
Parallel Natural Language Processing Algorithms in Scala

Stanislav Peshterliev

January 15, 2012

Contents

1 Introduction 3
1.1 Related work . 3
1.2 Overview . 3

2 Classification Algorithms 5
2.1 Maximum entropy . 5

2.1.1 Improved Iterative Scaling . 6
2.1.2 Text Classification . 6
2.1.3 References . 7

2.2 Naive Bayesian . 7
2.2.1 Text Classification . 7
2.2.2 References . 7

2.3 Information Gain . 8
2.3.1 References . 8

3 Parallelization 9
3.1 Maximum Entropy . 9
3.2 Naive Bayes . 9
3.3 Menthor framework . 9

3.3.1 Strategy 1: Vertex for every sample . 10
3.3.2 Strategy 2: Vertex for set of samples . 11

4 Implementation 12
4.1 Technologies . 12
4.2 Organization . 12

4.2.1 Package structure . 12
4.2.2 Class hierarchy . 13

4.3 Extensions . 14

5 Experimental results 15
5.1 Training data sets . 15

5.1.1 Movie Reviews . 15
5.1.2 20 Newsgroups . 15
5.1.3 Wikipedia INEX 2009 collection . 16

5.2 Data set preprocessing . 16
5.3 Command line utilities . 17
5.4 Performance Benchmarks . 17

5.4.1 Maximum Entropy . 17
5.4.2 Naive Bayes . 18

1

6 Conclusions and Feature work 20

2

Chapter 1

Introduction

Implementing machine learning algorithms for Natural Language Processing (NLP) on large data sets is hard. Even
though much research has focused on making sequential algorithms more scalable, their running times is limited as
the data is growing much faster then the computational power of single processor. Meanwhile, parallelization remains
challenging for this class of problems.

The aim of this semester project is to implement and benchmark two strategies for parallelizing Maximum Entropy
[2] and Naive Bayesian [12] - two widely used machine learning classification algorithms. The project focus is
on scalability of the parallel implementation rather then on classification accuracy. We use text categorization as
classification task because it is relatively easy to find a large data sets to experiment, and because this is one of the
most widely spread and useful Natural Language Processing application, i.e. spam classification.

The parallelization is based on Menthor [7] - a framework for implementing parallel and distributed machine
learning algorithms on large graphs developed at EPFL. In terms of Menthor framework architecture, we consider two
parallelization strategies: vertex for every sample, and vertex for set of sample; both strategies are analyzed in terms
of computational efficiency and scalability, as well as compared to baseline sequential version.

1.1 Related work
The recent research on parallel machine learning algorithms is focused mainly on implementation based on MapRe-
duce [5] framework, which was proposed by Google. Cheng-Tao Chu et al. have reported a linear improvement in
the speed to the number of processes [3] with using map reduce approach. Apache Mahout1 is an open source project
which aim to provide parallel version of the most popular machine learning algorithm. Again. Mahout is using map
reduce approach with the open source framework Apache Hadoop2

1.2 Overview
The report is structured as follows:

• Chapter 2 presents the Maximum Entropy and Naive Bayes, and their application to text categorization

• Chapter 3 presents the possible parallelization approaches to Maximum Entropy and Naive Bayes, and the two
strategies: vertex for every sample and vertex for set of sample

• Chapter 4 discuss the implementation, and the design decisions made

• Chapter 5 presents the experimental design and results from from performance benchmarks and tests
1mahout.apache.org
2hadoop.apache.org

3

• Chapter 6 gives conclusions and feature works on the project

4

Chapter 2

Classification Algorithms

In the field of machine learning classification algorithms fall into the class of supervised learning method. They work
by learning from some known set of labled training samples. The task is to derive a model that given an unlabled
sample determines the class it belongs.

To give context for further discussions, we consider the text categorization problem where samples are documents
and classes are categories. The training set for this problem consist of a collection of categorized documents. Classifier
have to predict the most likely category of not categorized document. An important step in designing a classifier is
deciding which words to take into consideration for the model because there are common words which occur in all
classes and using them only obscures the results of classification, for example in English such words are ”a”, ”an”,
”the”. The set of words that we use to represent a document for classification is called feature set, and each word
is called feature. In the following section, we will discuss a strategy for automatically determining the most useful
feature from training data.

A popular example of text categorization application is spam filtering, where classification algorithm has to label
emails or other text documents as spam or not not spam. So thanks to machine learning we receive less junk email
which saves us time and trouble.

The following sections give a brief description of Maximum Entropy and Naive Bayes classifiers, and, also, an
efficient algorithm for feature selection called Information Gain.

