
Multi-Lane FlowPools: A detailed look

Tobias Schlatter1, Aleksandar Prokopec2, Heather Miller2, Philipp Haller2, and
Martin Odersky2

1 Student, EPFL
2 Advisors, EPFL

Abstract. FlowPools, proposed by [4] are a powerful way to express
dataflow logic in highly parallelized applications. The original paper
proposes two ways of implementing a FlowPool: Single-Lane FlowPools
(SLFP) and Multi-Lane FlowPools (MLFP). While SLFPs showed de-
cent performance overall, insertion operations do not scale. MLFPs solve
this limitation as benchmarks discussed in [4] have shown. This report
goes into the details of the implementation of MLFPs and lies out the
benchmarking results from [4] to show that MLFPs may reduce inser-
tion time by 49−54% on a 4-core i7 machine with respect to comparable
concurrent queue data structures in the Java standard library.

1 Introduction

The goal of this section is to briefly remind the reader of the semantics and pro-
gramming interface of a FlowPool and the basic ideas behind the implementation
of SLFPs to allow for better understanding of the implementation of MLFPs.

1.1 Programming Model

The following operations are supported by a FlowPool. For a proof of determin-
ism, refer to [4].

Append (<<) Inserts an element in the FlowPool. Fails if the number of
elements the FlowPool has been sealed with is reached.
Signature: def <<(x: T): Unit

Foreach Traverse elements in the FlowPool. Calls a closure f exactly once
(asynchronously) for each element added to the FlowPool (until it is sealed).
Returns future of number of elements in pool. Foreach is normally implemented
using the more general primitive aggregate.
Signature: def foreach[U](f: T => U): Future[Int]

Aggregate Reduce elements in the FlowPool to a single value. Starts off
with zero as initial value to aggregate on, calls op exactly once per element to
add it to an aggregation, finally uses cb to combine multiple aggregations into
a single one. Note that op is guaranteed to be executed only once per element,
whereas cb may be called any number of times
Signature: def aggregate[S](zero: =>S) (cb: (S, S) => S)

(op: (S, T) => S): Future[S]



2 Tobias Schlatter

Builders Abstraction to allow garbage collection of elements that are no
longer required. Allows insertion without reference to initial pool (and hence all
elements). See [4] for details.

Seal Fixes the number of elements that will eventually be in the pool allowing
callbacks to be freed once reached. The final size of the pool is required as
argument in order to preserve the determinism of the model. Subsequent call to
seal will fail iff the FlowPool has already been sealed with a different size or
the number of elements in the FlowPool is larger than the seal size.
Signature: def seal(size: Int): Unit

Figure 1 shows the implementation of some common monadic operations on
top of the given primitives.

def filter
(pred: T => Boolean)
val p = new FlowPool[T]
val b = p.builder
aggregate(0)(_ + _) {

(acc, x) => if pred(x) {
b << x
1

} else 0
} map { sz => b.seal(sz) }
p

def flatMap[S]
(f: T => FlowPool[S])
val p = new FlowPool[S]
val b = p.builder
aggregate(future(0))(add) {

(af, x) =>
val sf = for (y <- f(x))

b << y
add(af, sf)

} map { sz => b.seal(sz) }
p

def add(f: Future[Int], g: Future[Int]) =
for (a <- f; b <- g) yield a + b

def union[T]
(that: FlowPool[T])
val p = new FlowPool[T]
val b = p.builder
val f = for (x <- this) b << x
val g = for (y <- that) b << y
for (s1 <- f; s2 <- g)

b.seal(s1 + s2)
p

Fig. 1. Some common monadic operations implemented using the FlowPool primitives
(taken from [4])

1.2 Single-Lane FlowPool

SLFPs are implemented using a single linked-list of arrays of elements, where the
last non-empty element does not hold actual data, but the state of the FlowPool,
i.e. a list with all the callbacks and the seal state of the FlowPool. Changes to the
SLFP are only allowed by CASing at this particular point, which hence serves
as linearization point of the data structure.

With competing, concurrent writers, this approach does not scale nicely (see
figure 5). Mainly due to cache contention (multiple CPUs often write to close
memory locations) and CAS collisions.

