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Abstract

Distributed Data Parallel computing has been simplified drastically
with the introduction of MapReduce [13], but MapReduce programs
are rather tedious to write. Many frameworks have been created to
make MapReduce programming simpler, yet efficient. These approaches
either are libraries that can not apply optimizations due to missing in-
formation about the code, or external DSLs, which require a significant
effort to define and implement and sacrifice generality.

This thesis presents Jet, a DSL embedded in Scala that uses the com-
plete program information to apply complex optimizations like Pro-
jection Insertion, Code Motion and Loop Fusion. Jet only has a few
restrictions compared to regular Scala, and it can apply optimizations
across all supported language constructs such as conditionals, loops
and functions. The programs we tested performed between 33% and
174% faster with our optimizations.
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Chapter 1

Introduction

Websites today deal with an increasing amount of user data and analyz-
ing this data has become an important problem for companies. The anal-
ysis enables recommendation systems or is even needed for business logic
like billing or security surveillance. As storage space becomes cheaper, the
amount of stored data has increased. The analysis of these huge data sets
can not be done on a single computer, and programming on distributed
systems is arguably more complex, especially when dealing with failures.

Databases are used to separate data management and business logic. How-
ever, guarantees provided by databases like atomic commits do not scale
well, and are therefore not considered for huge data sets. Additionally,
databases work with strictly relational data, which makes them unsuitable
for plain text log analysis for example.

Functional abstractions have been proposed to separate the issues of fault
tolerance and scalability from the actual logic of the program [13]. This
thesis focuses on distributed data parallel computing frameworks, which
provide simple, scalable, and fault tolerant batch processing by restricting
the programming model to data parallel functions.

Many of these systems have been studied in the past decade. These systems
are all restricted by the general trade-off between generality, performance
and productivity. Dryad [15] and MapReduce [13] have low level program-
ming models in general purpose programming languages, so that they allow
fine grained control over the execution of the program. This however limits
the productivity. Systems like Spark [29], FlumeJava [9] or Dryad/LINQ [28]
allow a high level programming model in a general purpose language, but
they rely on high level abstractions that limit the performance. To apply re-
lational optimizations, the whole program must be analyzed, therefore none
of the aforementioned frameworks can apply those automatically.
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1. Introduction

DSL’s like Pig [24] or Hive [27] define their own restricted language, for
which they do have all the program information available. Generality is
provided by the possibility of adding user defined functions in a general
purpose programming language, but doing so will break optimizations, as
these systems will not analyze these.

Another approach is to use general and productive tools, and then apply
optimizers that work on the compiled program. Manimal [17] and Hadoop-
ToSQL [16] can work with any Hadoop [6] framework and do have the com-
plete program information available to apply relational optimizations. How-
ever, these tools need to recreate the intentions of the programmer from the
most low level representation of a program. This leads to missed optimiza-
tion opportunities due to information lost or obfuscated during compilation.

This thesis presents a new domain specific language for distributed data
parallel programming called Jet. Jet has the same syntax and semantics as
regular Scala with a few restrictions. It provides a high level, declarative in-
terface similar to Spark, and it applies compiler optimizations and domain
specific ones to generate highly performant code. Jet is designed in a modu-
lar and extensible way, allowing to add new modules for specific programs.
The code is also portable, the same program can be compiled for use on
Hadoop or on Spark.

Jet makes the following contributions to the state of the art:

• We implement and open-source the Jet framework for distributed data
parallel computing. Jet features a high level programming model and
applies domain specific and compiler optimizations, even over user
defined functions.

• We present a novel, elegant Projection Insertion algorithm that is con-
ceptually easy, but works with general program constructs such as
classes, conditionals, loops and methods by reusing the facilities pro-
vided by the underlying framework. It does not miss opportunities
due to the high level information available about the program, which
includes effects.

• We show that the optimizations and the language for Jet are extensi-
ble and modular, and how we use that modularity to provide code
portability.
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Chapter 2

Background

This chapter will present the projects Jet builds upon. We will explain the
relevant components of LMS [25], the basis for this project. We will also
introduce MapReduce and the frameworks that we generate code for.

2.1 LMS

LMS, Lightweight Modular Staging, is a Scala framework for writing Do-
main Specific Languages (DSL). It uses a special version of the Scala com-
piler and library named Scala Virtualized [19]. Following we will introduce
first Scala and Scala Virtualized and then explain LMS.

2.1.1 Scala

Scala [22] is a general purpose programming language, that allows concise
and high level programming. It features a powerful type system, and inte-
grates features from both object orientated and functional programming. It
executes on the JVM, and allows to reuse Java libraries.

Scala has support for limited multiple implementation inheritance through
Scala’s traits [23]. Scala’s traits are similar to Java interfaces, but they also
allow functions to be implemented. Multiple traits can be mixed into the
same class. When traits are mixed together, the order of the composition de-
fines the method lookup order of the dynamic dispatch. Mixin composition
is used in LMS and Jet extensively, all modules are implemented as traits, so
that they can be combined freely.

Scala’s powerful type system also has support for implicit conversions. If
an object of type A is found at a location where a type B is needed for type
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2. Background

checking to succeed, the Scala compiler will search for an implicit method
that can convert an object of type A to an object of type B. A call to that
method is then inserted, and the type checker accepts the code. This allows
to hide implementation details, it is for example used to choose appropriate
converters for classes with generic types.

2.1.2 Scala Virtualized

Scala Virtualized [19] is an extension to the Scala language and compiler
with a small number of features to allow deep language embedding. Deep
embedding enables a DSL to reuse the Scala parser and type system and
other tools for the regular Scala language. Scala Virtualized provides em-
bedding by calling overloadable methods for all regular language constructs
like conditionals, loops, variable declarations and pattern matching. The
DSL can then use this call to create an intermediate representation of that
language construct. For example, for the code if (c) t else e, Scala Vir-
tualized will call the method __ifThenElse(c, a, b). The DSL can then
create an intermediate representation (IR) node for this conditional. This
process is called staging.

2.1.3 LMS

Jet is based on Lightweight Modular Staging (LMS), a framework for writing
DSLs. LMS uses the features of Scala Virtualized to provide a modular
compiler infrastructure for developing staged DSLs. It uses a special marker
type, Rep[T], to distinguish between staged values and unstaged ones. A
value with type Rep[T] is used for staging, optimizing and generating code
to represent type T in the next stage. The interface for the DSL is defined by
specifying the methods available for a certain concrete type of Rep[T], and
these methods are use for building the intermediate representation (IR).

All the staged values in the DSL code need to have their type wrapped in
Rep[T]. This seems rather intrusive at first, but Scala’s type system often
hides this fact. During the development of code using Jet, the Rep types
were only visible in type annotations in the parameter list of functions and
for Scala’s tuples.

