
Register allocation
Advanced Compiler Construction

Michel Schinz — 2014–04–17

1

Register allocation
The problem of register allocation consists in rewriting a 
program that makes use of an unbounded number of local 
variables — also called virtual or pseudo-registers — into 
one that only makes use of machine registers.
If there are not enough machine registers to store all 
variables, one or several of them must be spilled, i.e. stored 
in memory instead of in a register.
Register allocation is one of the very last phases of the 
compilation process — typically only instruction scheduling 
comes later. It is performed on an intermediate language 
that is extremely close to machine code.

2

Setting the scene

Register allocation will be performed on an RTL language 
with the following characteristics:

– apart from n machine registers R0, …, Rn-1, an 
unbounded number of virtual registers v0, v1, … are 
available before register allocation,

– machine registers that play a special role, like the link 
register (containing the return address), are identified 
with a non-numerical index, e.g. RLK; they are real 
registers nevertheless.

3

Example function
To illustrate register allocation techniques, we will use a 
function computing the greatest common divisor of two 
numbers using Euclid’s algorithm.

In L3

(defrec gcd
  (fun (a b)
    (if (= 0 b)
        a
        (gcd b (% a b)))))

In RTL
gcd:  R3 ← done
      if R2 = 0 goto R3
      R3 ← R2
      R2 ← R1 % R2
      R1 ← R3
      R3 ← gcd
      goto R3
done: goto RLK

Calling conventions: arguments are passed in R1, R2, … and 
the result is put in R1.

4



Register allocation example
After register allocation
gcd:
loop: R3 ← done
      if R2 = 0 goto R3
      R3 ← R2
      R2 ← R1 % R2
      R1 ← R3
      R3 ← loop
      goto R3
done: goto RLK

Allocation:
v0 → RLK
v1 → R1
v2 → R2
v3, v4, v5 → R3

Before register allocation
gcd:  v0 ← RLK
      v1 ← R1
      v2 ← R2
loop: v3 ← done
      if v2 = 0 goto v3
      v4 ← v2
      v2 ← v1 % v2
      v1 ← v4
      v5 ← loop
      goto v5
done: R1 ← v1
      goto v0

R1, R2: parameters
RLK: return address

allocable 
registers:
R1, R2, 
R3, RLK

5

R.a. techniques

We will study two commonly used techniques:
– register allocation by graph coloring, which is relatively 

slow but produces very good results,
– linear scan register allocation, which is fast but 

produces  worse results.
Because it is slow, graph coloring tends to be used in batch 
compilers, while linear scan tends to be used in JIT 
compilers.
Both techniques are global, i.e. they allocate registers for a 
whole function at a time.

6

Technique #1:
graph coloring

7

Allocation by graph coloring
The problem of register allocation can be reduced to the 
well-known problem of graph coloring, as follows:

– The interference graph is built. It has one node per 
register (real or virtual), and two nodes are connected by 
an edge iff their registers are simultaneously live.

– The interference graph is colored with at most K colors 
(K being the number of available registers) so that all 
nodes have a different color than all their neighbors.

Problems:
– for an arbitrary graph, the coloring problem is NP-

complete,
– a K-coloring might not even exist. 

8



Interference graph example
Interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

Program

gcd:
  v0 ← RLK
  v1 ← R1
  v2 ← R2
loop:
  v3 ← done
  if v2=0 goto v3
  v4 ← v2
  v2 ← v1 % v2
  v1 ← v4
  v5 ← loop
  goto v5
done:
  R1 ← v1
  goto v0

Liveness
{in}{out}

{v0-v2}{v0-v3}
{v0-v3}{v0-v2}
{v0-v2}{v0-v2,v4}
{v0-v2,v4}{v0-v2,v4}
{v0-v2,v4}{v0-v2}
{v0-v2}{v0-v2,v5}
{v0-v2,v5}{v0-v2}