2.1 Maximum entropy
Kamal Nigam et al. describe Maximum Entropy as: A general technique for estimating probability distributions from
data. The overriding principle in maximum entropy is that when nothing is known, the distribution should be as
uniform as possible, that is, have maximal entropy. Labeled training data is used to derive a set of constraints for the
model that characterize the class-specific expectations for the distribution. Constraints are represented as expected
values of ”features”, any real-valued function of an example. The improved iterative scaling algorithm finds the
maximum entropy distribution that is consistent with the given constraints. [10]

Let feature be any real valued function on a sample and class, f : S⇥C ! R. A method for selecting the most
descriptive feature for given set of classes is described in section 2.3.

Maximum Entropy distribution has the exponential form:

PL(c|s) =
1

Z(s) Â
i

exp(li fi(s,c)) (2.1)

where li is a parameter that is estimate from the training data for feature i, and Z(s) is a normalizing constant to
ensure proper probability.

Z(s) = Â
c

Â
i

exp(li fi(s,c)

5

Note that it is guaranteed that the likelihood surface is convex, having a single global maximum and no local
maxima, which means that general optimization technique can be used for estimating parameters L [1].

Maximum Entropy classifies sample s as follows:

Class(s) = argmax
c2C

PL(c|s)

2.1.1 Improved Iterative Scaling
To find the distribution 2.1 with the Maximum Entropy, we use the Improved Iterative Scaling (IIS) [1] algorithm. The
training procedure is as follows:

• Inputs: A collection S of labeled samples and a set of feature functions fi.

• For every feature fi, estimate its expected value on the traning samples.

• Initialize all the parameters li’s to be zero.

• Iterate until convergence:

– Calculate the expected class labels for each sample with the current parameters, PL(c|s)
– For each parameter li:

⇤ Set ∂B
∂di

= 0 and solve for di

⇤ Set li = li +di

• Output: A classifier that takes a unlabeled sample and predicts a class label.

∂B
∂di

= Â
s2S

(fi(s|c(s))�Â
c

PL(c|s) fi(s|c)exp(di f #(s|c))) (2.2)

where f #(s|c)=Âi fi(s|c), in case of binary feature this function has the simple interpretation of number of features
that are active for a sample.

Equation 2.2 can be solved with a numeric root-finding procedure, such as Newton’s method. If f #(s|c) = M is
constant for all s and c, 2.2 can be solved in closed form as follows:

di =
1
M

log Âs2S fi(s|c(s))
Âs2S Âc PL(c|s) fi(s|c)

(2.3)

Equation 2.2 is derived from the logliklihood l(L|S) for the distribution PL. The logliklihood is, also, used to
evaluate the progress of the training at every iteration. It has the following form:

l(L|S) = log’
s2S

PL(c(s)|d) = Â
s2S

Â
i

li fi(s,c(s))�Â
s2S

logÂ
c

expÂ
i

li fi(d,c)

2.1.2 Text Classification
To apply Maximum Entropy to text categorization, we need to select a set of words for features. Then for every
feature-class combination we instantiate a feature function:

fw,c0(s,c) =

(
0 ,if c’ = c
t fs,w
|s| ,otherwise

wheret fs,w is the number of times term w occurs in document s, and |s| is the total number of terms in s. One
big advantage of this representation is that we can perform IIS iteration is closed from, which is computationally very
efficient [10].

6

2.1.3 References
More details about Maximum Entropy and Improved Iterative Scaling can be found in [2], [1], [9] and [10]. More
details on Maximum Entropy applied to text categorization can be found in Nigam et al. [10].

2.2 Naive Bayesian
Naive Bayesian classifier is based on the Bayes’s Rule, which states that:

P(C|S) = P(S|C)P(C)

P(S)
=

P(S|C)P(C)

Âc2C P(D|C = c)P(C = c)

Bayes’s Rule is important because it allows us to write a conditional probability, such as P(C|S) in terms of the
”reverse” conditional P(S|C).

Naive Bayes classifies sample s as follows:

Class(s) = argmax
c2C

P(c|s) = argmax
P(s|c)P(c)

Âc2C P(s|c)P(c)
Estimating class prior P(c) is straightforward:

P(c) =
Nc

N
where Nc is the number of samples that have class c, and N is the total number of samples.
To estimate P(s|c) we represent the sample s as set of features fi, and impose the simplifying assumption that fi is

independent from f j for every i 6= j which is a requirement for Naive Bayes classifier. This means that P(s|c) can be
written as:

P(s|c) =
n

’
i=1

P(fi|c)

Note that, feature selection is discussed in section 2.3

2.2.1 Text Classification
To apply Naive Bayes to a text categorization, we need to select a set of words for features. Then for every feature-class
combination estimate the probability of P(s|c) from training data.