LMS is designed in a very modular way, which allows the DSL developer to
compose the interface, optimizations and code generation of the DSL freely.
LMS contains interface and code generation for most language constructs
in the regular Scala language, for example methods on primitive types, es-
sential data structures, and conditionals and loops. These can all be enabled
separately by mixing in the corresponding traits. These components all have
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2.1. LMS

corresponding code generators implemented to generate C, CUDA or Scala
code. In Jet, we only use the Scala code generators.

LMS additionally includes effect tracking. All effects of operations have to
be declared by the DSL developer, the provided modules in LMS do contain
these. LMS uses the effect information to apply optimizations in many cases
whereas a general purpose compiler has to make the worst case assumptions
about side effects of statements. LMS can safely apply Code Motion and
dead code elimination on pure code, it only has to ensure that effectful
statements do not get reordered in respect to other effectful statements.

Listing 1 shows all the code involved in creating a simple DSL module with
the convention used in LMS. The module can be used like a simple logger:
When the method report_time is called, code is generated that writes the
argument together with the current time stamp. The interface has to be
defined (Line 2), the internal representation (IR) node created (Line 5), the
IR node defined (Line 7), the mirroring – used for updating the IR when
transformations are applied – (Line 9) and the code generation for Scala
(Lines 11–13). Note that this is an effectful operation, because it has an
observable side effect, the printing. For this reason we call reflectEffect
which makes the effect information explicit for LMS.

2.1.4 LMS Optimizations

LMS comes with a wide array of classical compiler optimizations, such as
dead code elimination (DCE), Code Motion, common subexpression elim-
ination, function inlining and loop fusion. It can use these optimizations
aggressively due to the available effect information. Additionally, the DSL
author can implement domain specific optimizations.

LMS also contains optimizations for struct-like objects, objects which contain
a list of fields and user defined methods. These objects can be used like
normal objects, but in the generated code they will only appear if they are
required, otherwise LMS works with the fields of the objects directly. If
the object is not required, some fields of the objects may never be read or
printed. In that case, these fields do not have to be computed.

Loop Fusion is handled very generically for LMS. LMS supports both ver-
tical fusion (consumer and producer) and horizontal fusion (loops with the
same range). Besides reducing the number of loops, the merging of scopes
gives LMS more opportunities to apply its other optimizations.

Listing 2.1 shows how these optimizations are applied to a simple piece of
code. The code in Listing 2.1a parses strings with persons and then prints
the names of all persons who are older than 100 years. LMS will inline all the
methods, and will fuse loops, resulting in the code in Listing 2.1b. Then the
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2. Background

1 // interface definition
2 def report_time(x: Rep[String]): Rep[Unit]
3

4 // override method to create IR
5 override def report_time(x: Exp[String]) =
6 reflectEffect(ReportTime(x: Exp[String]))
7

8 // IR node
9 case class ReportTime(x: Exp[String])

10 extends Def[Unit]
11

12 // mirroring
13 def mirrorDef( ... { // simplified
14 case ReportTime(x) => ReportTime(f(x))
15 }
16

17 // code generation
18 def emitNode( ... { // simplified
19 case ReportTime(x) => stream.println(
20 """println(System.currentTimeMillis+" "+%s)"""
21 .format(quote(x))))
22 }

Listing 1: Simple DSL module following LMS best practices for printing
a line including the current time stamp.

aforementioned struct optimizations are applied, the Person class is treated
like a struct. In this case, the optimization determines that the fields are
read from a constructor invocation, and can then bypass the constructor to
read these values directly. This results in the code in Listing 2.1c. Then the
invocation of the constructor becomes dead, because there is no statement
reading from it left. Because LMS knows that the constructor invocation
does not have any side effects, it can safely remove it. The same goes for
the parsing of the email and zipcode fields. Code Motion can then move
the parsing of the name into the conditional. After these optimizations, the
final optimized code is shown in Listing 2.1d.

2.2 Distributed Data Parallel Programming

As websites become much more dynamic and handle more user content,
Distributed Data Parallel Programming – also called Big Data – has become
more popular than ever. MapReduce [13] has shown a way of dealing with
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2.2. Distributed Data Parallel Programming

def parsePerson(s: Rep[String]) = {
val f = s.split("\t", 4)
val name = f(0)
val age = f(1).toInt
val zipcode = f(2).toInt
val email = f(3)
new Person(name, age, zipcode, email)

}
val persons = for (x <- lines)
yield parsePerson(x)

for (x <- persons)
if (x.age > 100)

println(x.name)

(a) Original program

for (x <- lines) {
val f = s.split("\t", 4)
val name = f(0)
val age = f(1).toInt
val zipcode = f(2).toInt
val email = f(3)
val person = new Person(name, age, zipcode, email)
if (person.age > 100)

println(person.name)
}

(b) Inlining and Loop Fusion

for (x <- lines) {
val f = s.split("\t", 4)
val name = f(0)
val age = f(1).toInt
val zipcode = f(2).toInt
val email = f(3)
val person = new Person(name, age, zipcode, email)
if (age > 100)

println(name)
}

(c) Struct optimizations

for (x <- lines) {
val f = s.split("\t", 4)
val age = f(1).toInt
if (age > 100) {

val name = f(0)
println(name)

}
}

(d) Code motion and dead code elimination

Figure 2.1: Step by step optimizations in LMS
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2. Background

Figure 2.2: MapReduce execution example. Red and green denote ma-
chine assignments, the shuffle phase is highlighted yellow.

Big Data, and this programming model has since then persisted. We will
introduce the MapReduce ideas and the derived projects used in Jet.

2.2.1 MapReduce

MapReduce is a paradigm for programming computations involving many
computers. It has been shown to scale to thousands of computers easily. In
MapReduce, all computations are expressed as a series of map and reduce
transformations. A map function transforms one input key-value pair and
returns any number of key-value pairs. These key value pairs are then redis-
tributed over the network, to place all values for the same key on the same
machine. The reduce function then accepts one key and all its associated
values and produces a new key-value pair. In the MapReduce model, the
user has to specify the computation as a series of map and reduce steps. The
advantage of the MapReduce is that due to its parallel nature, scalability
and fault tolerance is handled by the framework.

Figure 2.2 shows a diagram of a MapReduce execution. The mapper code is
executed for each split of the input files on the distributed file system. The
data is then repartitioned in the shuffling phase, the key in the key-value
pair determines to which reducer it is copied. The reducers then run the
reduce function and produce output files.

Although the MapReduce model simplifies distributed programming by pro-
viding fault tolerance and scalability, expressing programs with just map and
reduce is still tedious. FlumeJava [9] describes how a collection like interface
can be mapped onto MapReduce, which makes programming simpler. Ad-
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2.2. Distributed Data Parallel Programming

ditionally the authors describe how programs expressed in the FlumeJava
programming model can be executed on a MapReduce runtime with a min-
imal number of expensive shuffling stages.

2.2.2 Hadoop

Hadoop [6] is an open source implementation for MapReduce. It is imple-
mented in Java and contains a distributed file system and a MapReduce
implementation.