{v0,v1}{R1,v0}
{R1,v0}{R1}

{R1,R2,RLK}{R1,R2,v0}
{R1,R2,v0}{R2,v0,v1}
{R2,v0,v1}{v0-v2}

9

Coloring example
Original 
program

gcd:
  v0 ← RLK
  v1 ← R1
  v2 ← R2
loop:
  v3 ← done
  if v2=0 goto v3
  v4 ← v2
  v2 ← v1 % v2
  v1 ← v4
  v5 ← loop
  goto v5
done:
  R1 ← v1
  goto v0

Rewritten 
program

Colored interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1 1

2 2

3 3

3

3

4

4

gcd:
  RLK ← RLK
  R1 ← R1
  R2 ← R2
loop:
  R3 ← done
  if R2=0 goto R3
  R3 ← R2
  R2 ← R1 % R2
  R1 ← R3
  R3 ← loop
  goto R3
done:
  R1 ← R1
  goto RLK

10

Coloring example (2)
Original 
program

Rewritten 
program

Colored interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1

2

3

4

3

4

1

2

2

2

This second coloring is also correct, but implies worse code!

gcd:
  v0 ← RLK
  v1 ← R1
  v2 ← R2
loop:
  v3 ← done
  if v2=0 goto v3
  v4 ← v2
  v2 ← v1 % v2
  v1 ← v4
  v5 ← loop
  goto v5
done:
  R1 ← v1
  goto v0

gcd:
  R3 ← RLK
  RLK ← R1
  R1 ← R2
loop:
  R2 ← done
  if R1=0 goto R2
  R2 ← R1
  R1 ← RLK % R1
  RLK ← R2
  R2 ← loop
  goto R2
done:
  R1 ← RLK
  goto R3

11

Coloring by simplification
Coloring by simplification is a heuristic technique to (try 
to) color a graph G with K colors.
It works as follows: if the graph G has at least one node n 
with less than K neighbors, n is removed from G, and that 
simplified graph is recursively colored. Once this is done, n 
is colored with any color not used by its neighbors.
There is always at least one color available for n, because its 
neighbors use at most K-1 colors.
If the graph does not contain a node with less than K 
neighbors, K-coloring might not be feasible, but will be 
attempted nevertheless, as we will see.

12



Coloring by simplification
To illustrate coloring by simplification, we can color the 
following graph with K=3 colors.

1

4 5

2

3

Stack of removed nodes: 5 2 1 3

13

Spilling

14

(Optimistic) spilling
During simplification, it is perfectly possible to reach a point 
where all nodes have at least K neighbors.
When this occurs, a node n must be chosen to be spilled, 
i.e. have its value stored in memory instead of in a register.
As a first approximation, we assume that the spilled value 
does not interfere with any other value, remove its node 
from the graph, and recursively color the simplified graph as 
usual.
After the simplified graph has been colored, it is actually 
possible that the neighbors of n do not use all the possible 
colors! In this case, n is not spilled. Otherwise it must really 
be spilled.

15

Spill costs

The node to spill could be chosen at random, but it is clearly 
better to favor values that are not frequently used, or values 
that interfere with many others.
The following formula is often used as a measure of the spill 
cost for a node n. The node with the lowest cost should be 
spilled first.

cost(n) = (rw0(n) + 10 rw1(n) + … + 10k rwk(n)) / degree(n)
where rwi(n) is the number of times the value of n is read or 
written in a loop of depth i, and degree(n) is the number of 
edges adjacent to n in the interference graph.

16



Spilling of pre-colored nodes

As we have seen, the interference graph contains nodes 
corresponding to the registers of the machine.
These nodes are said to be pre-colored, because the color 
of each of them is given by the machine register it 
represents.
Pre-colored nodes must never be simplified during the 
coloring process, as by definition they cannot be spilled.