For our classifier we use Multinominal event space representation in which opposite to multiple-Bernoulli event
space representation features are not binary [4]. Thus P(s|c) is estimated as follows:

P(s|c) = t fw,c

|c|
where t fw,c is the number of times term w occurs in class c in the training set, and |c| is the total number of terms

that occur in training set with class c
Given the Multinominal distribution the likelihood of document s given class c is computed according to:

P(s|c) = ’
w

P(w|c)t fw,s

where t fw,d is the number of times that term w occurs in document s.

2.2.2 References
Accessible introduction to Naive Bayes and text categorization can be found in Croft, Metzler and Strohman [4]. More
detailed description with experimental results can be found in Rennie, Shih, Teevan and Karger [12].

7

2.3 Information Gain
For text classification, it is common to have one or more features for every word in the training data. Thus, depending
on the problem , feature set can be very large. Since feature set size affects both efficiency and effectiveness of the
classifier, we want to select a subset of features such that efficiency is significantly improved. Usually not only the
efficiency is improved but also effectiveness because some features are noisy or inaccurate. The process of selecting
most useful features is called feature selection.

Information gain is one of the most widely used feature selection criterion for text categorization applications.
Information gains measures how much information about the class is gained when some feature is observed. For
example the feature ”cheap” gives more information about the class spam then the feature ”the”.

Information gain measures how the entropy of P(c) changes after we observe feature f . Thus we compute infor-
mation gain for f as follows:

IG(w) = H(C)�H(C|w) =� Â
c2C

P(c) logP(c)+ Â
w20,1

P(w) Â
c2C

P(c|w)logP(c|w)

2.3.1 References
Introduction on Information gain can be found in Croft, Metzler and Strohman [4]. Comparison between Information
Gain and other feature selection criterion is done by Yang and Pedersen [14].

8

Chapter 3

Parallelization

3.1 Maximum Entropy
Mann, McDonald, Mohri, Silberman and Walker [8] describe three methods for parallelizing Maximum Entropy model
training: Distributed Gradient Method, Majority Vote Method and Mixture Weight Method. We implemented Mixture
Weight Method because of its computational efficiency and small communication overhead.

Using Mixture Weight Method the training data is split in p partitions S1,S2, ...,Sp, and training is performed
separately on every partition, on each iteration the parameter vector Li of process i is exchanged with other training
processes, then the parameters are mixed as follows:

Lµ =
p

Â
k=1

µLk

The resulting vector can be used directly for classification. We set µ to be 1
p , where p is number of processes.

One disadvantage of this method is that if the training set is small and p is large, each parameter vector Li is
estimated on small training data which leads to bad models. But when considering large scale machine learning as in
our case this is not a problem.

3.2 Naive Bayes
Naive Bayes classifier training consists in estimating the probabilities P(c) and P(s|c) on the training set S. How
these probabilities are estimated is dependent on the specific application. In case of text categorization we need: Nc -
number of samples that have class c; t fw,c - number of times term w occurs in class c; and |c| - total number of terms
in class C.

In order to parallelize Naive Bayes applied to text categorization we split the training data in p partitions S1,S2, ...,Sp,
where p is number of processes. Then we estimate Nci, t fw,ci, and |c|i on every partition Si. Finally, we mix Nci, t fw,ci,
and |c|i to obtain a model trained on S.

3.3 Menthor framework
To parallize the algorithms functionality we use Menthor [7]. Menthor is a framework for parallel graph processing,
but it is not limited to only to graphs. It is inspired by BSP with functional reduction/aggregation mechanisms.The
framework aims to ease parallelizing machine learning functionality and it is is implemented in Scala programming
language with the Actor model.

In Menthor all data to be processed is represented as a data graph. Vertices in such a graph typically represent
atomic data items, while edges represent relationships between these atoms. In addition to the data item that it repre-
sents, a vertex stores a single value that is iteratively updated during processing - thus, an algorithm is implemented

9

by defining how the value of each vertex changes over time. At each step the algorithm a vertex can exchange and
receive messages from other vertices. Thus, the update of a vertex’s value is based on its current value, its list of in-
coming messages, as well as its local state. During the execution of an iteration each update step on different vertices
is executed in parallel.

For example, page rank algorithm can be implemented as follows:

class PageRankVertex extends Vertex[Double](0.0d) {

def update() = {

var sum = incoming.foldLeft(0)(_ + _.value)

value = (0.15 / numVertices) + 0.85 * sum

if (superstep < 30) {

for (nb <- neighbors) yield Message(this, nb, value / neighbors.size)

} else

List()

}

}

Listing 3.1: Page rank algorithm

More information about Menthor can be found in the original technical report by Philipp Haller and Heather
Miller [7], and in the presentation ”The Many Flavors of Parallel Programming in Scala” by Philipp Haller [6].