There are many frameworks using Hadoop as the execution engine. Many
frameworks provide a FlumeJava implementation, allowing to use the MapRe-
duce paradigm with higher level constructs such as joins. Others provide
workflows, where an update to one file can automatically trigger one job
and all its dependent jobs. We generate code for Crunch [11] and Scoobi [21],
which both are FlumeJava implementations for Hadoop. Crunch is written
in Java; Scoobi is written in Scala and makes use of Scala’s powerful type
system including implicits, to provide a high level interface which provides
easy serialization for user classes and hides other details of Hadoop.

2.2.3 Spark

Spark [29] introduces a new concept called Resilient Distributed Datasets
(RDD). The execution of a program is similar to MapReduce, but it keeps
objects by default in memory and provides fault tolerance through lineage.
Spark was designed to allow easy reuse of data for iterative jobs, and the
authors showed that it can be up to 30x faster than Hadoop for these jobs.
It is however not limited to iterative jobs, it can handle any program that
Hadoop can. Spark is implemented in Scala.
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Chapter 3

Solution: Jet, An Embedded DSL for
Distributed Data Computing

We present Jet, a DSL for distributed data parallel computing. Jet has a high
level, declarative interface, which allows it to apply compiler and relational
optimizations. We focus on compile-time optimizations, which are impos-
sible or hard for libraries without compiler support to implement. Jet is
written in a modular way, is extensible and compiles to multiple big data
runtimes.

Jet is based on LMS, as introduced in Section 2.1.3. It compiles from Scala
code using our DSL to Scala code that interfaces with one big data runtime,
the target. Our targets are, as of this writing: Crunch and Scoobi, FlumeJava
[9] implementations that run on Hadoop, and Spark.

We set the following goals for Jet:

• Conciseness: High level and type safe code

• Generality: Support loops and conditionals, similar to regular Scala
code

• Fast: Use compiler optimizations to generate highly efficient code

• Modularity: Enable reusability, allow more operations for targets

• Portable Code: Code stays portable between different big data run-
times

• Extensible: Enable program specific extensions

11



3. Solution: Jet, An Embedded DSL for Distributed Data Computing

Operation Transformation
DList(uri: R[String]) String => DList[T]
save(uri: R[String]) DList[T] => Unit
map(f: R[T] => R[U]) DList[T] => DList[U]
filter(f: R[T] => R[Boolean]) DList[T] => DList[T]
flatMap(f: R[T] => R[It[U]]) DList[T] => DList[U]
groupByKey() DList[(K, V)] =>

DList[(K, It[V])]
groupByKey(p: R[Partitioner]) DList[(K, V)] =>

DList[(K, It[V])]
reduce (f: (R[V], R[V]) => R[V]) DList[(K, It[V])] =>

DList[(K, V)]
cogroup(right: R[DList[(K, W)]]) DList[(K, V)] =>

DList[(K, (It[V], It[W]))]
join(right: R[DList[(K, W)]]) DList[(K, V)] =>

DList[(K, (V, W))]
++(other: R[DList[T]]) DList[T] => DList[T]
partitionBy(p: R[Partitioner[T]]) DList[T] => DList[T]
takeSample(p: R[Double]) DList[T] => It[T]
materialize() DList[T] => It[T]
cache()1 DList[T] => DList[T]
sortByKey(asc: R[Boolean])1 DList[(K, V)] =>

DList[(K, V)]
sort(asc: R[Boolean])2 DList[T] => DList[T]

Table 3.1: DList operations. For space reasons, It represents the Scala
Iterable, R the Rep. The Rep[_] types in the right column are omitted.
1: Only supported on Spark. 2: Only supported on Crunch.

3.1 Programming Model

Jet offers a collection class DList[T], which represents a collection with el-
ement type S <: T distributed over multiple machines. DLists can only
be transformed or persisted as a whole, individual elements can not be up-
dated. Jet has a high-level interface by providing higher-order functions and
relational operations, similar to the functions on Spark’s [29] RDD type. All
the provided functions are data parallel.

We define operations for creating and persisting, for collecting all elements
on the driver program, for transforming all elements and for aggregating
the elements to one value for DList’s. Some operations are just available
for a certain target, we make those available in an extended version of Jet
for that target. The operations are summarized in Table 3.1. We use Scala’s
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3.2. Implementation

1 def describe(t: Rep[(Int, Person)]) =
2 t._2.name + " is the oldest person in " + t._1
3

4 def oldestPersonPerCity(x: Rep[Unit]) {
5 val persons = DList("persons").map(Person.parse(_, "\t"))
6 persons
7 .map(p => (p.zipcode, p))
8 .groupByKey()
9 .reduce((p1, p2) => if (p1.age > p2.age) p1 else p2)

10 .map(describe)
11 .save("oldestPersons")
12 }

Listing 2: Example program

tuples for key value pairs.

Operation DList() creates a new DList, and save saves one. The monadic
operations map, filter, and flatMap transform each element into 0 or
more new elements. To group all the elements with the same key together,
groupByKey is used, with or without partitioner. To reduce all elements
with the same key, reduce can be used. These operations cover the model
of MapReduce, as described by Dean et al. [13].

We support additionally the relational operations cogroup and join. We
support concatenation with the operation ++. To redistribute elements among
the machines,partitionBy can be used. Sampling is supported bytakeSample.
To collect all elements on the driver, materialize can be used.

For Spark, we also allow the use of sortByKey, which needs the key to be
a subtype of Ordered. If a collection in Spark is used multiple times, cache
will try to keep it in memory. For Crunch, we allow the sort method which
sorts based on the objects serialization.

We include a sample program in Listing 2. This program first parses the
entries in a DList[String] as Person objects. It then proceeds to print out
the name of the oldest person for each city. Note the user defined function
on Line 1.

3.2 Implementation

Jet uses a sequence of steps for the compilation, as shown in Figure 3.1. The
first step is staging, during which we create our intermediate representation
(IR). Then we apply rewrites specific to each framework, e.g. the merging
of groupByKey and reduce for Spark, because this enables the use of local
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3. Solution: Jet, An Embedded DSL for Distributed Data Computing

Figure 3.1: Steps inside the compiler

aggregation. Next we run Projection Insertion to remove unneeded fields
from objects. We do this by inserting additional map operations that only
keep the needed fields, or by changing existing map operations that output
an object. Then we transform the monadic operations to loops, to allow
Loop Fusion to fuse them later. Next we generate the code, during which
LMS applies Loop Fusion and Code Motion. We end up with Scala code for
use in a certain framework, and we start the compilation of that Scala code
in the last step. The last step is therefore outside of Jet.

Jet is implemented with the cake pattern, as LMS itself. This means that
it is easy to reuse components like analysis and transformations of code
and type factories for creating suitable types for a serialization framework.
Additionally, it allows each framework to define additional operations.

