
Turning PathFinder Upside-Down: Exploring FPGA
Switch-Blocks by Negotiating Switch Presence

Stefan Nikolić and Paolo Ienne
École Polytechnique Fédérale de Lausanne (EPFL)

School of Computer and Communication Sciences, 1015 Lausanne, Switzerland
{stefan.nikolic, paolo.ienne}@epfl.ch

Abstract—Automated switch-block exploration gains in impor-
tance as technology scaling brings more emphasis on the physical
constraints, making it insufficient to rely on abstract measures
of routability alone. In this work, we take an approach that
significantly differs from the previously used ones, relying mostly
on general optimization methods: we essentially let the router
itself design the switch-pattern. Of course, letting the router make
arbitrary choices would be rather ineffective, as there would be
nothing to prevent it from spreading routes over many different
switches, making it difficult to understand if a particular one was
used because it is essential for proper implementation of a given
circuit, or simply due to some local, largely irrelevant decision.
Instead, we change the method of node pricing in a negotiated-
congestion router, by applying the same principles in the opposite
direction, to make it reach a consensus on switches that are
worthy of being included in the final switch-pattern. With this,
we obtained a pattern that outperforms the one reached through
simulated annealing optimization by 10.7% in terms of average
routed critical path delay and uses less than half the number of
switches, without compromising routability.

I. INTRODUCTION

When FPGA architecture research started to develop, consid-

erable attention was given to the design of the switch-patterns

used in the programmable interconnect [1], [2], [3]. Typically,

the goal was to maximize some metric of routability while

minimizing the number of switches used. Most of the successful

switch-patterns were invented and their effectiveness confirmed

either experimentally [1], or by proving their optimality with

respect to some proposed definition of what optimality could

actually mean [3]. Since at the time the delays of connections

implemented by the FPGA depended mostly on the number

of hops through the switch-blocks [4], with some notable

exceptions [5], little care was paid to wiring inside the switch-

block itself. Over time, a few switch-patterns emerged as

dominant and further research in the area subsided.
The detailed report of the routing architecture modifications

in the recent Agilex FPGA family [6] leaves an impression that

something of consequence is happening because of technology

scaling and that the usual assumptions about switch-patterns

should be revisited. This requires going beyond reassessing

which of the major pattern families [7] or their variants [8]

perform better in the scaled context.
Automated exploration methods could be of great use for

quickly constructing new switch-patterns appropriate for present

and future challenges. While such methods have also seen

successful use in the past [9], [10], they mostly applied

a generate-and-test approach, where architectures were first

proposed and then evaluated using a separate place-and-route

0 1 2 3 4 5 6 7

0

1

2

3

LUT 1

V1UaX6Y2L1

V2UbX6Y0L1

H1LaX6Y2L1

LUT 2

V1UaX6Y2L2

V2UbX6Y0L2

H1LaX6Y2L2

LUT 0

V1UaX3Y2L0

V2UbX3Y0L0

H1LaX3Y2L0

LUT 1

V1UaX3Y2L1

V2UbX3Y0L1

H1LaX3Y2L1

wire instance

wire typeV1
Ua

X3
Y2

L1
)

(V
2U

bX
3Y

0L
0

sw
. i

ns
t.

V1
Ua

, +
1)

(V
2U

b
sw

. t
yp

e

switch-block

H2RaX1Y3L1

H1LaX3Y2L0)(V2UbX3Y0L0sw. inst.
H1La, +0)(V2Ubsw. type

V1UaX3Y2L0)
(V2UbX3Y0L0

sw. inst.
V1Ua, +0)

(V2Ub
sw. type

V1
Ua

X6
Y2

L3
)

(V
2U

bX
6Y

0L
2

sw
. i

ns
t.

V1
Ua

, +
1)

(V
2U

b
sw

. t
yp

e

H1LaX6Y2L1)(V2UbX6Y0L1sw. inst.
H1La, +0)(V2Ubsw. type

V1UaX6Y2L1)
(V2UbX6Y0L1

sw. inst.
V1Ua, +0)

(V2Ub
sw. type

Fig. 1: Illustration of definitions. The architecture has no further meaning.

flow. This typically meant that the search space was fairly

constrained, either by artificially imposed (though perhaps

reasonable) constraints or by the varying effectiveness of the

search method proposing the architectures.

In this paper, we attempt a different approach. We let

the router itself freely explore the search space, without any

externally-imposed constraints. However, we change the cost

of switches that the router sees while routing circuits; along the

same negotiation principles used to spread the routes among

sufficiently many wires to remove congestion [11], but in the

opposite direction, so that the routes can concentrate on a

minimal set of switches that will enter the pattern.

After formalizing the problem in Section II, we look at a

simple algorithm in Section III and explain why unconstrained

exploration by the router without modifying the switch cost may

not be effective. We then gradually introduce the idea behind

the proposed cost updates in Section IV, first only intuitively,

then also formally, reviewing the main concepts of congestion

negotiation along the way. Some practical details about the

complete search algorithm follow in Section V. We then

proceed with an experimental evaluation of the effectiveness

of the proposed method in Section VII, which is followed

by a comparison with simulated-annealing-based optimization,

inspired by prior work by Lin et al. [10], in Section VIII.

Conclusions are drawn in Section X.

II. PROBLEM DEFINITION

We assume that the routing channel composition is given

and fixed and that the task is to find a set of switches that will

225

2021 31st International Conference on Field-Programmable Logic and Applications (FPL)

978-1-6654-3759-2/21/$31.00 ©2021 IEEE
DOI 10.1109/FPL53798.2021.00044

20
21

 3
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 L

og
ic

 a
nd

 A
pp

lic
at

io
ns

 (F
PL

) |
 9

78
-1

-6
65

4-
37

59
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

FP
L5

37
98

.2
02

1.
00

04
4

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

provide appropriate connectivity between wires in the routing

channels. Without loss of generality, we focus on a routing

architecture resembling that of Agilex, where wires in the

routing channel are bundled together according to their type

(defined shortly) and the same set of bundles starts next to

each Look-Up Table (LUT) of the tile [6]. Let us first introduce

some notation that will be used throughout the paper:

N ∈ N Cluster size.
OLDI A wire type with orientation O ∈ {H,V }, standing for

horizontal and vertical, respectively; length L ∈ N; direction
D ∈ {L,R,U,D}, standing for left, right, up, and down,
respectively; and index I ∈ [a..z]. In Fig. 1, H2Ra designates
a horizontal wire going two tiles to the right.