2 Implementation

MLFPs take advantage of the lack of ordering guarantees in the FlowPool se-
mantics to remove the limitation of SLFPs with respect to scaling by applying
a simple but effective idea: Instead of having a single SLFP, we use one SLFP



Multi-Lane FlowPools: A detailed look 3

(from now on called lane) for each processor (or thread). This means, that on one
hand, every processor (or thread) gets its own lane to which it appends elements
to, avoiding CAS collisions and cache contention. On the other hand, every call-
back or aggregation has to be registered on each of these lanes separately and
completing the callback future has to be externally synchronized.

In the following, the implementation of the FlowPool operations in the MLFP
are explained in detail. Please refer to figure 4 for pseudo code of the operations.

2.1 Callbacks

When calling aggregate on a MLFP, the implementation has to ensure that a
copy of this callback is known to every underlying lane and that upon completion
of the callbacks for every lane, the values are aggregated in the final result and
the future is completed. Note that callback addition to a given lane is no different
than in SLFPs.

The aggregation of each lane’s final values is done using a FlowLatch, a
construct that allows aggregating a given number of values into a single one
using similar semantics as a FlowPool. A FlowLatch may supply a future that
is completed with the aggregated value, once the expected number of values has
been supplied. aggregate returns this future to the caller.

2.2 Seal

The seal operation is the only one whose complexity increases with multiple
lanes, as the overall size guarantee has to be established over all lanes while pre-
serving lock-freedom and linearizability, especially in the face of errors occurring
while sealing.

To ensure the latter, a global seal state (stored in a location common to the
whole MLFP) is required. The global seal may be in one of the following states
(state transition graph in figure 2):

– Unsealed (U): No seal has yet been attempted, or all seals have failed.
– Proposition(size) (P): Sealing with given (total) size is being attempted.

No other sealing operation may be attempted until this state is resolved to
one of the other two. Threads that attempt to seal which then encounter a
Proposition state, will help seal the FlowPool. (This is required to ensure
lock-freedom)

– Sealed(size, remain) (S): The MLFP has been sealed with size size,
where at the moment of the sealing, remain free slots were remaining. The
latter value is required to distribute the remaining element slots amongst
the lanes and will be explained in detail later.

Further, each lane holds its own seal state (similar to SLFPs) which may be
one of the following. The state transitions are the same as for the global state
(figure 2).



4 Tobias Schlatter

U P Ssuccess

seal()

failure

Fig. 2. State-transition graph of MLFP seal state

– CallbackList (U): The lane is unsealed. A seal procedure might have been
started but is not yet completed. Insertion may be handled as in a SLFP.

– SealTag (P): A seal procedure has been started and any writer should resolve
the tag by either helping to finish the sealing or replace it based on the global
state.

– Seal(size) (S): This lane has been sealed with the given size.

In the following, the different parts of the sealing procedure are explained in
detail.

Seal When a thread calls seal() it first checks the current state of the MLFP.
If it is in the unsealed state, it tries to change the seal state to proposition and
then continue with the sealing. If the MLFP is already in the proposition state,
it helps to complete the current seal. If the MLFP is in the Sealed state, the call
returns immediately, succeeding if the size in Sealed is equal to the proposed
sealing size, failing otherwise.

Help Sealing Once the MLFP is in the proposition state, any thread at-
tempting to seal (or attempting to insert an element as we will see later), will
begin propagating the proposition state to each lane. It does this by placing a
special token, SealTag, into the state location of the given lane, using a proce-
dure similar to seal() on SLFPs.

A thread that tries to insert an element and encounters a SealTag must
resolve the tag before it can continue on (explained later). This ensures that,
once a SealTag has been placed in a lane, its size does not change until the seal
is finished, which makes it possible to calculate a snapshot of the total number
of elements in the MLFP. Note that during this procedure, one might also find
that the seal has been completed (when encountering a Seal in a lane). In such
a case, helping can be stopped prematurely.

Note that each SealTag holds a reference to the global proposition object
that caused its creation. This is required as a sentinel since other seal tags might
still be present from a failed attempt to seal.