We allow the user to define his own classes. They have to be specified in a
very simple format, as shown in Listing 3. We use a script to generate all the
necessary code for its use in Jet. The user can then work with these classes
as with regular classes, with full compiler and editor support.

class Person(val name: String, val age: Int,
val zipcode: Int, val email: String)

Listing 3: Example class

3.2.1 Modularity and Extensibility

We use the cake pattern, that is also used for the Scala compiler [23]. This al-
lows us to compose our code generators by mixing together different pieces.
Per target, we only need a few hundred lines of specific code. To define a
target, the following is required:

14



3.3. Optimizations

• Define the code generation for the minimal set of operations

• Define which transformations to apply

• Mix in an appropriate serialization scheme

• If the target supports special operations, then define for each of those:

– The interface

– The code generation

– The access path analysis (see Section 3.3.3)

– If it is a barrier, how to insert a narrower before

Even though Jet is mainly implemented as a compiler, we can just as easily
implement an operation in the target framework code and link against it
from the generated code. We use this multiple times, to enable simpler code
generation and to program parts with less constraints on performance in a
simpler way.

Jet can also be extended with specialized constructs for specific programs.
See Section 4.2 for the discussion on the extensibility.

3.3 Optimizations

Our high level description of the program, including effect information, al-
lows us to apply a wide range of optimizations. We will explain what opti-
mizations we can use of LMS in Section 3.3.1. Further we will explain the
domain specific optimizations we implemented. We present our regular ex-
pression optimizations in Section 3.3.2, the Projection Insertion that removes
unneeded fields early in Section 3.3.3, and how we fuse monadic operations
in Section 3.3.4.

3.3.1 LMS Optimizations

LMS applies some optimizations by default, as explained in Section 2.1.4.
For the example code in Listing 2, LMS only inlines the calls to the function
describe and removes all statements that do not have an effect (in this
example, all data flows are saved, so nothing is removed). For the following
discussions, we will only look at the generated code for the lines 7–9 of
Listing 2, which prepares the data before the network shuffle.
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val filtered = in.filter({ s: String =>
!s.matches("\s+")

})

Listing 4: Before regular expression optimization

val frontend = new RegexFrontend("\s+")
val filtered = in.filter({ s: String =>
!frontend.matches(s)

})

Listing 5: After regular expression optimization

3.3.2 Regular Expressions

Regular expressions are often used for string processing. In distributed pro-
grams, the performance of regular expressions can influence the processing
time greatly.

Java supplies methods on Strings directly, which compile a regular expres-
sion first and then use it. We rewrite these calls to explicitly create the
pattern, and use the pattern for each call. The pattern is often constant, so
Code Motion in LMS moves it out of the hot paths.

Instead of working with the java builtin regular expression pattern we made
our own utility, the RegexFrontend. It chooses an appropriate regular ex-
pression implementation for each call: It switches to the dk.brics.automaton
library [18] when possible, and for splits with a single character pattern we
implemented an optimized method, as this is a quite common use case. We
show how this optimization changes the code in Listing 4 to the optimized
version in Listing 5.

These optimizations were not only inspired by Pig [24], which also optimizes
splits and makes use of the dk.brics.automaton library, we also reused their
code. We improved on their scheme even, allowing more regular expression
calls to be handled by the faster automaton library.

3.3.3 Projection Insertion

Projection Insertion optimizes a program by removing unneeded values
from a computation as early as possible. It is a common optimization in
databases and has been described already by Smith. et al. [26]. For dis-
tributed programs, this optimization is especially important, as it cuts down
the size of the objects which need to be transferred.

We ensure that dead fields are removed before any operation that is sensi-
tive to the amount of fields contained in the objects. Before these operations,
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(a) Before narrowing (b) After narrowing

Figure 3.2: Dataflow for the example program before and after narrowing.
Bold edges are barriers.

which we call barriers, we insert a map operation which returns a new object
that only contains the live fields. We call this map operation the projection or
also narrower, because it narrows the type. See Figure 3.2 for the data flow
graph of the program described in Listing 2 before and after this optimiza-
tion.

To insert these narrowers, we need to know which fields are really dead.
We can compute the live fields for one operation only if we know the live
fields, the fields that are used by some successor of this operation. To ensure
that, we analyze one operation at a time in the data flow graph in a reverse
topological order.

For analysis of live fields we need a way to describe the live values be-
tween operations. Since we support nested types, in Jet, we need to de-
fine the fields relative to a type. See Figure 3.3 for the fields nested within
Tuple2[Int, Person], which is the type that is used before the barrier. In
the figure, the nodes are the types at that path, and the edges are field ac-
cesses. The nodes in red denote the fields that need to be alive before the
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Figure 3.3: Nested fields and access paths for the type in Listing 3

val personsNarrowed = persons.map({ in: (Int, Person) =>
val (key, person) = (in._1, in._2)
val newPerson =

new Person_0_1(person.name, person.age)
(key, newPerson)

})

Listing 6: Inserted projection

barrier, and the orange nodes must be alive because one of their children
is alive. The narrower, presented in Listing 6, returns an object containing
only the red and orange fields.

To describe one field relative to a type, we use the path from the root of
the tree to that field. We call this an access path. In the figure, the access
paths of interest would be 1, 2.name and 2.age. To encode the live values
between two scopes, we use a set of these access paths.

To compute these access paths for a particular operation, we used the fol-
lowing primitives, combined as explained later:

• Access paths for a type (ALL): This primitive creates access paths for all
nested fields within a type. This is needed for all operations that are
known to access all fields within a type, like save.

• Closure Analysis (CA): This primitive analyzes a closure to collect all
the field reads on its input, and returns them as access paths.

• Rewrite access path (REWRITE): This primitive allows to change the pre-
fix of access paths. Since the semantics of several operations are well
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Operation Access Path Computation Barrier
filter P = S + CA( f )
map P = CA(N( f ))
groupByKey P = ALL(I, 1) + R(S, 2.iterable.x ⇒ 2.x) X
join PL = ALL(I, 1) + R(S, 2. 1.x ⇒ 2.x)

PR = ALL(I, 1) + R(S, 2. 2.x ⇒ 2.x)
X

reduce P = R(CA( f ), x ⇒ 2.iterable.x)+
R(S, 2.x ⇒ 2.iterable.x)

cache P = S X
save P = ALL(I)

Table 3.2: Access path computation and propagation for selected opera-
tions.

defined and change the type in a way that influences the access paths,
we need to update them accordingly. The operation groupByKey for
example changes the type, and all access paths starting with 2.iterable
need to be rewritten to point to 2.

• Narrow Closure (N): Given a closure and a set of access paths to its
output type, this primitive returns a new closure, in which the output
only contains the fields corresponding to the given access paths.

To analyze one map operation, we first need to narrow the output. If we
would not do this, the output symbol would contain dead fields, and to com-
pute these, additional field reads might be performed on the input. There-
fore we use the narrow closure primitive to replace the output symbol with
one that reads from the old one. If the output symbol of the closure scope is
a constructor invocation, LMS will recognize this and read the field values
directly. This happens for all fields, and the old output symbol will never be
read. It will be deleted by DCE, which in turn will make other parts of the
code dead. After we have replaced the output symbol, we can now analyze
the access paths the closure needs from its predecessors using the Closure
Analysis primitive.