17

Spilling example
To illustrate spilling, let’s try to color the same interference 
graph as before, but with only three colors.
The graph does not contain a node with degree less than 
three, so the one with the lowest cost must be spilled.

node rw0 rw1 deg. cost
v0 2 0 7 0.29
v1 2 2 6 3.67
v2 1 4 6 6.83
v3 0 2 3 6.67
v4 0 2 3 6.67
v5 0 2 3 6.67

cost = (rw0 + 10 rw1) / degree

gcd:
  v0 ← RLK
  v1 ← R1
  v2 ← R2
loop:
  v3 ← done
  if v2=0 goto v3
  v4 ← v2
  v2 ← v1 % v2
  v1 ← v4
  v5 ← loop
  goto v5
done:
  R1 ← v1
  goto v0

18

Spilling example
Once v0, which has the lowest spill cost, is removed from the 
graph, the simplified graph is 3-colorable.

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

1 1

2 2

3

3

3

3

19

Consequences of spilling
Once a node has been spilled, the original program must 
be rewritten to take that spilling into account, as follows:

– just before the spilled value is read, code must be 
inserted to fetch it from memory,

– just after the spilled value is written, code must be 
inserted to write it back to memory.

Since that spilling code introduces new virtual registers, the 
whole register allocation process must be restarted from the 
beginning.
In practice, one or two iterations are enough in almost all 
cases.

20



Spilling code integration
Rewritten program
gcd:
  v6 ← RLK
  push v6
  v1 ← R1
  v2 ← R2
loop:
  v3 ← done
  if v2 = 0 goto v3
  v4 ← v2
  v2 ← v1 % v2
  v1 ← v4
  v5 ← loop
  goto v5
done:
  R1 ← v1
  pop v7
  goto v7

Original program

gcd:
  v0 ← RLK
  v1 ← R1
  v2 ← R2
loop:
  v3 ← done
  if v2 = 0 goto v3
  v4 ← v2
  v2 ← v1 % v2
  v1 ← v4
  v5 ← loop
  goto v5
done:
  R1 ← v1
  goto v0

spilling 
of v0

21

New interference graph
Interference graph w/ spilling

R1

R2

R
LK

v1

v2

v3

v4

v5

1

2

3

v6

v7

1

2

2

3

3

3

3

Final program
gcd:
  RLK ← RLK
  push RLK
  R1 ← R1
  R2 ← R2
loop:
  RLK ← done
  if R2 = 0 goto RLK
  RLK ← R2
  R2 ← R1 % R2
  R1 ← RLK
  RLK ← loop
  goto RLK
done:
  R1 ← R1
  pop R2
  goto R2

22

Coalescing

23

Coloring quality
As we have seen in our first example, two valid K-colorings 
of the same interference graph are not necessarily 
equivalent: one can lead to a much shorter program than 
the other.
This is due to the fact that a move instruction of the form
v1 ← v2

can be removed after register allocation if v1 and v2 end up 
being allocated to the same register. (Of course, this also 
holds when v1 or v2 is a real register before allocation).
A good register allocator must therefore try to make sure 
that this happens as often as possible.

24



Coalescing

Given a move instruction of the form
v1 ← v2

and provided that v1 and v2 do not interfere, it is always 
possible to replace all instances of v1 and v2 by instances of 
a new virtual register v1&2. Once this has been done, the 
move instruction becomes useless and can be removed.
This technique is known as coalescing, as the nodes of v1 
and v2 in the interference graph coalesce into a single 
node.

25

Coalescing issues

Coalescing is not always a good idea, though: the 
coalesced node can have a higher degree than the two 
original nodes, which might make the graph impossible to 
color with K colors and require spilling!
Conservative coalescing heuristics have to be used.

26

Coalescing heuristics
Two coalescing heuristics are commonly used:

– Briggs: coalesce nodes n1 and n2 to n1&2 iff n1&2 has less 
than K neighbors of significant degree (i.e. of a degree 
greater or equal to K),

– George: coalesce nodes n1 and n2 to n1&2 iff all 
neighbors of n1 either already interfere with n2 or are of 
insignificant degree.