When a thread that succeeds in calculating the snapshot of the size, it will
then try to change the MLFP’s state to sealed (or to unsealed, if the number of
elements is too big) and replace every occurrence of SealTag in the lanes by a
Seal.

Resolution of seal tags When a writer encounters a SealTag it first checks
the current global state. If it indicates, that the seal operation corresponding to
the SealTag is still going on, the writer helps sealing as described above, then
retries writing. If the global state indicates that the structure has been sealed,
the writer calculates the remaining slots for this lane according to the following



Multi-Lane FlowPools: A detailed look 5

formula and then seals this lane.

nseal = ncur +
nremain

ltotal
+ 1{lcur<nremain mod ltotal}

If the writer finds that the current global state is unsealed or a different propo-
sition than in the tag, it removes the tag and continues inserting normally.

Finalization Some procedures that are required to invoke the callback schedul-
ing properly when sealing (i.e. ensuring the finalization procedure of each call-
back is called exactly once) have been omitted here for simplicity.

2.3 Insertion

Insertion into a MLFP happens the same way as into a SLFP, however, the lane
in which the element is to be inserted has to be chosen first. For the choice of
the lane we want to:

– Avoid collision between competing threads to a maximum.
– Make it possible to change the thread-lane assignment, once some lanes have

been entirely filled (after a seal).
– Assure we can properly fill up the FlowPool entirely.

To achieve this, the following mapping is used at the beginning:

lcur = Tcur mod ltotal (Tcur : Current thread ID)

When the first collision (i.e. attempted insertion into a full lane) happens,
the following hashed mapping is used [1]:

lcur = rb((Tcur + C) · 9e3775cd16) · 9e3775cd16 mod ltotal

where C is the (global) number of collisions so far and rb(·) inverses the byte
order.

After a certain number of collisions (currently the number of lanes), the
insertion switches to a linear search over all lanes to guarantee that either the
FlowPool is filled, or an error is raised due to too many inserted elements.

Experimental results in figure 3 show that there is no use in having more than
one lane per inserting thread and hence that the upper lane selection strategy
is efficient. For details, refer to section 3.

3 Evaluation

This section comes mainly from [4] and is just repeated here for convenience.
Setup We evaluate our implementation (single-lane and multi-lane Flow-

Pools) against the LinkedTransferQueue [2] for all benchmarks and the Concur-
rentLinkedQueue [3] for the insert benchmark, both found in JDK 1.7, on three
different architectures; a quad-core 3.4 GHz i7-2600, 4x octa-core 2.27 GHz Intel



6 Tobias Schlatter

Number of Lanes per Inserting Thread

E
xe

cu
tio

n 
T

im
e 

[m
s]

10
00

20
00

30
00

40
00

50
00

1 1.5 2 3 4

Comm

25
0

30
0

35
0

40
0

45
0

50
0

55
0

1 1.5 2 3 4

Histogram
10

0
20

0
30

0
40

0
50

0

1 1.5 2 3 4

Insert

20
0

40
0

60
0

80
0

12
00

1 1.5 2 3 4

Map
50

0
15

00
25

00

1 1.5 2 3 4

Reduce

Fig. 3. Execution times with respect to number of lanes per inserting thread in MLFPs.
× UltraSPARC T2, 4 4-core i7