The other operations are treated similarly, as listed in Table 3.2. In the table,
P represents the access paths to propagate to the predecessors. S represents
the set of access paths as propagated by the successors. ALL(T, p) generates
all access paths for the type T with the prefix p, the prefix can be left away to
generate all access paths for type T. R(P, a.x ⇒ b.x) is the REWRITE primi-
tive, which rewrites all access paths of P matching schema a.x to conform to
schema b.x. I is the input type of the operation. CA is the Closure Analysis
primitive, N is the Narrow primitive.

With this analysis, we can then simply insert projections on any edge in the
data-flow graph. Each projection introduces some CPU overhead though, so
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we only insert them before barriers. In our example, we use the operations
which require a network shuffle as barrier, and also the cache operation in
Spark, which stores the object in memory. In both cases, the performance
gained by removing the value is bigger than the performance lost due to
the additional work. Additionally to inserting projections, we use the Nar-
row Closure primitive also on all map operations that contain a constructor
invocation.

For the projection to work, we also need to generate appropriate types which
do not incur overhead for the eliminated fields. We generate specialized
code for each field combination that appears in the program. Theoretically
there are 2n possible combinations for a type with n fields, but in reality the
number of combinations is bound by the number of edges in the program.

For more information on the specialized code to support our narrowed types,
see the elaborations in Appendix A.

3.3.4 Loop Fusion

Our programming model endorses a programming style with many small,
higher order functions. Because every method call encurs a small overhead,
this may not be the fastest representation of the code. For this reason we1

transform the monadic operations map, flatMap and filter into a loop
representation. The Loop Fusion described in Section 2.1.4 then fuses these
loops together, eliminating the overhead of function calls.

With Loop Fusion we also merge the scopes of the functions. This enables
LMS to apply all its optimizations – we are especially interested in the opti-
mizations for structs – on a bigger scope. This essentially removes the trade-
off described in the previous Section. In the fully optimized code, Code
Motion makes the parsing of fields lazy, such that the minimal number of
fields is parsed to filter out an element. For further discussion on this, see
the explanations for the Figure 4.1.

The targets we support do not offer primitives that can write to multiple
outputs from a single mapper. This would be easy to add in Crunch, as
Hadoop supports this, but much harder on Spark. We guide Loop Fusion to
prevent fusing two loops if this would lead to a loop with multiple outputs.

Loop Fusion is explained in more detail in our workshop paper published
on Jet [3].

1Loop Fusion was integrated by Vojin Jovanovic
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3.4 Summary

We have presented Jet, a DSL for big data computing that supports different
targets, produces highly optimized code, and is modular and extensible.
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Chapter 4

Discussion

This chapter will discuss the optimizations in Section 4.1, the extensibility
in Section 4.2, the effort invested in Section 4.3, the performance in Section
4.4 and the limitations of Jet in Section 4.5. We conclude the discussion with
a comparison to a project with similar goals named Pig in Section 4.6.

4.1 Optimizations

Jet only applies compile time optimizations. This means that a wide range of
important optimizations are currently not considered [4]. The optimizer we
use is not based on a cost model, therefore we only consider optimizations
which do not hinder the performance in edge cases.

Within these constraints however we found generally applicable implemen-
tations and implemented them. In Figure 4.1 we show the combined effect
of our optimizations for the parsing and filtering of lineitems in TPCH Query
12 [12]. In the unoptimized code, 16 fields are parsed and transmitted over
the network. In the narrowed code, which only considers the fields that are
used by the program, only 5 fields are parsed and only one is sent across
the network. In the code with all our optimizations enabled, the parsing and
the filtering becomes interleaved. The fully optimized code therefore only
looks at the minimal fields necessary for discarding one item.

Our Projection Insertion algorithm works for nested objects and over all
program constructs. This is due to the reuse of the extensive facilities in
LMS. To implement Projection Insertion for Jet, it was enough to perform
the analysis, insert narrowers before barriers, and define suitable types.
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(a) Unoptimized (b) Narrowed (c) Fully optimized

Figure 4.1: Generated code snippet for TPCH Q12 lineitem mapper

4.2 Extensibility

We claim that Jet is extensible. We relied on the extensibility twice during
the implementation of Jet, and both time it met our needs.

In the first case, we were not getting the performance we were hoping for
from the Scoobi framework. Since the code generation layer is very thin and
completely separate from the rest of Jet, we were able to add support for
Crunch within one week. This includes choosing Crunch, getting to know it,
adding a new serialization scheme and implementing the code generation.

The second time we used the extensibility to add a multi-dimensional point
module (Vector) for use in the k-means benchmark presented in Section
4.4.3. We created a Vector implementation in just about 100 lines of code,
which features a high level interface but generates code that uses no high
level constructs, just arrays and while loops.

We also used the extensibility to optimize regular expressions. Both the
Vector and the regular expression optimizations can be reused in other LMS
based DSL’s.
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4.3 Effort

We reused LMS and FlumeJava implementations. This allowed us to focus
our efforts on the distributed data parallel computing domain. The effort
invested specifically into Jet amounts to just 5 Person months. This includes
getting to know LMS, finding suitable optimizations and performing bench-
marks. As of this writing, the main code for Jet (helper classes for the
generated code excluded) amounts to around 3700 lines of Scala.

4.4 Performance

We performed experiments to test our optimizations in a realistic setting.
We used the Amazon EC2 cloud and rented 21 m1.large machines, 20 slaves
and 1 master, in the same availability zone for these test runs. They each
have 2 CPU cores, 7.5 Gb Ram, 2 hard disks and 1 GBit Ethernet connections.
We ran each benchmark at least 3 times, and took the average. The observed
standard deviations were smaller than 3%, so we omitted them from the
graphs.

For the Hadoop based tests, we used Cloudera’s Hadoop distribution cdh3u4
[10]. We started a cluster using Whirr 0.7.1 [7], and made sure that both
physical hard drives were used for the distributed filesystem. We did not
tweak any settings for Hadoop. We used Crunch version 0.2.4 and Scoobi
version 0.4.0, the newest stable releases. For serialization of user classes,
we selected our generated Writable (the interface for serialization of user
classes in Hadoop) implementations, as they seemed to perform faster than
the other alternatives.

For the Spark based tests, we used the Mesos [14] EC2 scripts to start a clus-
ter. We had to tweak several settings in order to ensure successful program
runs: We set the default parallelism to the number of cores in the cluster, and
increased the available memory for Spark slaves to 6 Gb. For serialization,
we used Kryo [2], the standard for Spark.