Both heuristics are safe, in that they will not turn a K-
colorable graph into a non-K-colorable one. But they are 
also conservative, in that they might prevent a coalescing 
that would be safe.

27

Heuristic #1: Briggs

Briggs’ heuristic: coalesce nodes n1 and n2 to n1&2 iff n1&2 
has less than K neighbors of significant degree (i.e. of 
degree ≥ K).
Rationale: during simplification, all the neighbors of n1&2 
that are of insignificant degree will be simplified; at this 
point, n1&2 will have less than K neighbors and will therefore 
be simplifiable too.
This heuristic is safe, in that it will not turn a K-colorable 
graph into a non-K-colorable one. But it is also conservative, 
in that it might prevent a coalescing that would be safe.

28



Heuristic #2: George

George’s heuristic: coalesce nodes n1 and n2 to n1&2 iff all 
neighbors of n1 either already interfere with n2 or are of 
insignificant degree.
Rationale: the neighbors of n1&2 will be the same as the 
neighbors of n2, plus all neighbors of n1 that are of 
insignificant degree. The latter ones will all be simplified, at 
which point the graph will be a sub-graph of the original 
one.
Like Briggs’, George’s heuristic is safe but conservative.

29

Coalescing example
non-

interfering, 
move-related 

nodes

node 
of significant 

degree

node of 
insignificant 

degree

coalescing of 
R1 and v1 into 

R1v

R1v

R2

R
LK

v0

v2

v3

v4
v5

R3

R1

R2

R
LK

v0
v1

v2

v3

v4
v5

R3

safe 
according to 
Briggs and 

George with 
K = 4

30

Coalescing example (2)

coalescing of 
R2 and v2 into 

R2v

R1v

R2

R
LK

v0

v2

v3

v4
v5

R3

R1v

R2v

R
LK

v0

v3

v4
v5

R3

safe 
according to 
Briggs and 

George with 
K = 4

31

Coalescing example (3)

R1v

R2v

R
LK

v

v3

v4
v5

R3

coalescing of 
RLK and v0 
into RLKv

R1v

R2v

R
LK

v0

v3

v4
v5

R3

safe 
according to 
Briggs and 

George with 
K = 4

32



Putting it all 
together

33

Iterated register coalescing
To get the best results, the phases of simplification and 
coalescing should be interleaved. This technique is known 
as iterated register coalescing (IRC):

1. Interference graph nodes are partitioned in two 
classes: move-related or not.

2. Simplification is done on not move-related nodes (as 
move-related ones could be coalesced).

3. Conservative coalescing is performed.
4. When neither simplification nor coalescing can 

proceed further, some move-related nodes are frozen 
(marked as non-move-related).

5. The process is restarted at 2.

34

Iterated register coalescing
build

simplify

coalesce

freeze

potential spill

select

actual spill

in case of 
actual spill

35

Assignment 
constraints

36



Assignment constraints
Until now, we have assumed that a virtual register can be 
assigned to any physical register, as long as it is free.
In practice, this is often not the case, as various architectural 
characteristics impose assignment constraints, e.g.:

– some architectures divide the registers in several 
classes, with different capabilities (e.g. address vs. data 
registers, integer vs. floating-point registers, etc.),

– some instructions require some of their arguments — or 
their result — to be in specific registers,

– calling conventions require function arguments and 
results to be in specific registers.

A realistic register allocator has to be able to satisfy these 
constraints.

37

Register classes

Most architectures separate the registers in several classes. 
Even in modern RISC architectures, there is typically one 
class for floating-point values and another one for integers 
and pointers.
Register classes can easily be taken into account in a 
coloring-based allocator: if a variable must be put in a 
register of some class, then its node can be made to 
interfere with all pre-colored nodes corresponding to 
registers of other classes.