Multi-Lane FlowPools: A detailed look 7

def aggregate[S](zero: =>S)1

(cmb: (S, S) => S)2

(folder: (S, T) => S):3

Future[S] = {4

5

val aggregator = FlowLatch[S](zero)(cmb)6

aggregator.seal(laneCount)7

8

for (l <- lanes) {9

l.registerCB(folder, zero, aggregator)10

}11

12

aggregator.future13

}14

15

def seal(size: Int) {16

val cur_state = state17

cur_state match {18

case Unsealed =>19

val ns = Proposition(size)20

if (!CAS(state, cur_state, ns))21

seal(size)22

else if (!helpSeal(ns)) failure()23

case p: Proposition =>24

if (helpSeal(p)) failure()25

else seal(size)26

case Sealed(sz,_) if size != sz =>27

failure("already sealed")28

case _ => // Done29

}30

}31

32

def tryResolveTag[T](t: SealTag[T]) {33

cur_state match {34

case p: Proposition if (p eq t.p) =>35

helpSeal(p)36

case Sealed(_,rem) =>37

val sz = sealSize(cur_state)38

writeSeal(Seal(sz))39

case _ => revertTag()40

}41

}42

def helpSeal(p: Proposition): Boolean = {43

var sizes: Int = 044

45

for (l <- lanes) {46

writeSealTag(l, p) match {47

case OnGoing(v) =>48

sizes = sizes + v49

case Finished(success) => return success50

}51

}52

53

if (sizes <= p.size) {54

// Seal MUST succeed55

val remaining = p.size - sizes56

val ns = Sealed(p.size, remaining)57

if (CAS(state, p, ns))58

finalizeSeals(remaining)59

true60

} else {61

// Seal MUST fail62

CAS(state, p, Unsealed)63

false64

}65

66

}67

68

def append(x: T) {69

val index = {70

if (collisions <= 0)71

curTID % laneCount72

else if (collisions <= laneCount)73

hash(curTID, collisions)74

else75

findEmptyLane() // Fails if not found76

}77

78

if (!lanes(index).append(x)) {79

increment(collisions)80

append(x)81

}82

83

}84

Fig. 4. Multi-Lane FlowPool operations pseudo code



8 Tobias Schlatter

Xeon x7560 (both with hyperthreading) and an octa-core 1.2GHz UltraSPARC
T2 with 64 hardware threads.

Benchmarks and Scaling In the Insert benchmark, Figure 5, we evaluate
the ability to write concurrently, by distributing the work of inserting N elements
into the data structure concurrently across P threads. In Figure 5, it’s evident
that both single-lane FlowPools and concurrent queues do not scale well with
the number of concurrent threads, particularly on the i7 architecture. They seem
to slow down rapidly, likely due to cache line collisions and CAS failures. On the
other hand, multi-lane FlowPools scale well, as threads write to different lanes,
and hence different cache lines on most occasions, meanwhile also avoiding CAS
failures. This may reduce execution time for insertions up to 54% on the i7, 63%
on the Xeon and 92% on the UltraSPARC T2.

Usage of the inserted data is evaluated in the Reduce, Map (both in Figure 5)
and Histogram benchmarks (Figure 6). It’s important to note that the Histogram
benchmark serves as a “real life” example, which uses both the map and reduce

operations that are benchmarked in Figure 5.

The Reduce benchmark starts P threads which concurrently insert a total of
N elements. The aggregate operation is used to reduce the set of values inserted
into the pool. Note that in the FlowPool implementation there may be as many
threads computing the aggregation as there are different lanes – elements from
different lanes are batched together once the pool is sealed.

The Map benchmark is similar to the Reduce benchmark, but instead of
reducing a value, each element is mapped into a new one and added to a second
pool.

In the Histogram benchmark, Figure 6, P threads produce a total of N ele-
ments, adding them to the FlowPool. The aggregate operation is then used
to produce 10 different histograms concurrently with a different number of
bins. Each separate histogram is constructed by its own thread (or up to P ,
for multi-lane FlowPools). A crucial difference between queues and FlowPools
here, is that with FlowPools, multiple histograms are produced by invoking sev-
eral aggregate operations, while queues require writing each element to several
queues– one for each histogram. Without additional synchronization, reading a
single queue is not an option, since elements have to be removed from the queue
eventually, and it is not clear to each reader when to do this. With FlowPools,
elements are automatically garbage collected when no longer needed.

Finally, to validate the last claim of garbage being automatically collected, in
the Communication/Garbage Collection benchmark, Figure 6, we create a pool
in which a large number of elements N are added concurrently by P threads.
Each element is then processed by one of P threads through the use of the
aggregate operation. We benchmark against linked transfer queues, where P
threads concurrently remove elements from the queue and process it. For each
run, we vary the size of the N and examine its impact on the execution time.
Especially in the cases of the Intel architectures, the multi-lane FlowPools per-
form considerably better than the linked transfer queues. As a matter of fact, the
linked transfer queue on the Xeon benchmark ran out of memory, and was un-



Multi-Lane FlowPools: A detailed look 9

Architecture Elements FlowPool t[ms] P Queue t[ms] P decr.