4.4.1 WordCount

The WordCount benchmark counts the appearances of all words in Wikipedia
articles. The input is a dump of Wikipedia articles, that contains a plaintext
version that was generated from an XML version. This extraction did not
consistently remove all of the markup, so we used five regular expressions
to remove the incorrectly parsed parts from the output, all on the mapper
side. This job consists of one map and one reduce phase, and the former is
much more expensive than the latter. This makes for a good benchmark of

25



4. Discussion

Figure 4.2: WordCount benchmark

a frameworks base performance in the mapping stage, while still giving us
opportunities to test the optimizations for regular expressions. Projection
Insertion can not reduce the network traffic for this program.

We tested our program on a 62 Gb plaintext input, the articles file of the
AWS dataset [5] copied twice. It is a tab separated file, and we only used
the last column, the one with the plaintext content of the article.

We present the results of our test runs in Figure 4.2. The y-axis is normal-
ized to the unoptimized version for each framework. The number above
the unoptimized column is the total job time for that framework. For this
graph, we added the optimizations one by one. We start with the naive un-
optimized version, then we add first Loop Fusion and Projection Insertion,
which can not do much for this benchmark. Only on Scoobi we see a 10%
speedup. Then we add Code Motion, which in this case means that the
regular expressions are only calculated once and then reused. This reduces
the total job time by 65–70 seconds across all frameworks. The next version
adds the optimized splitter, which gives us around 13 seconds on Spark, but
around 23 seconds on the Hadoop based frameworks. The next version has
also the use of the faster automaton library enabled, which reduces the total
job time further by 26–30 seconds on all frameworks. Our optimizations
combined yield a speedup of 28% on Scoobi, 33% on Crunch and 79% on
Spark.
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Figure 4.3: TPCH Q12 benchmark

4.4.2 TPCH Q12

TPCH Q12 reads two collections, joins them, and then combines all values
into two values. This needs two Hadoop jobs, and the data involved in the
first one is large. Since after the join only one field of each collection is used,
Projection Insertion can remove most of the fields here for this job.

We chose this program to test the Projection Insertion, but to also show
the effects of Loop Fusion and the optimized splitter. As input we used a
generated dataset, created with the program dbgen by the TPC Performance
Council [12] with a scaling factor of 100. The total input was around 100 GB
of plaintext.

We present the obtained results in Figure 4.3. The graph follows the same
conventions as Figure 4.2, except that here the optimizations are added in-
dividually to the unoptimized versions. The last column shows the perfor-
mance of code with all optimizations enabled.

In this program all frameworks have a similar base performance. The op-
timized splitter reduces the job time by 28 seconds on Crunch and by 47
seconds on Spark. Projection Insertion results only in small speedups (10%
Scoobi / 19% Crunch) for Hadoop, while Spark exhibits a speedup of 71%.
Fusion can help by reducing the number of fields that are parsed. This
improves performance by 13–16% on all frameworks. The fully optimized
program gives us a speedup of 38% on Scoobi, 59% on Crunch and 148% on
Spark.

We see that the Projection Insertion has a great impact on Spark. We believe
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Figure 4.4: K-means

this to be due to some performance problems with spilling caches in Spark.

4.4.3 K-means

K-means is an iterative clustering algorithm. It reads the same data set in
each iteration to update the cluster centers. As shown by Zaharia et al. [29],
this job runs between 2x and 3x faster on Spark than on Hadoop, due to
Spark’s caching abilities. We have therefore only tested this program on
Spark.

We ported the implementation from the Spark repository [1] to Jet. As men-
tioned in Section 4.2, we created a DSL module for multi-dimensional points
and updated the implementation to use it instead of the wrapper around an
array that was in the original. We then compared the performance of these
two versions.

K-means can not profit from Projection Insertion, because no data can be
eliminated. Similarly it can not profit from Loop Fusion, since the way this
program has been written, this was already done by the developer. The only
optimization we are testing in this case is therefore our added module.

We generated input data for this test, each around 20 Gb, with 10 - 1000 di-
mensions. We set a fixed number of iterations and used 50 centers. The total
amount of computation is therefore comparable for different dimensions.

We present the results for this benchmark in Figure 4.4. The y-axis is the
total job time in seconds, the x-axis is the number of dimensions. The perfor-
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mance between the two version only differs substantially for the case with
10 dimensions, where our version is 36% faster. We believe that the overhead
imposed by the iterator is noticeable for 10 iterations, but is completely re-
moved with 1000 dimensions. Our results are similar to those presented by
Murray et al. [20].

4.5 Limitations

Due to the prototype nature of the current implementation there are some
limitations, which possibly can be overcome:

• Jet currently only allows simple struct types that do not allow any
form of inheritance. This is a complicated problem, that will require
some further investigation.

• LMS only provides a limited number of methods compared to regular
Scala. There are plans for enabling simple method calls to regular
Scala code, but in the meantime it is possible to add individual calls
as needed.

4.6 Jet compared to Pig

Pig [24] is another DSL for Distributed Data Parallel Computing. It has sim-
ilar goals and it also optimizes regular expressions and performs Projection
Insertion. For this reason we compare the performance of Jet’s generated
code with Pig.

We implemented the WordCount and TPCH Q12 benchmarks also for Pig.
For TPCH Q12, the code size for the Pig version was comparable to the
implementation in Jet, for WordCount, we needed a User Defined Function
(UDF) in Pig to perform the custom split. The code for the WordCount in
Pig is therefore substantially larger than the one in Jet. Also it required two
programming languages: Pig Latin for the main program logic and another
one (we used Java) for the split.

In Figure 4.5 we show the performance of the programs in Pig and the
versions of Jet with all optimizations enabled. The numbers for Pig and
Crunch are directly comparable. Both are as optimized as possible by that
framework, and both run on Hadoop. The numbers for Spark are not di-
rectly comparable to the ones for Hadoop, because there are some static
overheads for Hadoop. For example, the Hadoop programs all perform the
FlumeJava optimizations at runtime, create a jar of the program, and send it
to the job tracker which then distributes the jar on the cluster. In Spark on
the other hand, the jar file has to be already present on all computers.
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Figure 4.5: Pig vs Jet

Pig Crunch Original Crunch Optimized
WordCount 664.7 511.7 (-23%) 384.3 (-42%)
TPCH Q12 437.2 508.1 (+16%) 319.2 (-27%)

Table 4.1: Pig vs Jet total job times in seconds

We see that our Crunch versions outperform Pig by 42% for WordCount and
by 27% for TPCH Q12. We also see that Scoobi performs consistently worse
than Crunch and Pig.

We present the obtained numbers for Pig, the unoptimized and version with
all optimizations enabled as generated by Jet for Crunch in Table 4.1. The
percentages in the parentheses show the speedup vs Pig. Notice that the
unoptimized version for the WordCount outperforms Pig, this could be due
to inefficient String operators in Pig. For TPCH Q12 however we need to
apply our optimizations to be faster than Pig.

