Register allocation

Advanced Compiler Construction
Michel Schinz — 2014-04-17

Register allocation

The problem of register allocation consists in rewriting a
program that makes use of an unbounded number of local
variables — also called virtual or pseudo-registers — into
one that only makes use of machine registers.

If there are not enough machine registers to store all
variables, one or several of them must be spilled, i.e. stored
in memory instead of in a register.

Register allocation is one of the very last phases of the
compilation process — typically only instruction scheduling
comes later. It is performed on an intermediate language
that is extremely close to machine code.

Setting the scene

Register allocation will be performed on an RTL language
with the following characteristics:

- apart from n machine registers R, ..., Rn-1, an
unbounded number of virtual registers ve, V1, ... are
available before register allocation,

- machine registers that play a special role, like the link
register (containing the return address), are identified
with a non-numerical index, e.g. Rik; they are real
registers nevertheless.

Example function

To illustrate register allocation techniques, we will use a
function computing the greatest common divisor of two
numbers using Euclid’s algorithm.

InL3 In RTL
(defrec gcd gcd: Ry « done
(fun (a b) if Rz = 0 goto R3
(if (= 0 b) Rs < R;
a R2 <« R1 % Rz

(gcd b (% a b))))) Ri < Rs

Rs < gcd
goto Rs

done: goto Rk

Calling conventions: arguments are passed in Ry, Rz, ... and
the resultis putin R1.

Register allocation example

Before register allocation After register allocation

allocable
gcd: ve < Rik . . gcd:
Vi < Ri registers: loop: R3 « done
V2 « R Ri, R, if R, = 0 goto Rs
loop: vz < done R: R Rs < R:
if v2 = 0 goto v3 3, ALK R2 <« R1 % R
V4 < V2 R1 < Rs
V2 & V1 % V2 R3 < loop
Vi < Vi goto R3
vs < loop done: goto Rik
goto vs
done: R1 « v1 Allocation:
goto Vo Vo = Rik
vi— R

Ri1, R2: parameters

Rik: return address v2 = Rz
V3, V4, Vs = R3

R.a. techniques

We will study two commonly used techniques:
- register allocation by graph coloring, which is relatively
slow but produces very good results,
- linear scan register allocation, which is fast but
produces worse results.
Because it is slow, graph coloring tends to be used in batch
compilers, while linear scan tends to be used in JIT
compilers.
Both techniques are global, i.e. they allocate registers for a
whole function at a time.

Technique #1:
graph coloring

Allocation by graph coloring

The problem of register allocation can be reduced to the
well-known problem of graph coloring, as follows:

- The interference graph is built. It has one node per
register (real or virtual), and two nodes are connected by
an edge iff their registers are simultaneously live.

- The interference graph is colored with at most K colors
(K being the number of available registers) so that all
nodes have a different color than all their neighbors.

Problems:

- for an arbitrary graph, the coloring problem is NP-
complete,

- a K-coloring might not even exist.

Interference graph example

Program

gcd:
Vo < R
V1 R1
V2 < R2
loop:
vz + done
if v2=0 goto vs3
Vg < V2
V2 < Vi % V2
Vi & Vg
vs < loop
goto vs
done:
R1 < vi
goto ve

Liveness
{in{out}

{R1,R2,Rik}{R1,R2, ve}
{R1,R2,ve}R2,ve,v1}
{R2,ve,v1{Ve-v2}

{vo-v2{vo-v3}
{ve-v3}{vo-va}
{Ve-v2{Vve-v2,va}
{Ve-v2,va}{Vo-v2,va}
{Ve-v2,valve-v2}
{ve-va}{ve-v2,vs}
{Ve-v2,vs}ve-va}

{ve,v1¥R1,ve}
{R1,vo}{R1}

Interference graph

Coloring example

Original
program
gcd:
Vo < Rk
vi + R1
V2 < Rz
loop:
vz + done
if v2=0 goto vs3
Vg < V2
V2 < Vi % V2
Vi & Vg
vs + loop
goto vs
done:
R1 « vi1
goto ve

Colored interference graph

Rewritten
program

R2=0 goto Rs
< R

< R1 % R2
«— R3

Coloring example (2)

Original
program
gcd:
Vo < Rik
vi < Ri
v2 « R2
loop:
v3 « done
if v,=0 goto v3
Vg < V2
V2 <~ V1 % V2
Vi & Vg
vs < loop
goto vs
done:
R1 « v1
goto ve

Colored interference graph

Rewritten
program

if Ri1=0 goto R:
Rz < Ri
Ri < Rik % R1
Rik < R2
R2 « loop
goto R:

done:
R1 < Rw
goto R3

This second coloring is also correct, but implies worse code!