WTXxY yLl A wire instance of type WT , starting at LUT l ∈
[0, N), in tile (x, y). In Fig. 1, H2RaX1Y3L1 is a wire of
type H2Ra, starting at LUT 1 of tile (1, 3).

(W i
I → W o

I) A switch instance, providing a programmable con-
nection between wire instances W i

I and W o
I . In Fig. 1,

(V2UbX3Y0L0 → V1UaX3Y2L1) provides a connection
from the end of the V2Ub wire starting at LUT 0 of tile (3,
0) and the V1Ua wire starting at LUT 1 of tile (3, 2).

(W i
T → W o

T , d(l
i, lo)) A switch type providing a connection between

wires of type W i
T and W o

T , with the distance between their
LUTs equal to d(li, lo). In Fig. 1, (V2Ub → V1Ua, +1) is
the switch type of the previous switch instance example.

SB(x, y, l) Switch-block. The set of all switch instances driven by
wire instances ending at LUT l of tile (x, y). The switch-
block for (x, y, l) = (6, 2, 2) is indicated in Fig. 1.

SP (x, y, l) Local switch-pattern. SP (x, y, l) = {(W i
T → W o

T , l
o −

li) : (WTXxY yLli → WTXxY yLlo) ∈ SB(x, y, l)}.
V A set of available wire types.
E = V × V × (−N,N) A set of all switch types that could exist

in any hypothetical local switch-pattern.

Definition 1. (Switch-Pattern). Ea ⊆ E, such that for each
(x, y, l) in the FPGA, SP (x, y, l) = Ea.

Now we can define the problem itself:

Task 1. (Switch-Pattern Exploration). Given a set of switch
types E and a set of circuits of interest C, find the switch
pattern Ea, such that all circuits in C can be routed and their
critical path delays minimized.

The following definitions will be useful later:

Definition 2. (Usage, denoted as U(e)). The number of switch-
blocks in the FPGA in which the switch type e is used to route
at least one connection of the given circuit.
Definition 3. (Occupancy [12], denoted as O(v)). The number
of circuit’s different nets using the wire instance v. Overuse
(congestion) is O(v)− 1, since v can legally route one net.

Intuitively, the relation between a type and an instance can be

understood as that between a free and a bound vector. Similarly,

a switch-block is merely an instance of a switch-pattern. Unless

explicitly specified, the term switch will denote a switch type,

whereas wire will denote a wire instance.

III. FAILURE OF A SIMPLE GREEDY STRATEGY

In this section, we look at a simple greedy solution to the

problem. Its shortcomings will serve to motivate our solution.

A. The Algorithm

The simple greedy Algorithm 1 allows the router to freely

use any switch that could exist in the pattern, without any

H2RbX2Y7L2 H2RbX4Y7L2

H2RaX4Y7L2

H2RcX4Y7L2

net 1

H2RbX23Y11L3 H2RbX25Y11L3

H2RaX25Y11L3

H2RcX25Y11L3

net 3H2RaX9Y13L1

H2RbX7Y13L1 H2RbX9Y13L1

H2RcX9Y13L1

net 2

Fig. 2: An example of usage spreading over multiple switches.

H2RbX2Y7L2 H2RbX4Y7L2

H2RaX4Y7L2

H2RcX4Y7L2

net 1

H2RbX23Y11L3 H2RbX25Y11L3

H2RaX25Y11L3

H2RcX25Y11L3

net 3H2RaX9Y13L1

H2RbX7Y13L1 H2RbX9Y13L1

H2RcX9Y13L1

net 2

U=0
U=0

U=0
U=0
U=1

U=0
U=0
U=2

U=0

Fig. 3: If the perceived cost of a switch instance is inversely related to its
type’s usage, nets are motivated to concentrate on the same switch types.

artificial constraints. This is because all instances of all

E = V × V × (−N,N) switch types are always present in

the routing-resource graph (line 1), modeling full connectivity

among wires. After each iteration, the algorithm accepts all

switch types with usage above 1/θ of the maximum into

the switch-pattern that will finally be fabricated, where the

adoption threshold θ is a parameter. The search stops when no

more switch types are added to the pattern. Differentiating the

switch types already in the pattern is done through the small ε
costs. Without them, the router would repeat the same choices,

eventually accepting all switch types with usage > 0 in the

first iteration. Despite the seeming simplicity of the algorithm,

previous research successfully relied on usage to design novel

interconnect architectures [13].

Algorithm 1 Simple Greedy

Input: θ ∈ R
+—switch adoption threshold

Output: switch-pattern

1: Add all e ∈ E to the routing-resource graph at cost ε ∈ R
+

2: Ea = {}, Ep = E
3: do
4: Route the relevant circuits
5: Umax = max({U(e) : e ∈ Ep})
6: Ea = Ea ∪ {e ∈ Ep : U(e) ≥ Umax/θ}
7: Set cost of all e ∈ Ea to 0
8: Ep = E \ Ea

9: while ∃e ∈ Ep : U(e) > 0
10: return Ea

B. Shortcomings

Yet, let us look at the situation in Fig. 2, depicting three

different nets being routed through three different switch-blocks.

As all three nets can arbitrarily choose the switch instances they

take, for they all seem equally good, it is possible that usage

is spread equally among the three switch types. On arriving at

line 6, the algorithm has to accept all of them. In other words,

there is no way to know if all three switch types are essential

for routing the circuit, or the router used all of them equally

often simply because it had no incentive to do otherwise.

IV. TURNING PATHFINDER UPSIDE-DOWN

In this section, we present the main idea of the paper: using

the principles of congestion negotiation [11] to make the nets

reach a consensus on which switch types are really important

for routing a given circuit.

