt, Gaurav Chaudhari, and James Coole. 2008. Traversal caches: A first step towards FPGA acceleration of

pointer-based data structures. In Proceedings of the 6th International Conference on Hardware/Software Codesign and

System Synthesis. 61–66.

[36] James Tuck, Luis Ceze, and Josep Torrellas. 2006. Scalable cache miss handling for high memory-level parallelism. In

Proceedings of the 39th Annual International Symposium on Microarchitecture. 409–422.

[37] Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and Onur Mutlu. 2016. DASH: Deadline-aware high-

performance memory scheduler for heterogeneous systems with hardware accelerators. ACM Trans. Arch. Code Opti-

miz. 12, 4 (2016), 1–28.

[38] Vasily Volkov. 2016. Understanding Latency Hiding on GPUs. Ph.D. Dissertation. UC Berkeley.

[39] Xi Wang, John D. Leidel, and Yong Chen. 2016. Concurrent dynamic memory coalescing on GoblinCore-64 architec-

ture. In Proceedings of the 2nd International Symposium on Memory Systems. 177–187.

[40] Felix Winterstein and George Constantinides. 2017. Pass a pointer: Exploring shared virtual memory abstractions in

OpenCL tools for FPGAs. In Proceedings of the International Conference on Field Programmable Technology. 104–111.

[41] Felix Winterstein, Kermin Fleming, Hsin-Jung Yang, Samuel Bayliss, and George Constantinides. 2015. MATCHUP:

memory abstractions for heap manipulating programs. In Proceedings of the ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. ACM, 136–145.

[42] Philipp Woelfel. 1999. Efficient strongly universal and optimally universal hashing. In Proceedings of the International

Symposium on Mathematical Foundations of Computer Science. 262–272.

[43] Xilinx Inc. 2020. AXI Register Slice v2.1 (PG373).

[44] Hsin-Jung Yang, Kermin Fleming, Michael Adler, Felix Winterstein, and Joel Emer. 2016. LMC: Automatic resource-

aware program-optimized memory partitioning. In Proceedings of the ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. ACM, 128–137.

[45] Yuan Zhou, Khalid Musa Al-Hawaj, and Zhiru Zhang. 2017. A new approach to automatic memory banking using

trace-based address mining. In Proceedings of the 25th ACM/SIGDA International Symposium on Field Programmable

Gate Arrays. 179–188.

Received January 2021; revised April 2021; accepted May 2021

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 2, Article 13. Pub. date: November 2021.

https://www.jedec.org/standards-documents/docs/jesd79-4a
https://doi.org/10.1109/ISCA.2000.854384