Coloring by simplification

Coloring by simplification is a heuristic technique to (try
to) color a graph G with K colors.
It works as follows: if the graph G has at least one node n
with less than K neighbors, n is removed from G, and that
simplified graph is recursively colored. Once this is done, n
is colored with any color not used by its neighbors.

There is always at least one color available for n, because its
neighbors use at most K-1 colors.

If the graph does not contain a node with less than K
neighbors, K-coloring might not be feasible, but will be
attempted nevertheless, as we will see.

Coloring by simplification

To illustrate coloring by simplification, we can color the
following graph with K=3 colors.

O—®
jo
G—o

Stack of removed nodes: 5 2 1 3

(Optimistic) spilling

During simplification, it is perfectly possible to reach a point
where all nodes have at least K neighbors.

When this occurs, a node n must be chosen to be spilled,
i.e. have its value stored in memory instead of in a register.
As a first approximation, we assume that the spilled value
does not interfere with any other value, remove its node
from the graph, and recursively color the simplified graph as
usual.

After the simplified graph has been colored, it is actually
possible that the neighbors of n do not use all the possible
colors! In this case, n is not spilled. Otherwise it must really
be spilled.

Spilling

Spill costs

The node to spill could be chosen at random, but it is clearly
better to favor values that are not frequently used, or values
that interfere with many others.
The following formula is often used as a measure of the spill
cost for a node n. The node with the lowest cost should be
spilled first.

cost(n) = (rwo(n) + 10 rwq(n) + ... + 10% rwi(n)) / degree(n)
where rwi(n) is the number of times the value of n is read or
written in a loop of depth i, and degree(n) is the number of
edges adjacent to n in the interference graph.

Spilling of pre-colored nodes

As we have seen, the interference graph contains nodes
corresponding to the registers of the machine.

These nodes are said to be pre-colored, because the color
of each of them is given by the machine register it
represents.

Pre-colored nodes must never be simplified during the
coloring process, as by definition they cannot be spilled.

Spilling example

To illustrate spilling, let's try to color the same interference
graph as before, but with only three colors.

The graph does not contain a node with degree less than
three, so the one with the lowest cost must be spilled.

gcd:
Vo « Rix node rwg rw; deg. cost
<R
G vo 2 0 7 029
loop:
o e vi 2 2 6 3.67
if v;=8 goto v V2 1 4 6 6.83
V4 < V2
V2 & V1 % V2 V3 0 2 3 6.67
Vi & Vg
vs < loop Vg 0 2 3 6.67
P vs 0 2 3 667
gét; \Yel cost = (rwp + 10 rw4) / degree

Spilling example

Once vg, which has the lowest spill cost, is removed from the
graph, the simplified graph is 3-colorable.

Consequences of spilling

Once a node has been spilled, the original program must
be rewritten to take that spilling into account, as follows:
- just before the spilled value is read, code must be
inserted to fetch it from memory,
- just after the spilled value is written, code must be
inserted to write it back to memory.
Since that spilling code introduces new virtual registers, the
whole register allocation process must be restarted from the
beginning.
In practice, one or two iterations are enough in almost all
cases.

20

Spilling code integration

Original program Rewritten program
gcd:
gcd: Ve + Rik
Vo < Rk Sp||||ng push ve
vi < R1 vi < R1
V2 < R2 of vo V2 < Rz
loop: loop:
vz « done vz < done
if v2= 0 goto vs3 if v2= 0 goto vs3
V4 < V2 V4 < V2
V2 & V1% V2 V2 & V1% V2
Vi < Vg Vi < Vg
vs < loop vs < loop
goto vs goto vs
done: done:
Ri « v1 R1 « vi1
goto Ve pop V7
goto vz

21

New interference graph

Interference graph w/ spilling Final program

gcd:
Reg——Rrx
push Rk
Rr——Rr—
Rr——Rzr—
loop:
Rk < done
if R2= 0 goto Rk
Rik < R2
R2 < R1 % Rz
R1 < R
Rk < loop
goto Rk
done:
R1 -« R1
pop Rz
goto R:

22

Coalescing

Coloring quality

As we have seen in our first example, two valid K-colorings

of the same interference graph are not necessarily

equivalent: one can lead to a much shorter program than

the other.

This is due to the fact that a move instruction of the form
Vi < V2

can be removed after register allocation if vi and v2 end up

being allocated to the same register. (Of course, this also

holds when v1 or vz is a real register before allocation).