30



Chapter 5

Related and Future Work

We survey the work on optimizing distributed data parallel programs. We fo-
cus on work implementing optimizations at compile time and exclude work
optimizing the runtime itself, as it is complementary to our work. After the
survey of related work, we will discuss how Jet can be extended.

5.1 Pig

Pig [24] is a framework for Hadoop, allowing to express programs in a do-
main specific language called Pig Latin. Pig Latin tries to find a sweet spot
between the declarative SQL and the low-level, procedural style of MapRe-
duce. Pig Latin is a very restricted language, offering no functions or loops,
and comes with its own type system. The corresponding runtime Pig ap-
plies relational optimizations that include early projection, pushing down
of filters and operator rewrites.

Pig is extended by specifying User Defined Functions (UDF) in another gen-
eral purpose programming language. Pig will not analyze those functions,
so using a UDF will lead to missed opportunities for optimizations. To
make the programming of iterative jobs possible, the Pig Latin script has to
be embedded in another language and repeatedly compiled and called from
there.

Pig supports many common relational operators like sorting, removing du-
plicate values, counting, and different kind of joins. For the inner join it
provides multiple implementations with different performance characteris-
tics.

Jet and Pig try to achieve similar goals, but in very different ways. Pig was
implemented from the ground up, only reusing Hadoop for the runtime it-
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self. It uses general purpose implementations for the relational operators,
that are configured and chained together at runtime. Jet on the other hand
reuses existing FlumeJava implementations and LMS, and uses code gener-
ation to specialize the operators for each program. Reusing other projects
has allowed us to focus our efforts on domain specific problems, getting
programming language semantics, parser and a type system for free. Pig is
a mature project and currently supports more relational operators than Jet
does, but we believe we could implement those missing operators with a
fraction of the effort that was required for Pig.

Pig defines its own language Pig Latin. This not only means that they must
implement parser, semantics and type system for this language, but that the
users also must learn it. The tool support has also been developed, but that
too required extensive efforts. On the other hand, Jet is deeply embedded
in Scala and tool support for Scala programs can be used.

5.2 Hive

Hive [27] is a complete warehousing solution based on Hadoop. Like Pig,
Hive defines its own language called HiveQL, which closely resembles SQL.
Hive does not only have primitive types to define the columns, but also
features structs, maps and lists. Hive too is extensible by user defined func-
tions.

Hive performs many of the same optimizations as Pig, the rule based rewrites
include Projection Insertion and executing filters as early as possible. Hive,
like Pig, allows the user to choose a suitable join implementation, including
map side joins.

In contrast to Pig and Jet, Hive also manages the metadata for tables cen-
trally, so that the queries can simply refer to tables instead of paths in HDFS.
It also allows partitioning a table by creating subfolders, selections on these
partitions can then be used to preselect which folders to read.

To compare Hive with Jet, the same points can be made as for the compari-
son between Pig and Jet. While HiveQL resembles SQL even more so than
Pig Latin does, a considerable effort had to go into defining the parser and
semantics of the language. Hive does not support loops.

5.3 Scope

Scope [8] features also a declarative language inspired by SQL. It runs on
the Cosmos system, a Microsoft internal system, which allows a much finer
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grained control over the execution of a distributed program than Spark or
Hadoop do. In Cosmos, arbitrary code and resources can be uploaded to a
machine and then executed there. Scope employs a cost based optimizer to
use the resources efficiently and create a complete execution plan. Scope per-
forms relational operations too, like Projection Insertion, early filtering and
pre-aggregation. Like Pig, Scope can be extended by user defined functions.

Further building upon Scope, RoPE [4] has been presented, an instrumen-
tation based analysis and optimization for Scope programs. RoPE gathers
various statistics about the data properties and information about the mem-
ory and processing cost of functions, and uses these to configure the cost
estimates for the Scope optimizer. Even when the job can not be changed
anymore, jobs are often frequently recurring, and the gained knowledge can
be used when starting the job the next time.

Jet currently does not generate such a detailed execution plan, therefore
some of the optimizations done in Scope are not possible. While Jet is em-
bedded in Scala and does not need a second language, Scope is like Pig split
into the declarative language and the general purpose language for user
defined functions. While in Jet one can define rows as normal Scala case
classes, in Scope they have to be defined as rows, and these definitions need
to exist in both the Scope code and the C# code for a user defined function.

Like Pig, Scope does not analyze the user defined functions themselves, it
just treats them as black boxes. But unlike with Pig and Hive, this does not
matter as much, as the properties of the function are collected at runtime by
instrumentation. Instrumentation could be done in Jet, but currently we do
not have a cost based optimizer. Additionally, as long as we target Hadoop
or Spark, our freedom for rewriting the program is more limited.

5.4 Hadoop program optimizers

Manimal [17] and HadoopToSQL [16] optimize a Hadoop program by rewrit-
ing the byte code. They analyze one Hadoop job to infer properties about
it, which they use to insert relational optimizations, for example optimizing
the data access patterns by building indexes. Manimal can further rewrite
the program to use columnar storage instead. Being based on byte code
analysis, both projects suffer from lost information due to compilation.

Jet is used as a preprocessor, not a post processor. This means more high
level information is available, but unlike these projects, the user has to start
his program using Jet. Currently Jet does not do any index based optimiza-
tion, but we believe that we could achieve this with less effort than Manimal
and HadoopToSQL, and for a larger set of programs due to our high-level
information about the program.
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5.5 Future Work

Jet can be extended in various ways. We are currently only implementing
one relational optimization, so other optimizations like early filtering could
be added. But also column storage and indexing optimizations would be
interesting and within the possibilities.

Also, currently all optimizations are applied at compile time, but staging
could just as well be done at runtime. At runtime, more data is available
like the size of input files, this would enable us to reorder joins for example.
A natural extension of staging at runtime would then be to instrument and
reoptimize the code as it has been done for Scope [4].

Further we could also combine Jet with other LMS based DSLs. Regular
expressions and XML processing could benefit from staged code generation.
LMS can also generate code for GPUs, we could also try to leverage GPUs
for computationally intensive distributed computations.
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Chapter 6

Conclusion

We present Jet, a DSL for distributed data parallel computing that has a
high level declarative programming model. Through lightweight modular
staging Jet is deeply embedded in Scala, allowing to reuse Scala’s type sys-
tem and parser. Jet is modular and extensible and allows execution on both
Spark and Hadoop. Jet optimizes programs by employing classical compiler
optimizations like Code Motion and Loop Fusion, and relational optimiza-
tions like Projection Insertion. The presented optimizations accelerate the
tested programs between 79–148% on Spark and 33–59% on Hadoop.

The overall lesson that we draw from this work is that an extensible and
modular compiler is a good approach for writing a domain specific lan-
guage. Modularity allows the reuse of components between DSLs, so that
we could focus completely on domain specific issues. Extensibility allows
Jet to be useful even if it does not support a certain use case, because the
programmer can just add his own module and optimizations for it. We hope
to see more extensible and modular compilers in the future.