226

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Concentration effect achieved by the avalanche costs. Usage of the 100
most used switch types, out of the 564 available in one particular experiment, is
shown for the case when avalanche costs are enabled and disabled, respectively.
The area under the two curves is not identical, as concentration also changes
the total number of wires used for routing.

Fig. 5: Too much concentration can lead to congestion on wires. As the cost
of wire occupancy, O (Section II) rises over time (indicated by the coefficient
β in iteration i + 1 > α in iteration i; see Section IV-C), at some point, a
net will choose a less used switch type. Eventually, the two effects balance
out, producing a legal routing with a minimized number of switch types.

A. Avalanche Costs

Let us now see what happens if the cost of switch instances

perceived by the nets is not constant but inversely related to

their type’s usage. This is illustrated in Fig. 3. The first of the

three nets in the example sees the same cost at all three switch

instances, so it can freely make its choice. The second net,

however, sees the switch instance of the type already used by

the first net as cheaper, due to the inverse relationship between

cost and usage. Hence, it is inclined to choose that same switch

type. By the time the router starts processing the third net, the

relative cost of (H2Rb → H2Ra, +0) becomes still smaller, so

it is even more inclined to use it. Because the router will reroute

nets in subsequent iterations, nets that chose other switches

while the cost differences were not as pronounced will have a

chance to rectify their choices. This will create an avalanche

effect, where the positive feedback keeps reducing the cost of

switches with large usage, increasing their usage even more.

Thus, the evolving costs enable the nets to reach a consensus

on which switch types are important for implementing the

given circuit. Fig. 4 shows a concrete example of how the

avalanche costs concentrate bulk of the usage in a limited

subset of the available switch types, suppressing the long tail

of others with moderate and low usage.

B. Negotiating Both Congestion and Switch Presence

Avalanche costs of Section IV-A are analogous to the very

successful congestion negotiation heuristic of PathFinder [11];

there, the cost of overused wire instances gradually increases,

pushing the nets towards a consensus on which ones will give

up their desired wires, to spread overuse to other wires and

eventually eliminate it. Inversely relating the cost of switch

types to usage makes the principle act in the opposite direction,

causing a consensus on concentration, instead of spreading.

Before discussing in detail the similarities and differences

between the two negotiation mechanisms, let us see through the

intuitive example of Fig. 5 how they naturally simultaneously

act. At routing iteration i, net 3 may choose to take (H2Rb

→ H2Ra, +0), as it is cheaper. However, after the cost

of H2RaX9Y13L1 is increased in the next iteration due to

congestion (Section IV-C), net 3 will move to either of the

two remaining switches, as the path through them will become

cheaper. Because avalanche costs are bounded from both above

and below (Section IV-D), while congestion costs are bounded

only from below, resolution of congestion is guaranteed.

C. A Brief Review of Negotiated-Congestion Routing

In this Section, we give a brief, simplified review of

congestion negotiation, focusing on aspects most relevant to

this work. The reader should refer to the work of Betz et

al. [12] and Murray et al. [14] for an in-depth discussion.

A negotiated-congestion router, such as the one implemented

in VPR [12], operates on the so called routing-resource graph
(rr-graph). In an rr-graph, each wire is represented by a node,

while each switch instance is represented by an edge. Each

node u has a timing cost t(u) and a congestion cost cong(u),
representing the delay and the overuse of the respective wire.

At each routing iteration, each connection (i, j) of the circuit

is routed by a shortest path between its endpoints in the rr-

graph (fixed during placement). Typically, the timing and the

congestion cost of a node u are combined as follows:

crit(i, j)× t(u) + (1− crit(i, j))× cong(u). (1)

Here crit(i, j) is the timing criticality of the connection in the

circuit. The first term attempts to route more critical connections

through faster wires, whereas the second serves to eliminate

congestion. For less critical connections, this term dominates

and they release the resources to the more critical ones.

The crucial ingredient in the algorithm that leads to con-

gestion removal is updating the congestion cost, which is a

product of three terms: (1) a fixed base cost b(u) of the node

u; (2) a term p(u) proportional to the current occupancy of u;

and (3) a term h(u) proportional to its cumulative historical

overuse. The current congestion term p(u) is updated after

each net is routed, to reflect the wire’s current occupancy. At

the end of each routing iteration, when all the nets have been

routed, the historical congestion term of each node, h(u), is

increased by its current overuse. This historical term serves

to avoid oscillation. Before the new iteration starts, nets are

ripped-up so that their new routes can reflect the updated costs.

The proportionality constant determining p(u) is typically also

increased, to gradually shift the weight from other optimization

goals to that of achieving a legal, congestion-free routing.

D. Functional Form of the Avalanche Costs

As mentioned in Section IV-C, switch instances are tradi-

tionally represented as edges in the rr-graph. However, cost is

typically attributed to nodes. Hence, for each switch instance,

227

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

we split the corresponding edge by a virtual node which allows

seamless cost attribution and tracking of switch usage.

For the avalanche costs, we use a functional form that is

similar to that of the congestion cost of Section IV-C:

a(u) = max(0, s(u)− ap × U(u)− ah × Uh(u)). (2)

Here, s(u) is the starting cost assigned to the given switch,

which is also its maximum cost. Parameter ap determines how

quickly the avalanche cost drops as a function of the current

usage of the switch, U(u), while ah determines how quickly it

drops as a function of the cumulative historical usage Uh(u).
Like the occupancy trackers of Section IV-C, U(u) is updated

each time a net is routed, while Uh(u) is updated only once

the current routing iteration completes. We note once more,

however, that unlike the occupancy trackers, which are bound

to individual nodes of the rr-graph (individual wire instances),

the usage trackers U(u) and Uh(u) are shared between all

nodes representing instances of switches of the same type. This

allows for communicating switch type choices to nets using

entirely different switch-blocks (Fig. 3) and eventually reaching

a consensus on which switch types will enter the pattern.

E. Respecting the Critical Paths

A good switch-pattern must enable the router to properly

optimize the critical path of each circuit of interest. Hence,

during the pattern search, critical connections must be able to

route even through switches with otherwise low usage.