Thanks to Menthor’s ability to mix sequential and parallel programming as a combination of superstep, translating
the sequential version of an algorithm to is parallel version straightforward, and it is not discussed in here. The next
two section discuss the two parallelization strategies that we implemented on top of Menthor for Maximum Entropy
and Naive Bayes classifiers training.

3.3.1 Strategy 1: Vertex for every sample
The data is partitioned into p partitions, and then the samples from every partition are added as vertices in the graph,
moreover, for every partition there is a master vertex that is used to aggregate the results generated from samples in
the partition, masters are connected in order to be able to exchange messages. See figure 3.1.

Figure 3.1: Vertex for every sample graph

With this strategy in order to compute some global function over the whole training set, sample vertices have to
send |S| messages to masters, and then p master exchange messages between them, such that every master will have
the result of the global function. Thus in total |S|+ p(p�1) messages are necessary.

10

The communication overhead of this strategy is significant especially if the vertices have to exchange messages
with a lot of data. Also, if the data is partitioned in large number of groups the number of exchanged messages grows
fast because of the term p(p�1).

3.3.2 Strategy 2: Vertex for set of samples
The data is partitioned p partitions, but unlike vertex for every sample strategy, only p master vertices are created
and added to the graph, each vertex contains the set of samples for the given partition. Thus data on every vertex is
processed in parallel. See figure 3.2.

Figure 3.2: Vertex for set of samples

The advantage of this strategy is that only p(p� 1) messages are needed in order to compute a global function
over this graph. Thus for big |S| and small p this strategy has much less communication overhead compared to vertex
for every sample. Also, the strategy uses less memory because we do not create sample vertices .

11

Chapter 4

Implementation

4.1 Technologies
The project is entirely implemented in Scala programming language1, except for one method that is implemented in
Java2 that was needed in order to avoid JVM Double autoboxing which significantly impacts numerical operation
performance.

The excellent Scalala 3 numeric linear algebra library is used for numeric computation and sparse vectors support.
The library also provides rich Matlab-like operators on vector and matrices, as well as on standard scala data structures
like Lists, Sets, Arrays and Maps.

We are, also, using Trove4 high performance collection library for Java, which is very easy to do from Scala
thanks to its seamless integration with Java. We do that because when dealing with a lot of numeric data on JVM it is
very imporant to minimize autoboxing due to the impact on performance, and, also, save memory. The problem with
standard collections is that every time you write a double number to Java or Scala hash map it is automatically box to
its Double object, Trove provides optimized collections that avoid this behaviour.

We are using Sbt 5 to manage project dependencies and organize the build procedure.

4.2 Organization

4.2.1 Package structure
• menthor.apps - contains classes related to applying the algorithms to text categorization, and classes for experi-

menting with different data sets

• menthor.classifier - contains abstract base classes and traits that define the general interfaces for classification
algorithms

• menthor.classifier.featureselection - contains implementation of Information Gain feature selection algorithm

• menthor.classifier.maxent - contains implementation of Maximum Entropy classifier

• menthor.classifier.naivebayes - contains implementation of Naive Bayes classifier

• menthor.util - contains utility classes for working with collections, files and probability distributions
1www.scala-lang.org
2www.java.com
3github.com/scalala/Scalala
4trove.starlight-systems.com
5https://github.com/harrah/xsbt

12

4.2.2 Class hierarchy
There are two main class hierarchy Classifier on figure 4.1 and Trainer on figure 4.2.

Figure 4.1: Classifier class heiracy

As depicted on figure 4.1 there are two classes that inherit from Classifier abstract class: MaxentClassifier and
NaiveBayesClassifier. Classes inherited from Classifier have to implement probClassifiy method that returns the prob-
ability distribution for every class of the classifier. The method classify from Classifer uses probClassify and returns
the class with highest probability.

Figure 4.2: Trainer class heiracy

There are six classes implementing Trainer trait, three for Maximum Entropy and three for Naive Bayes. Classes
without any suffix implement sequential version, these with suffix Parallel implement vertex for every sample strategy,

13

and ParallelBatch implement vertex for set of samples strategy.

4.3 Extensions
New classifiers should extend Classifier abstract class and Trainer trait, and implement the corresponding abstract
methods. Different feature selection algorithm can be implemented by extending FeatureSelector trait and implement-
ing ”select” method.