4-core i7 2M 17 8 35 1 51%
4-core i7 5M 44 8 87 1 49%
4-core i7 15M 118 8 258 1 54%

UltraSPARC T2 1M 23 32 111 4 79%
UltraSPARC T2 2M 34 64 224 4 84%
UltraSPARC T2 5M 62 64 556 4 88%
UltraSPARC T2 15M 129 64 1661 4 92%

32-core Xeon 2M 30 8 50 1 40%
32-core Xeon 5M 46 64 120 1 61%
32-core Xeon 15M 126 64 347 1 63%

Table 1. Execution times for insert benchmark for MLFP and concurrent linked
queues, including execution time decrease percentage.

able to complete, while the multi-lane FlowPool scaled effortlessly to 400 million
elements, indicating that unneeded elements are properly garbage collected.

Scaling in Input Size In figure 7 we can see that the Input, Map, Reduce
and Histogram benchmark all scale linearly in the input size with any parallelism
level. The Comm benchmark has not been tested for different sizes.

Multi-Lane Scaling By default, the number of lanes is set to the paral-
lelism level P , corresponding to the number of used CPUs. However, since the
implementation has to use hashing on the thread IDs instead of the real CPU
index, we tested whether varying the number of lanes to 1.5P , 2P , 3P and
4P results in performance gain due to fewer collisions. Benchmarks have shown
(see figure 3) that this yields no observable gain – in fact, this sometimes even
decreased performance slightly.

Performance Gain As stated in the abstract, FlowPools – or more pre-
cisely multi-lane FlowPools – may reduce execution time by 49− 54% on 4-core
i7. These figures have been obtained by comparing medians of execution times
for insertions between multi-lane FlowPools and concurrent linked queues (which
were always faster than linked transfer queues), where each structure was evalu-
ated on its optimal parallelization level. The resulting data is shown in table 1.

Methodology All the presented configurations have been measured 20 times,
where the 5 first values have been discarded to let the JIT stabilize. Aggre-
gated values are always medians. The benchmarks have been written using
scala.testing.Benchmark and executed through SBT3 using the following flags
for the JavaVM: -Xmx2048m -Xms2048m -XX:+UseCondCardMark -verbose:gc

-XX:+PrintGCDetails -server.

4 Conclusion

In this report we have shown that a FlowPool as proposed by [4] can be im-
plemented in a scalable way by using multiple single-lane FlowPools. Further,

3 Simple Build Tool



10 Tobias Schlatter

1 2 4 8 16 32
102

103

104
Insert

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

 

 

Java LTQ
Java CLQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8 16 32
102

103

104
Map

Number of CPUs

 

 

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8 16 32
102

103

104
Reduce

 

 

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

UltraSPARC T2 Architecture

Intel i7 Architecture

1 2 4 8
101

102

103

104
Insert

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

 

 
Java LTQ
Java CLQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Map

Number of CPUs

 

 
Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Reduce

 

 
Java LTQ
SingleLane FlowPool
MultiLane FlowPool

Intel Xeon Architecture

1 2 4 8
101

102

103

104
Insert

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

 

 

Java LTQ
Java CLQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Map

Number of CPUs

 

 

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
101

102

103

104
Reduce

 

 

Java LTQ
SingleLane FlowPool
MultiLane FlowPool

Operations on FlowPools Across Architectures

Fig. 5. Execution time vs parallelization across three different architectures on three
important FlowPool operations; insert, map, reduce.