Aside from the avalanche cost, we assign to each switch

a timing cost equal to the projected delay increase of the

wire that is driving it, due to the increased load at its end.

Combining the two costs could be achieved as in Equation 1.

However, as the maximum value of the avalanche costs, s, can

be very large, discouraging even the most critical nets from

using switches with low usage, we opted for another form:

c(u) = t(u) + e(
ln(sc/s)

max critβ
×crit(i,j)β) × a(u). (3)

Here sc is a parameter determining the perceived cost of a

potential switch when routing the most critical possible net,

with criticality max crit (a standard parameter of VPR [14]),

and β is a criticality exponent used to tune the selectivity of the

function. As Fig. 6 shows, this provides better control of the

trade-off between critical path optimization and minimization

of the number of used switch types than Equation 1.

V. COMPLETING THE ALGORITHM

The complete algorithm is almost identical to Algorithm 1,

apart from the fact that routing on line 4 is performed using

a modified version of VTR 8 [14], which incorporates the

avalanche costs of Section IV. Another difference is that if

there are switches which got their avalanche cost reduced to

zero in the current iteration, all of them are selected and the

usage-threshold-based selection of line 6 is skipped. Nodes

representing instances of the selected switch types are removed

from the rr-graph and their neighbors are connected directly.

This is equivalent to resetting their costs to 0 (line 7), but has

a practical benefit of reducing the size of the rr-graph.

Fig. 6: Comparison of functions from Equation 1 and Equation 3. The proposed
function of Equation 3 allows for precise tuning of the avalanche cost that
the most critical nets perceive, so that the timing requirements are sufficient
to motivate them to use switches with otherwise low usage. It also creates a
relatively flat region of low avalanche cost for a wider range of high criticalities,
necessary for actually optimizing the critical path delay, given that the timing
analysis during routing is done only infrequently. A relatively steep rise in
cost ensues once the criticality drops bellow the cut-off point, which is needed
to discourage noncritical nets from increasing the switch-pattern size. The
function of Equation 1 and its exponentiated versions [14] lack these features.

CB

CRS

CRS

CRS

V4Da H2Ra
V1Ub

H1LbH6Ra 6-LUTi-1

CB

CB

CB

CB

CRS

CRS

CRS

CRS

CRS

CRS

V4Ua

H1Rb

H4Ra

H4La

V4Da

H1Ra

H1La

V1Ua

H2Ra

V1Da

H2La

V1Db

V1Ub

H1Lb

H6La

H6Ra 6-LUTi

CB

CB

CB

CB

CRS

CRS

CRS

CRS

CRS

CRS

V4Ua

H1Rb

H4Ra

H4La

V4Da

H1Ra

H1La

V1Ua

H2Ra

V1Da

H2La

V1Db

V1Ub

H1Lb

H6La

H6Ra 6-LUTi+1

V1Da

(CRS, CRS, CRS, CRS, CRS, CRS, CB, CB, CB, CB, H1Ra, H1La, V1Ua, H2Ra, V1Da, H2La, V1Db, V1Ub, H1Lb, H1Rb, H4Ra, V4Ua, H4La, V4Da, H6Ra, H6La)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

incoming wire

wiring due to the currently
accepted switches which increases
the load on the incoming wire

boundary of the switch-block
layout region

additional load on the incoming
wire if the switch (V1Da, V4Da, +0)
is added to the pattern, without
changing the switch-block layout

current multiplexer stacking order:

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

13

Fig. 7: Floorplan construction. Not drawn to scale.

A. Conveying Physical Information

Apart from the delays of the routing wires, necessary for

proper timing optimization, the router must be aware of the

implications of using a certain switch, not yet in the final

pattern, on the architecture’s performance. Before each iteration

of the algorithm, we run a physical modeling and optimization

flow to provide this data for the modified switch-pattern.

1) Modeling Flow: To extract the delays of the routing

wires, we rely on the modeling flow developed in our previous

work [15]. The flow assumes a floorplan similar to that of the

Stratix FPGAs [16], where LUTs are stacked on top of each

other, while the routing multiplexers are arranged in columns

padded to their left. Fig. 7 depicts one such floorplan. Each

multiplexer column is filled from the bottom up, until its height

matches the height of the adjacent LUT.

2) Multiplexer Position Optimization: Precise positions of

all multiplexers allow for accurate modeling of intra-SB wiring

(depicted in blue in Fig. 7, for one source routing wire), which

in turn allows for correctly taking into account the influence

of this wiring on the delay of the routing wires. However,

the possibility of changing the multiplexer positions as the

switch-pattern evolves also needs to be considered.

In our previous work, multiplexers were stacked in a fixed

order, derived from their input count [15]. Now we adapt

the multiplexer positions to the changing connectivity by

performing a quick anneal of the stacking order. All moves

represent swaps of two randomly selected multiplexers in the

228

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

order, upon which a new floorplan is generated. For the cost

function, we use a combination of the total intra-SB wirelength

and a timing cost computed as a product of approximate routing

wire delay and its exponentiated criticality extracted from the

last routing run, summed over all routing wires. This cost

function was adopted from VPR’s timing-driven placer [17].

During multiplexer position optimization and routing wire delay

measurement, only those switches which have already been

adopted to the final switch-pattern are considered.

Routing wire delays reported to the router for the next

iteration of the pattern search are obtained directly from

SPICE simulations [15]. However, the annealing process uses

approximate delays obtained by querying a model precomputed

to relate a routing wire’s delay increase due to intra-SB wiring

that it drives to this wiring’s total length.

3) Impact of Potential Switches: Output of the same model—

merely a polynomial fitted to a set of SPICE simulations, with

linear interpolation to zero, to allow for differentiating between

switches that imply too little extra wiring (orange in Fig. 7)

for their impact to be measurable—is assigned to the timing

cost (Equation 3) of each switch not yet in the final pattern.