A good register allocator must therefore try to make sure

that this happens as often as possible.

23

24

Coalescing

Given a move instruction of the form

Vi < V2
and provided that vi and v2 do not interfere, it is always
possible to replace all instances of vi and v2 by instances of
a new virtual register vis2. Once this has been done, the
move instruction becomes useless and can be removed.
This technique is known as coalescing, as the nodes of vi
and vz in the interference graph coalesce into a single
node.

25

Coalescing issues

Coalescing is not always a good idea, though: the
coalesced node can have a higher degree than the two
original nodes, which might make the graph impossible to
color with K colors and require spilling!

Conservative coalescing heuristics have to be used.

26

Coalescing heuristics

Two coalescing heuristics are commonly used:

- Briggs: coalesce nodes ny and nz to nygz iff nig2 has less
than K neighbors of significant degree (i.e. of a degree
greater or equal to K),

- George: coalesce nodes n; and nz to nigy iff all
neighbors of n; either already interfere with n, or are of
insignificant degree.

Both heuristics are safe, in that they will not turn a K-
colorable graph into a non-K-colorable one. But they are
also conservative, in that they might prevent a coalescing
that would be safe.

Heuristic #1: Briggs

Briggs' heuristic: coalesce nodes ny and nz to nigz iff nig2
has less than K neighbors of significant degree (i.e. of
degree = K).

Rationale: during simplification, all the neighbors of nig2
that are of insignificant degree will be simplified; at this
point, nig2 will have less than K neighbors and will therefore
be simplifiable too.

This heuristic is safe, in that it will not turn a K-colorable
graph into a non-K-colorable one. But it is also conservative,
in that it might prevent a coalescing that would be safe.

27

28

Heuristic #2: George

George's heuristic: coalesce nodes nj and ny to nigz iff all
neighbors of n; either already interfere with n or are of
insignificant degree.

Rationale: the neighbors of nig2 will be the same as the
neighbors of ny, plus all neighbors of n; that are of
insignificant degree. The latter ones will all be simplified, at
which point the graph will be a sub-graph of the original
one.

Like Briggs', George's heuristic is safe but conservative.

29

Coalescing example (2)

coalescing of
Rz and vz into
Rav

safe
according to
Briggs and
George with

K=4

Coalescing example

non-
interfering,

node
of significant

move-related

coalescing of
R1and viinto

safe
according to
Briggs and
George with
K=4 insignificant
degree

30

31

Coalescing example (3)

coalescing of
Rik and vo
into Rikv

safe
according to
Briggs and
George with

K=4

32

Putting it all
together

33

lterated register coalescing

To get the best results, the phases of simplification and
coalescing should be interleaved. This technique is known
as iterated register coalescing (IRC):

1. Interference graph nodes are partitioned in two
classes: move-related or not.

2. Simplification is done on not move-related nodes (as
move-related ones could be coalesced).

3. Conservative coalescing is performed.

4. When neither simplification nor coalescing can
proceed further, some move-related nodes are frozen
(marked as non-move-related).

5. The process is restarted at 2.

34

lterated register coalescing

build
v

simplify D
v

coalesce
v in case of

frefze actual spill

potentlal spill
C select D

actual spill

Assignment
constraints

35

36

Assignment constraints

Until now, we have assumed that a virtual register can be
assigned to any physical register, as long as it is free.

In practice, this is often not the case, as various architectural
characteristics impose assignment constraints, e.g.:

- some architectures divide the registers in several
classes, with different capabilities (e.g. address vs. data
registers, integer vs. floating-point registers, etc.),

- some instructions require some of their arguments — or
their result — to be in specific registers,

- calling conventions require function arguments and
results to be in specific registers.

A realistic register allocator has to be able to satisfy these
constraints.

37

Register classes

Most architectures separate the registers in several classes.
Even in modern RISC architectures, there is typically one
class for floating-point values and another one for integers
and pointers.

Register classes can easily be taken into account in a
coloring-based allocator: if a variable must be putin a
register of some class, then its node can be made to
interfere with all pre-colored nodes corresponding to
registers of other classes.

38

Calling conventions

Many calling conventions pass arguments in registers.

At the beginning of all functions, move instructions have to

be inserted to copy the arguments to new virtual registers:
fact:

vi + R1 ; save first argument in vi
Similarly, before any function call, move instructions have to
be inserted to load the arguments in the appropriate
registers:

Ri « vz ; Lload first argument from v»
CALL fact

Whenever possible, theses move instructions will be
removed by coalescing.