Multi-Lane FlowPools: A detailed look 11

Intel Xeon ArchitectureIntel i7 Architecture

2e+06 4e+06 1.2e+07 2.5e+07

0.5

1

1.5

2

2.5

3

x 105

Number of Elements

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

 

 
Java LTQ
MultiLane FlowPool

2e+06 4e+06 1.2e+07 2.5e+07

0.5

1

1.5

2

2.5

3

x 105

Number of Elements

 

 
Java LTQ
MultiLane FlowPool

2.5e+07 5e+07 1e+08 2e+08 4e+08

0.5

1

1.5

2

2.5

3

x 105

Number of Elements

 

 
Java LTQ
MultiLane FlowPool

1 2 4 8 16 32
102

103

104

105

Number of CPUs

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

 

 
Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
102

103

104

105

Number of CPUs

 

 
Java LTQ
SingleLane FlowPool
MultiLane FlowPool

1 2 4 8
102

103

104

105

Number of CPUs

 

 
Java LTQ
SingleLane FlowPool
MultiLane FlowPool

UltraSPARC T2 Architecture

Histogram Application Histogram Application Histogram Application

Communication/Garbage Collection Communication/Garbage Collection Communication/Garbage Collection

Fig. 6. Execution time vs parallelization on a real histogram application (top), & com-
munication benchmark (bottom) showing memory efficiency, across all architectures.



12 Tobias Schlatter

Size of Benchmark

E
xe

cu
tio

n 
T

im
e 

[m
s]

20
0

60
0

10
00

5.0e+06 1.0e+07 1.5e+07

●
●

●In
se

rt

20
0

40
0

60
0

5.0e+06 1.0e+07 1.5e+07

●
●

●

0
20

00
40

00

5.0e+06 1.0e+07 1.5e+07

● ●
●

●

0
50

0
15

00
25

00

2.0e+06 6.0e+06 1.0e+07

M
ap

20
0

60
0

10
00

2.0e+06 6.0e+06 1.0e+07

50
0

15
00

25
00

1e+06 3e+06 5e+06

50
0

15
00

25
00

2.0e+06 6.0e+06 1.0e+07

32−core Xeon

R
ed

uc
e

20
0

60
0

10
00

2.0e+06 6.0e+06 1.0e+07

4−core i7

10
00

30
00

50
00

2.0e+06 6.0e+06 1.0e+07

UltraSPARC T2

Size of Benchmark

E
xe

cu
tio

n 
T

im
e 

[m
s]

0
50

00
15

00
0

5.0e+06 1.0e+07 1.5e+07

●
●

●

In
se

rt

0
10

00
30

00

5.0e+06 1.0e+07 1.5e+07

●
●

●

01
00

0
30

00

5.0e+06 1.0e+07 1.5e+07

● ●
●

●

0
50

00
15

00
0

2.0e+06 6.0e+06 1.0e+07

M
ap

0
50

0
15

00
25

00

2.0e+06 6.0e+06 1.0e+07

50
0

15
00

1e+06 3e+06 5e+06

0
50

00
15

00
0

2.0e+06 6.0e+06 1.0e+07

32−core Xeon

R
ed

uc
e

0
50

0
15

00
25

00

2.0e+06 6.0e+06 1.0e+07

4−core i7

0
10

00
30

00

2.0e+06 6.0e+06 1.0e+07

UltraSPARC T2

Fig. 7. Execution time vs benchmark size (P = 1, 8). ♦ SLFP, × MLFP, 4 linked
transfer queue, ◦ concurrent linked queue



Multi-Lane FlowPools: A detailed look 13

we have provided a detailed description including pseudo-code of how a multi-
lane FlowPool is implemented, especially with respect to sealing – which had to
be fundamentally changed – and the lane assignment rehashing strategy, that
does not exist in single-lane FlowPools. We used and included benchmark re-
sults from the original paper to show that MLFPs scale nicely, may significantly
reduce execution time with respect to comparable data structures and that the
proposed rehashing strategy is efficient for a number of lanes equal to the number
of inserting threads.

References

1. P. Bagwell. Byteswap hashing. See http://www.scala-lang.org/archives/

downloads/distrib/files/nightly/docs/library/scala/util/hashing/

ByteswapHashing.html.
2. W. N. S. III, D. Lea, and M. L. Scott. Scalable synchronous queues. Commun.

ACM, 52(5):100–111, 2009.
3. M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and block-

ing concurrent queue algorithms. In PODC, pages 267–275, 1996.
4. A. Prokopec, H. Miller, T. Schlatter, P. Haller, and M. Odersky. Flowpools: A lock-

free deterministic concurrent dataflow abstraction. In Workshops on Languages and
Compilers for Parallel Computing, 2012. under review.