The impact that using each potential switch has on perfor-

mance generally depends on which other potential switches are

also used. However, if the adoption threshold θ (Section III)

is sufficiently small to prevent adoption of too many switches

between reevaluations of the physical model of the switch-

block, the simple approach of only informing the router about

the impact that each switch has in isolation should suffice.

B. Preventing Overspecialization

To prevent the resulting pattern from being specialized to a

particular placement, we replace the circuits using a different

placement seed after each iteration of the search algorithm.

Ensuring that the pattern can support all circuits of interest

can be achieved by expanding the circuit set used during the

search. To minimize the dependence of the results on the order

in which the circuits are processed, we route multiple circuits

simultaneously, each on an FPGA of its own. This way, the

natural structure and the timing requirements of each circuit

are preserved, while the avalanche costs are shared across them,

allowing their nets to jointly negotiate switch presence.

C. Parameters

The functional form of the avalanche costs (Equation 2)

involves three parameters: the starting avalanche cost, s(u)
and the two parameters dictating the rate of cost decrease

with respect to usage, ap and ah. For the search method to be

effective, these parameters must be assigned reasonable values.

Because different switches are already distinguished by their

timing cost, we chose to fix all s(u) to a single parameter s.

1) Adaptive Tuning: The rate at which avalanche cost should

drop with respect to usage depends fundamentally on the actual

usage values attained during routing: a single fixed drop rate

could be too high if many nets naturally tend to use the same

switch types, whereas it could be too low if the number of

nets which do so is very small. This depends on the size and

Fig. 8: Dependence of concentration on the starting avalanche cost. The top
graph shows the number of congested nodes in the rr-graph after each iteration
of the router in the first iteration of the search algorithm, for iter to zero
set to 25 and various starting avalanche costs. The middle graph shows the
corresponding maximum usage, while the bottom one shows the number of
switches with usage ≥ 0.05× the current maximum.

structure of the circuits being routed in the search process,

making it difficult to choose a single value for ap and ah.

To resolve this issue, we first record the maximum usage

during the first routing iteration, when the avalanche costs are

temporarily reset to zero, to allow all nets to initially choose

the timing-optimal resources (much like VPR typically neglects

congestion in the first iteration [14]). Let this maximum usage

be M1
U . Then we compute ap and ah as follows:

ap = ah =
s

M1
U × (iter to zero+ 1)

(4)

Hence, ap and ah are set to the value required for the avalanche

cost to be reduced to zero in iter to zero ∈ N routing

iterations, assuming a sustained usage of M1
U . Thus we fix both

ap and ah using a single metaparameter with a much more

graspable meaning. Once computed in the first iteration of the

algorithm, ap and ah do not change until the end of the search.

Consequences of equating them are still to be understood.

2) Starting Cost: Fig. 8 shows the effect of various start-

ing costs on concentration and congestion resolving when

simultaneously routing the alu4, ex5p, and tseng MCNC

circuits [18], with iter to zero = 25. In the first graph, we

see that all explored values of s cause a rise in the number of

congested nodes which disappears once congestion is penalized

sufficiently for nets to move to switches with lower usage and

higher avalanche cost. Larger values of s lead to higher peaks

of congestion occurring later in the routing process.

The middle graph clearly shows the correlation between

rising concentration and congestion. Larger values of s initially

make it less likely for nets to route through switches with low

usage, leading to larger peaks of maximum usage. However,

excessive concentration is not sustainable, because it prevents

congestion resolution. The overshoot for s = 10−7 depicts this

clearly and although its final maximum usage is also somewhat

higher than for the other values of s, some routing iterations

are inevitably wasted. Apart from the maximum usage, the

number of switches with significant usage (here set at ≥ 5% of

the current maximum) is also illustrative. As the bottom graph

shows, all explored values of s—apart from 10−11 and 10−10

which are clearly too low to prevent nets from using switches

not required by other nets—lead to very similar results in this

229

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Dependence of concentration on the rate of avalanche cost decrease.
Graphs are analogous to those of Fig. 8, for the starting avalanche cost fixed
at 10−9 and iter to zero ∈ {5, 10, 15, 25, 50}.

respect, by the end of the routing process.
While larger values of s, such as 10−7 can be used to attempt

additional reduction of the obtained switch-pattern size, in the

experiments which follow, we use s = 10−9 since it provides

a reasonable trade-off between concentration and runtime.
3) Rate of Decrease: Fig. 9 shows the results of sweeping

iter to zero under the setup of Section V-C2, but with s
fixed at 10−9. Smaller values quickly reduce the cost of

switches which are intrinsically in high demand (usage close to

M1
U), causing an early concentration and congestion increase.

Upon congestion resolution, however, different explored values

converge to very similar results. The exception is 50, which

results in too slow drop in avalanche costs that does not allow

the higher-usage switches to attract nets to route through them.
It appears that a good trade-off between concentration and

runtime is given by values corresponding to about half the total

number of routing iterations taken to achieve a congestion-free

routing. In subsequent experiments, we use iter to zero = 25.
More comprehensive analyses could lead to parameter values

resulting in solutions of better quality and/or runtime reduction.

Whether the conclusions drawn here would change for larger

and more complex circuits also remains an open question.

Nevertheless, at the moment it does not seem that the proposed

method is particularly sensitive to exact values of parameters.

VI. EXPERIMENTAL SETUP

All experiments are performed on an architecture with eight

6-LUTs in the cluster and a channel composition reminiscent

of that of Agilex, but for the longest wires [6]: 2 × H1, H2,

H4, H6, 2× V1, V4. These wires are repeated for each LUT

of the cluster. Without loss of generality, we consider only

switches with LUT distance ∈ {−1, 0, 1} (Section II) and

prohibit switches to a target wire going in the direction from

which the driving one came. This results in 564 available

switches. The connection-blocks and crossbars generated by

the physical modeling flow are kept constant in all experiments,

while delays are extracted from a 4-nm technology model [15].