35





Appendix A

Serialization

We generated code for the serialization of user classes automatically to en-
able Projection Insertion. They fulfill the following properties:

• Only the live fields are serialized

• Only the live fields are needed to call the constructor

• Simple code is generated, so that efficient accessors can be used

We generate these types differently for each target, to satisfy additional con-
straints imposed by it.

A.1 Hadoop

For Hadoop, we generate implementations for the Writable interface. A
class implementing Writable needs a constructor without arguments, and
needs to define how to read fields from a stream and how to write fields to
a stream.

To allow any subsets of fields to be used, we defined two constructors: One
without any arguments and one with an argument for each field, and each
argument has a default value. Scala allows us to invoke the constructor with
any combination of fields by naming them.

To define which fields should be serialized, we use a bitset. If the bit at the
position i is 1, that field is serialized. When serializing an object, we first
write the bitset and then the fields. Similarly when deserializing an object,
we first read the bitset and then the fields. For each combination of fields
that appear in the program we specialize the reading and writing methods.

Listing 7 shows generated code for the Person class, Listing 8 shows a corre-
sponding valid constructor invocation. Note that the bitset is just a field, if it
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were a constructor argument it would incorrectly appear in the case classes
String representation.

A.2 Spark

For Spark, the requirements are different. Here we are not restricted to a
single class, but we need to ensure that the memory usage is as minimal as
possible of the generated objects.

We generate a trait with all fields as methods, that just throw an exception
when accessed. Then we create subclasses for this trait, with different com-
binations of fields. The naming convention simply concatenates the field
numbers that are available in that type.

Listing 9 shows generated code for the Person class. Listing 10 shows a
corresponding valid constructor invocation.

The serialization is in this case not generated by Jet but will be generated at
runtime by the Kryo serialization framework [2].
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case class Person(var name: java.lang.String = " ",
var age: Int = 0, var zipcode: Int = 0,
var email: java.lang.String = " ")

extends Writable {
def this() = this(name = " ")

var __bitset: Long = 15

override def readFields(in: DataInput) {
__bitset = WritableUtils.readVLong(in)
__bitset match {

case 15 => readFields_0_1_2_3(in)
case 3 => readFields_0_1(in)
case x => throw new RuntimeException(

"Unsupported bit combination " + x)
}

}
override def write(out: DataOutput) {
WritableUtils.writeVLong(out, __bitset)
__bitset match {
case 15 => write_0_1_2_3(out)
case 3 => write_0_1(out)
case x => throw new RuntimeException(

"Unsupported bit combination " + x)
}

}
def readFields_0_1_2_3(in: DataInput) {
name = in.readUTF
age = WritableUtils.readVInt(in)
zipcode = WritableUtils.readVInt(in)
email = in.readUTF

}
def write_0_1_2_3(out: DataOutput) {
out.writeUTF(name)
WritableUtils.writeVInt(out, age)
WritableUtils.writeVInt(out, zipcode)
out.writeUTF(email)

}
def readFields_0_1(in: DataInput) {

name = in.readUTF
age = WritableUtils.readVInt(in)

}
def write_0_1(out: DataOutput) {

out.writeUTF(name)
WritableUtils.writeVInt(out, age)

}
}

Listing 7: Writable implementation for Hadoop
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val person = new Person(name="Mickey Mouse", age=84)
person.__bitset = 3

Listing 8: Instantation of Person with only two fields with the generated
Writable

trait Person extends Serializable {
def throwException(name: String) =

throw new RuntimeException(
"Should not try to access "+name+" here,"+
" internal error")

def name: java.lang.String = throwException("name")
def age: Int = throwException("age")
def zipcode: Int = throwException("zipcode")
def email: java.lang.String = throwException("email")

}

case class Person_0_1(
override val name: java.lang.String,
override val age: Int)
extends Person

case class Person_0_1_2_3(
override val name: java.lang.String,
override val age: Int,
override val zipcode: Int,
override val email: java.lang.String)
extends Person

Listing 9: Generated classes for Spark

val person = new Person_0_1("Mickey Mouse", 84)

Listing 10: Instantiation of Personwith only two fields with the generated
classes for Spark
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duce programs. Proc. VLDB Endow., 4(6):385–396, Mar. 2011.

[18] A. Møller. dk. brics. automaton–finite-state automata and regular ex-
pressions for java, 2005. http://www.brics.dk/automaton/.

[19] A. Moors, T. Rompf, P. Haller, and M. Odersky. Scala-virtualized. In
Proceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation and
program manipulation, page 117–120, 2012.

[20] D. G. Murray, M. Isard, and Y. Yu. Steno: automatic optimization of
declarative queries. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, page 121–131, 2011.

42

https://ccp.cloudera.com/display/SUPPORT/CDH+Downloads
https://github.com/cloudera/crunch
http://www.tpc.org/tpch/
http://www.brics.dk/automaton/


Bibliography

[21] NICTA. Scoobi: A scala productivity framework for hadoop.
http://nicta.github.com/scoobi/, 2012.

[22] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. The Scala Language Specification.
Citeseer, 2004.

[23] M. Odersky and M. Zenger. Scalable component abstractions. In Pro-
ceedings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’05, page
41–57, New York, NY, USA, 2005. ACM.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, page
1099–1110, 2008.

[25] T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. Communica-
tions of the ACM, 55(6):121–130, 2012.

[26] J. M. Smith and P. Y. Chang. Optimizing the performance of a relational
algebra database interface. Commun. ACM, 18(10):568–579, Oct. 1975.

[27] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,
H. Liu, and R. Murthy. Hive - a petabyte scale data warehouse using
hadoop. Data Engineering, International Conference on, 0:996–1005, 2010.

[28] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, and
J. Currey. DryadLINQ: a system for general-purpose distributed data-
parallel computing using a high-level language. In Proceedings of the 8th
USENIX conference on Operating systems design and implementation, page
1–14, 2008.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: a fault-
tolerant abstraction for in-memory cluster computing. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementa-
tion, NSDI’12, page 2–2, Berkeley, CA, USA, 2012. USENIX Association.

43

http://nicta.github.com/scoobi/

	Contents
	Introduction
	Background
	LMS
	Scala
	Scala Virtualized 
	LMS
	LMS Optimizations

	Distributed Data Parallel Programming
	MapReduce
	Hadoop
	Spark


	Solution: Jet, An Embedded DSL for Distributed Data Computing
	Programming Model
	Implementation
	Modularity and Extensibility

	Optimizations
	LMS Optimizations
	Regular Expressions
	Projection Insertion
	Loop Fusion

	Summary

	Discussion
	Optimizations
	Extensibility
	Effort
	Performance
	WordCount
	TPCH Q12
	K-means

	Limitations
	Jet compared to Pig

	Related and Future Work
	Pig
	Hive
	Scope
	Hadoop program optimizers
	Future Work

	Conclusion
	Serialization
	Hadoop
	Spark

	Bibliography