38

Calling conventions
Many calling conventions pass arguments in registers.
At the beginning of all functions, move instructions have to 
be inserted to copy the arguments to new virtual registers:
fact:
  v1 ← R1  ; save first argument in v1

Similarly, before any function call, move instructions have to 
be inserted to load the arguments in the appropriate 
registers:
R1 ← v2    ; load first argument from v2
CALL fact

Whenever possible, theses move instructions will be 
removed by coalescing.

39

Caller/callee-saved registers

Calling conventions distinguish two kinds of registers:
– caller-saved registers are saved by the caller before a 

call and restored after it,
– callee-saved registers are saved by the callee at 

function entry and restored before function exit.
Ideally, all virtual registers that have to survive at least one 
call should be assigned to callee-saved registers, while 
other virtual registers should be assigned to caller-saved 
registers.
How can this be obtained in a coloring-based allocator?

40



Caller/callee-saved registers

The contents of caller-saved registers do not survive a 
function call. To model this, edges are added to the 
interference graph between all virtual registers that are live 
across at least one call and (physical) caller-saved registers.
These edges ensure that virtual registers that are live across 
at least one call will not be assigned to caller-saved 
registers, and will therefore either be spilled or allocated to 
callee-saved registers!

41

Saving callee-saved registers

Callee-saved registers must be preserved by all functions. 
This can be achieved by copying them to fresh temporary 
registers at function entry and restoring them before exit.

42

Saving callee-saved registers
For example, if R8 is a callee-saved register, a function could 
look like:
entry:
  v1 ← R8  ; save callee-saved R8 in v1
  …        ; function body
  R8 ← v1  ; restore callee-saved R8
  goto RLK

If the register pressure is low, then R8 and v1 will be 
coalesced, and the two move instructions removed. If 
register pressure is high, v1 will be spilled, thereby making 
R8 available in the function body, e.g. to store a virtual 
register live across a call.

43

Technique #2:
linear scan

44



Linear scan
The basic linear scan technique is very simple:

– the program is linearized — i.e. represented as a linear 
sequence of instructions, not as a graph,

– a unique live range is computed for every variable, 
going from the first to the last instruction during which it 
is live,

– registers are allocated by iterating over the intervals 
sorted by increasing starting point: each time an interval 
starts, the next free register is allocated to it, and each 
time an interval ends, its register is freed,

– if no register is available, the active range ending last is 
chosen to have its variable spilled.

45

Linear scan example
Let’s try to allocate registers for our gcd procedure using 
linear scan, first with four allocable registers, then with three.

Program
 1 gcd:  v0 ← RLK
 2       v1 ← R1
 3       v2 ← R2
 4 loop: v3 ← done
 5       if v2=0 goto v3
 6       v4 ← v2
 7       v2 ← v1 % v2
 8       v1 ← v4
 9       v5 ← loop
10       goto v5
11 done: R1 ← v1
12       goto v0

Live ranges
v0: [1+,12-]
v1: [2+,11-]
v2: [3+,10+]
v3: [4+,5-]
v4: [6+,8-]
v5: [9+,10-]

Notation:
  i+ entry of instr. i
  i- exit of instr. i

46

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3

2+ [2+,11-],[1+,12-] v0→R3,v1→R1

3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2

4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK

6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v4→RLK

9+ [9+,10-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v5→RLK

Result: no spilling

47

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK

2+ [2+,11-],[1+,12-] v0→RLK,v1→R1

3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2

4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK

6+ [6+,8-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v4→RLK

9+ [9+,10-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v5→RLK

Result: v0 is spilled during its whole life time!

48



Linear scan improvements
The basic linear scan algorithm is very simple but still 
produces reasonably good code. It can be (and has been) 
improved in many ways:

– the liveness information about virtual registers can be 
described using a sequence of disjoint intervals instead 
of a single one,

– virtual registers can be spilled for only a part of their 
whole life time,

– more sophisticated heuristics can be used to select the 
virtual register to spill,

– etc.

49