VII. EFFECTIVENESS OF AVALANCHE COSTS

In this section, we assess the effectiveness of the proposed

avalanche search method against the simple greedy algorithm

of Section III. Instead of introducing explicit ε costs without

a physical meaning to the greedy algorithm, we use the

TABLE I: Properties of the avalanche and greedy patterns.

avalanche greedy truncated greedy
#iterations 63 228 62
#switches 93 438 92

fiavg foavg tavg [ps] fiavg foavg tavg [ps] fiavg foavg tavg [ps]
H1 5 5 14.5 31 25 23.1 6 4 14.3
H2 5 5 17.8 28 28 31.6 7 6 18.4
H4 8 7 25.9 21 27 43.2 4 7 26.4
H6 6 6 34.9 19 25 59.6 2 7 35.9
V1 7 7 22.2 38 31 35.5 10 7 22.0
V4 5 8 71.7 12 27 97.5 2 5 67.8
W(tile) 6816 nm 8904 nm 7368 nm
CPD 1.40 ns 1.71 ns 1.41 ns

timing costs of the switches equally visible to all nets,

regardless of criticality (Equation 3). Search was performed by

simultaneously routing the alu4, ex5p, and tseng circuits. The

switch adoption threshold θ was set to 1.1 for both algorithms.

Final assessment of delay performance was done on all MCNC

circuits, except for the pin-bound dsip, des, and bigkey.

A. Direct Comparison with Greedy

Avalanche search converged after 62 iterations, accumulating

93 switches, while greedy search converged only after 228

iterations, accepting 438 switches (Table I). This demonstrates

that projected delay contributions of individual switches alone

are insufficient to deter the router from using them. The large

number of switches in the greedy pattern resulted in both a

large increase of the tile width and the average fanin and fanout

of intercluster wires. This in turn led to a large increase of

average wire delays and the routed critical path delay (Table I).

B. Comparison with Truncated Greedy

To better assess the differences in the choices made by the

two search methods, we truncated the greedy pattern after the

62nd iteration, when the pattern contained 92 switches, which

was the closest to the 93 of the avalanche one. The exact

distribution of fanouts and fanins enables a tighter packing of

the multiplexers of the avalanche pattern, leading to a lower

tile width. Fanouts and fanins still determine the wire delays,

however, which are very close between the two patterns, and

on average slightly lower for the truncated greedy (Table I).

1) Adjacency: Adjacency between different wire types (here

considered without the index; see Section II) is illustrated in

Fig. 10. The more numerous zero and larger entries in the

adjacency matrix of the greedy pattern show that greedy search

selects multiple switches between the same types of wires,

commonly connected by the router, where only a subset of

them would suffice. As a result, with the same number of

switches, fewer wire types can be connected.

2) Grid Distances: Consequences of selecting multiple

switches between the same wire types, instead of introducing

more variety, can be seen in Fig. 11. Each entry of the matrices

represents the minimum number of distinct intercluster wires

needed to connect the center of the grid to the particular

target, normalized by the minimum number of wires that would

be needed if all switches were available in the pattern. The

avalanche pattern is closer to being optimal in this respect.

This is also reflected on the minimum delay distances, rela-

tive to an unrealistic fully-connected pattern which disregards

230

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

(a) Avalanche (b) Truncated Greedy

Fig. 10: Adjacency of wire types: avalanche (a) and truncated greedy (b). Note
that all H1 and V1 wires occur twice in each direction (see Section VI).

(a) Avalanche (b) Truncated Greedy

Fig. 11: Hop-distances from the center of the FPGA to other tiles, normalized
by the distances computed on a pattern with all switches. Dark green is best.

the impact of switch load on wire delay (Fig. 12). The relative

inefficiency in connecting to the distant targets at the bottom

of the grid was influenced by performing the search on small

circuits requiring very short FPGAs. In a production setting,

of course, larger and more complex circuits should be used.

3) Routed Delays: Despite the qualitative differences be-

tween the avalanche and the truncated greedy pattern, they are

largely equivalent in terms of the routed critical path delays

(Fig. 13). This could be due to the MCNC circuits imposing

low stress on the routing architecture, making it easy to meet

timing requirements. Another reason could lie in their large

logic depth, unrepresentative of the modern pipelined circuits,

which, combined with the lack of any interconnect pipelining

in the architecture [19], [20] and oversimplified intracluster

interconnect [6], makes the delays inside the cluster dominant.

While accounting for interconnect pipelining goes beyond

the scope of the present paper, we believe that there is nothing

that would prevent the proposed avalanche search method from

also being applied to intracluster interconnect. However, to

(a) Avalanche (b) Truncated Greedy

Fig. 12: Percentage increase of the delay needed to reach other tiles from the
center, compared to a hypothetical switch-pattern containing all switches with
no impact on wire delay. Dark blue is best.

Fig. 13: Routed delays for the avalanche and the truncated greedy pattern.

TABLE II: Number of routing iterations taken by VPR to successfully route
the Gnl circuits. Failure to route in 300 iterations is marked with “—”.

circuit 1 2 3 4 5 6 7 8 9 10
avalanche 147 145 57 73 56 71 82 59 65 74
trunc. greedy — — — — 278 — — — 149 —

the best of our knowledge, VPR currently does not support

simultaneous intercluster and intracluster routing, so we decided

to leave this for future work as well.
4) Routability: To see how the two patterns compare under

increased stress, we generate ten synthetic circuits with about

10 000 LUTs using Gnl [21]. The Rent’s exponent was set

to 0.7—the maximum used in the ISPD’16 routability driven

placement contest [22]. We take the distribution of different

LUT sizes in the circuits from Hutton et al. [23]. Then, we

place the circuits on architectures based on the two switch-

patterns and attempt to route them with a limit of 300 iterations.

We neglect timing optimization since the circuits are synthetic.
Table II shows the number of iterations needed for VPR to

successfully route each circuit. While the avalanche pattern

successfully routes all ten circuits, the truncated greedy

succeeds only on two, and that with considerably more effort.

This demonstrates the effectiveness of avalanche search in

maximizing routability of the constructed switch-patterns.

VIII. COMPARISON WITH SIMULATED ANNEALING

Lin et al. successfully used simulated annealing for simul-

taneously optimizing channel composition and the switch-

pattern [10]. In this section, we investigate how a similar

method compares with the proposed avalanche search.