Caller/callee-saved registers

Calling conventions distinguish two kinds of registers:
- caller-saved registers are saved by the caller before a
call and restored after it,
- callee-saved registers are saved by the callee at
function entry and restored before function exit.
Ideally, all virtual registers that have to survive at least one
call should be assigned to callee-saved registers, while
other virtual registers should be assigned to caller-saved
registers.
How can this be obtained in a coloring-based allocator?

39

40

Caller/callee-saved registers

The contents of caller-saved registers do not survive a
function call. To model this, edges are added to the
interference graph between all virtual registers that are live
across at least one call and (physical) caller-saved registers.
These edges ensure that virtual registers that are live across
at least one call will not be assigned to caller-saved
registers, and will therefore either be spilled or allocated to
callee-saved registers!

41

Saving callee-saved registers

For example, if Rg is a callee-saved register, a function could
look like:

entry:
vi « Rs ; save callee-saved Rg in vi
; function body
Rs <« vi1 ; restore callee-saved Rs
goto Rk

If the register pressure is low, then Rg and v1 will be
coalesced, and the two move instructions removed. If
register pressure is high, v1 will be spilled, thereby making
Rs available in the function body, e.g. to store a virtual
register live across a call.

Saving callee-saved registers

Callee-saved registers must be preserved by all functions.
This can be achieved by copying them to fresh temporary
registers at function entry and restoring them before exit.

42

43

Technique #2:
linear scan

44

Linear scan

The basic linear scan technique is very simple:

- the program is linearized — i.e. represented as a linear
sequence of instructions, not as a graph,

- a unique live range is computed for every variable,
going from the first to the last instruction during which it
is live,

- registers are allocated by iterating over the intervals
sorted by increasing starting point: each time an interval
starts, the next free register is allocated to it, and each
time an interval ends, its register is freed,

- if no register is available, the active range ending last is
chosen to have its variable spilled.

45

Linear scan example

Let's try to allocate registers for our gcd procedure using
linear scan, first with four allocable registers, then with three.

Program Live ranges
1 gcd: Ve « Ruw Ve: [11,127]
2 vi « Ri vi:[27,117]
3 v2 & Ra .
4 loop: vs « done v2: [3%,107]
5 if v=0 goto v3 V3: [4*,5]
6 Vg < V2 . + Q-
7 V2 < V1 % V2 Va: [6 '8]
8 Vi« Va vs: [9%,107]
9 vs < loop 8 o
- goto vs Notation:
11 done: Ri « vi i* entry of instr. i
L2 JOEORVe i exit of instr. i

Linear scan example (4 r.)

1 2 3 a4 5 6 7 8 9| 10| 11| 12
Vo
Vi
V2
V3
Va
Vs
R1
R2
R3
Rik
time active intervals allocation

1+ [1+,127] Vo—R3

27 [2*,11°],[14,127] Ve—R3,v1i—R:1

3% [3%,10%],[2%,11°],[1+,127] Vo—R3,vi—R1,v2—R;

4% [4%,571[37,10%][27,11°],[1%,127]

Ve—R3,V1—R1, V2R, v3—Rik

6% [6%,871[3%,10%][2*,11°],[1%,127]

Vo—R3,v1—R1,v2—R2,va—=Rik

9+ [9+,10°],[3*,10*],[2*,11°][1%,127]

Vo—R3,v1—R1,v2—R2, Vs~ Rik

Result: no spilling

47

46
1 2 3 4 5 6 7 8 9| 10| 11| 12
Vo
Vi
V2
V3
Va
Vs
R1
R2
Ruk
time active intervals allocation

11,127 Vo—RLk

27 [25,11°],[14,127] Vo—Rik,Vi—R1

3% [3%,10%],[2%,11°1[1%,127] Vo—Rik,Vi—R1,v2—R2

4 [4*,57[3%,107][27,11] Ve—S,V1i—=R1,V2—=R2, V3= Rk

6+ [6%,81,[3%,107],[27,11] Vve—S,vi—*R1,v2—=R2,va— Rk

9+ [9%,107],[3%,10%],[2%,117] Ve—S,vi—R1,v2—=R2,vs 2Rk

Result: ve is spilled during its whole life time!
48

Linear scan improvements

The basic linear scan algorithm is very simple but still
produces reasonably good code. It can be (and has been)
improved in many ways:

- the liveness information about virtual registers can be
described using a sequence of disjoint intervals instead
of a single one,

- virtual registers can be spilled for only a part of their
whole life time,

- more sophisticated heuristics can be used to select the
virtual register to spill,

- etc.

49