A. Initial Pattern
We initialize the search with the default pattern produced

by the physical modeling flow [15], which represents our best

effort at capturing inter-wire-type connectivity of a modern

tapless architecture [24], with the constraint dictated by the high

resistance of the lower metal layers that bulk of this connectivity

is contained within wires starting and ending at the same LUT-

height [6]. Implementing e.g., a Wilton pattern is not possible

under this constraint, since the very few instances of each wire

type per LUT (1–2 [6]) do not allow for implementing the

necessary track permutations [9]. Such a comparison could be

done in an older technology, where resistance is not an issue,

but there precise switch choices enabled by the proposed search

method would be less relevant, we believe, as they would have

little impact on performance, while good routability in presence

of taps was demonstrated even on nonobvious patterns [25].
The initial pattern contains 180 switches organized as shown

in Fig. 14a. The optimal hop-distances that it achieves are not

231

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

(a) Initial (b) Annealed

Fig. 14: Adjacency of wire types: initial (a) and annealed (b).

TABLE III: Properties of the initial and the annealed pattern.

avalanche initial annealed
#switches 93 180 210

fiavg foavg tavg [ps] fiavg foavg tavg [ps] fiavg foavg tavg [ps]
H1 5 5 14.5 10 10 16.0 13 13 19.6
H2 5 5 17.8 11 11 21.3 14 11 24.1
H4 8 7 25.9 11 11 30.8 16 12 32.1
H6 6 6 34.9 11 11 43.1 9 13 47.3
V1 7 7 22.2 12 12 24.6 14 15 29.2
V4 5 8 71.7 13 13 74.3 13 15 86.8
W(tile) 6816 nm 7464 nm 7488 nm
CPD 1.40 ns 1.46 ns 1.55 ns

sufficient to counter the wire delay increase due to a high load

(Table III). As a result, the geomean routed delay is about 4%

larger than for the avalanche pattern (Table III).

B. Setup

We use two very simple moves generated with equal

probability: including or removing one of the 564 considered

switches. The self-normalizing two-term cost function of

Marquardt et al. [17] is used, with tile area and the geomean

routed critical path delay of the circuits used in the search taken

for the two terms, with equal contribution. To save runtime,

wire delays are measured only when the switch-pattern differs

from that of the previously measured architecture in at least

five switches, while floorplan is optimized only on temperature

change. The same three MCNC circuits driving the avalanche

search of Section VII are used again. The initial temperature

is set to 0.02 and we perform 100 temperature changes, at the

rate of 0.95, with 100 moves per temperature.

C. Results

Including or removing a single switch from the pattern most

often has little influence on the critical path delay, or tile

area, which only dramatically changes with a change in the

number of columns needed to fit the multiplexers (Fig. 7). This

makes convergence of the optimization difficult, as visible in

Fig. 15. In the present experiment, 30 new switches were added,

Fig. 15: Convergence of the simulated annealing optimization.

while both adjacency regularity (Fig. 14b), and hop-distance

optimality were broken. The increased wire delays (Table III)

further increased the geomean routed delay by about 6%.
We conjecture that for Lin et al. annealing the switch-pattern

proved valuable as during the optimization of the channel

composition—likely causing larger and easier to capture

changes in performance—the switch-pattern grew increasingly

inappropriate for the new composition and annealing it was

just sufficient to rectify that. If applied to one fixed channel

composition, success of the method seems less obvious.
Of course, we do not claim that simulated annealing, or any

other general optimization method, cannot be made to work for

switch-pattern exploration, if extensive engineering of the cost

function and move generation is performed. Nevertheless, much

like the original PathFinder removed the need for elaborate

ad hoc heuristics of early FPGA routers [26], we believe

that our avalanche-cost method, essentially relying on the

same principles as PathFinder, removes the need for similarly

elaborate heuristics to explore interconnect architectures.

IX. RUNTIME SCALABILITY

A fundamental feature of avalanche search is that it presents

the router with the entire search space at once, instead of using

it for in-the-loop evaluation of explicitly constructed solutions.

Hence, longer routing runs can be tolerated than if thousands

of explicit solutions must be assessed in sequence. Some

features of avalanche search significantly slow down routing,

however: 1) more iterations required to eliminate congestion,

2) a need for rerouting even the uncongested nets so that

they can choose higher-usage switches, and 3) large avalanche

costs making lookaheads ineffective. Some experiments on

Gnl circuits showed slowdowns exceeding 100× compared to

routing on the final pattern with original VTR 8. Since these

runtimes were still on the order of hours, we did not attempt

any remedies, although they are certainly possible. For instance,

we used a single lookahead map [14], computed with zero

avalanche costs to always be admissible, but multiple maps

would enable tighter tracking of actual cost evolution. With

such enhancements, we are confident that runtime of routing

runs (line 4 of Algorithm 1) could also be greatly improved.

X. CONCLUSIONS

In this work, we presented an effective method for exploring

switch-patterns of an FPGA using the router itself. We hope that

this offers a new view on the problem and opens new perspec-

tives for architectural research. For instance, it could reduce the

need for assuming that the switch-pattern design is orthogonal

to other architectural parameters [27]; one may simply use the

method to search for a new pattern appropriate for the given

values of the other parameters. Similarly, the method could

be effective for automated specialization of switch-patterns in

custom FPGAs [28]. The presented experiments focused only

on programmable intercluster interconnect, but we believe that

the method can also be successfully used for exploring other

aspects of FPGA routing. This we plan to attempt in the future.
The source code used in this work is available at the

following link: https://github.com/EPFL-LAP/fpl21-avalanche.

232

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Rose and S. Brown, “Flexibility of interconnection structures for field-
programmable gate arrays,” IEEE Journal of Solid-State Circuits, vol. 26,
no. 3, pp. 277–82, 1991.

[2] S. J. Wilton, “Architectures and algorithms for field-programmable gate
arrays with embedded memory,” Ph.D. dissertation, University of Toronto,
1997.

[3] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Universal switch modules
for FPGA design,” ACM Transactions on Design Automation of Electronic
Systems, vol. 1, no. 1, pp. 80–101, Jan. 1996.

[4] P. Gopalakrishnan, Xin Li, and L. Pileggi, “Architecture-aware FPGA
placement using metric embedding,” in 2006 43rd ACM/IEEE Design
Automation Conference, 2006, pp. 460–65.

[5] H. Schmit and V. Chandra, “FPGA switch block layout and evaluation,”
in Proceedings of the 2002 ACM/SIGDA Tenth International Symposium
on Field-Programmable Gate Arrays, Monterey, CA, USA, Feb. 2002,
pp. 11–18.

[6] J. Chromczak, M. Wheeler, C. Chiasson, D. How, M. Langhammer,
T. Vanderhoek, G. Zgheib, and I. Ganusov, “Architectural enhancements
in Intel® Agilex™ FPGAs,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Seaside,
CA, USA, Feb. 2020, pp. 140–49.

[7] X. Tang, E. Giacomin, A. Alacchi, and P. Gaillardon, “A study on
switch block patterns for tileable FPGA routing architectures,” in 2019
International Conference on Field-Programmable Technology (ICFPT),
Tianjin, China, Dec. 2019, pp. 247–50.

[8] O. Petelin and V. Betz, “The speed of diversity: Exploring complex
FPGA routing topologies for the global metal layer,” in Proceedings of
the 26th International Conference on Field Programmable Logic and
Applications, Lausanne, Switzerland, Aug. 2016, pp. 1–10.

[9] G. G. Lemieux and D. M. Lewis, “Analytical framework for switch block
design,” in Field-Programmable Logic and Applications, Reconfigurable
Computing Is Going Mainstream, 12th International Conference, FPL
2002, Montpellier, France, September 2-4, 2002, Proceedings, ser. Lecture
Notes in Computer Science, M. Glesner, P. Zipf, and M. Renovell, Eds.,
vol. 2438. Springer, Sep. 2002, pp. 122–31.

[10] M. Lin, J. Wawrzynek, and A. E. Gamal, “Exploring FPGA routing
architecture stochastically,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 10, pp. 1509–22,
Sep. 2010.

[11] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proceedings of the 1995 ACM
Third International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, Feb. 1995, pp. 111–17.

[12] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[13] G. Wang, S. Sivaswamy, C. Ababei, K. Bazargan, R. Kastner, and
E. Bozorgzadeh, “Statistical analysis and design of HARP FPGAs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 2088–102, 2006.

[14] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-
P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High-performance
CAD and customizible FPGA architecture modelling,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 13, no. 2, pp.
9:1–9:60, May 2020.

[15] S. Nikolić, F. Catthoor, Z. Tőkei, and P. Ienne, “Global is the new
local: FPGA architecture at 5nm and beyond,” in The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Virtual
Event, USA, 2021, pp. 34–44.

[16] D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee,
T. Vanderhoek, and H. Yu, “Architectural enhancements in Stratix V™,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, CA, USA, Feb. 2013, pp. 147–56.

[17] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for FPGAs,”
in Proceedings of the 2000 ACM/SIGDA Eighth International Symposium
on Field Programmable Gate Arrays, Monterey, CA, USA, Feb. 2000,
pp. 203–13.

[18] S. Yang, “Logic synthesis and optimization benchmarks user guide,
version 3.0,” Microelectronics Center of North Carolina, Technical Report,
Jan. 1991.

[19] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa, V. Manoharara-
jah, I. Milton, T. Vanderhoek, and J. Van Dyken, “The Stratix™ 10 highly
pipelined FPGA architecture,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, Feb. 2016, pp. 159–68.

[20] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive
compute acceleration platform: Versal architecture,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Seaside, CA, USA, Feb. 2019, pp. 84–93.

[21] D. Stroobandt, J. Depreitere, and J. V. Campenhout, “Generating new
benchmark designs using a multi-terminal net model,” Integration, vol. 27,
no. 2, pp. 113–29, 1999.

[22] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal,
“Routability-driven FPGA placement contest,” in Proceedings of the
2016 on International Symposium on Physical Design, Santa Rosa, CA,
USA, 2016, pp. 139–43.

[23] M. D. Hutton, J. Schleicher, D. M. Lewis, B. Pedersen, R. Yuan,
S. Kaptanoglu, G. Baeckler, B. Ratchev, K. Padalia, M. Bourgeault,
A. Lee, H. Kim, and R. Saini, “Improving FPGA performance and
area using an adaptive logic module,” in Field Programmable Logic
and Application, 14th International Conference, FPL 2004, Leuven,
Belgium, August 30-September 1, 2004, Proceedings, ser. Lecture Notes
in Computer Science, J. Becker, M. Platzner, and S. Vernalde, Eds., vol.
3203. Springer, 2004, pp. 135–44.

[24] M. B. Petersen, S. Nikolić, and M. Stojilović, “NetCracker: A peek into
the routing architecture of Xilinx 7-Series FPGAs,” in Proceedings of
the 2021 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Feb. 2021, pp. 11–22.

[25] A. Li, T.-J. Chang, and D. Wentzlaff, “Automated design of FPGAs
facilitated by cycle-free routing,” in 2020 30th International Conference
on Field-Programmable Logic and Applications (FPL), Aug 2020, pp.
208–13.

[26] S. B. G. Lemieux, “A detailed router for allocating wire segments in
FPGAs,” in ACM/SIGDA Physical Design Workshop, Lake Arrowhead,
CA, USA, Apr. 1993, pp. 215–26.

[27] A. Yan, R. Cheng, and S. J. E. Wilton, “On the sensitivity of
FPGA architectural conclusions to experimental assumptions, tools, and
techniques,” in Proceedings of the 2002 ACM/SIGDA Tenth International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
Feb. 2002, pp. 147–56.

[28] D. Koch, N. Dao, B. Healy, J. Yu, and A. Attwood, “FABulous: An
embedded FPGA framework,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Virtual Event, USA,
2021, pp. 45–56.

233

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 05,2021 at 14:20:20 UTC from IEEE Xplore. Restrictions apply.