In order to apply the algorithms for different task, the trait Sample have to be implemented and features for the
given task have to be represented as a map from integer to double for the given sample.

14

Chapter 5

Experimental results

5.1 Training data sets
We are experimenting with three data sets: Movie Reviews [11], 20 Newsgroups 1 and Wikipedia INEX 2009 collec-
tion [13].

5.1.1 Movie Reviews
Movie Reviews dataset contains 2000 movie reviews: 1000 positive and 1000 negative. The task is to train a classifier
which decides if unseen movie review is negative or positive. The data set is small, and uninteresing for large scale
machine learning but it was used at the beginning of the development to test the correctness of the algorithms. The
classification accuracy for this corpus is given in table 5.1.1.

Algorithm Accuracy
Maximum Entropy 86.33
Naive Bayes 85.62

Table 5.1: Moview Reviews corpus classification accuracy

At each separate run the data is split into training and test sets. The test set is 10% of the the collection and training
set is the rest. The test set is determined at random for each run, thus the accuracy from the table is calculate as average
of 5 runs of the algorithms.

We have empirically found out that the best accuracy is achieved with 100 features, which means that Maximum
Entropy model has 200 parameters.

5.1.2 20 Newsgroups
The data set consists of approximately 25000 messages taken from 20 newsgroups, categorized into 20 categories:
alt.atheism, comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, comp.windows.x,
misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space,
soc.religion.christian, talk.politics.guns, talk.politics.mideast, talk.politics.misc, talk.religion.misc.

Unlike Movie Reviews with this data set the training and test sets are predefined as follows: 18846 training
examples, and 7532 test examples. The classification accuracy for this data set is given in table 5.1.2.

On this data set the accuracy of Maximum Entropy is worse than Naive Bayes, to ensure that our implementation
of Maximum Entropy is correct we compared the results with the results from Apache OpenNLP2 Maxent package.

1people.csail.mit.edu/jrennie/20Newsgroups
2incubator.apache.org/opennlp

15

Algorithm Accuracy
Maximum Entropy 57.44
Naive Bayes 92.12

Table 5.2: 20 Newsgroups classification accuracy

OpenNLP categorized accuracy with default settings is 52.60% which is even worse then our implementation. We did
not optimize further the accuracy of Maximum Entropy to match the results of Naive Bayes because for this project
we are mainly interested in scalability and performance.

Because of the large number of classes for this task the classification is performed on a set of 5000 features, thus
Maximum Entropy model has 20000 parameters.

5.1.3 Wikipedia INEX 2009 collection
This data set was prepared for evaluating information retrieval tasks but we adopted it to text classification because
the wikitext is conveniently cleansed and parsed to XML which is standard and easy to use. It consist of 2,666,190
articles from Wikipedia. In our experiment we use a subsets of 40,000 articles.

One of the issues with using this data set for text categorization is that categories are not well defined and sparse,
such as: ”Person who immigrated to Canada” or ”Persons who won the noble price”, we would like to have both
articles in ”person” category. To achieve this we use the 331 classes defined in Dbpeida3 ontology, and try to do a
keyword matching on article category to dbpedia class in order to determine to which dbpedia class the article belongs.

We use a subset of 10000 features for this data sets. We did not test for accuracy on this data set, and it is only
used for performance benchmarks.

5.2 Data set preprocessing
The data sets that are used comes in plain text or XML. Parsing large number of files is time consuming and does not
give information regarding the performance of the algorithms that we test, and only may makes it harder to do accurate
performance analysis. Because the algorithms are run many time against the same data minimizing the parsing time
and I/O time is important, that is why data data is parsed and compressed in advanced before doing benchmarking.
The preprocessing procedure is as follows:

First, all training data is loaded and feature selection is performed, after the most useful features are decided each
features is given a unique id, and the triple id, features, and information gain is written to a files. For example see
listing 5.1.

2507 | bad | -0.2579069473576291

3081 | worst | -0.2638446978715786

1425 | stupid | -0.2752135575766913

8286 | boring | -0.27746205051618666

1110 | waste | -0.2813770454287048

.......

Listing 5.1: Features file extract

Second, the data set compression is performed; only selected features are retained and the samples are written in
single file with format: category | sample name | feature id:feature value feature id:feature value. For example see
see listing 5.2.

pos | cv889_21430.txt | 282:1.0 280:1.0 275:1.0 272:1.0 260:1.0 259:1.0 258:1.0 256:2.0

pos | cv477_22479.txt | 99:2.0 195:1.0 273:1.0 455:1.0 391:1.0 380:2.0 376:2.0 178:1.0

3http://dbpedia.org/About

16

neg | cv314_16095.txt | 757:1.0 2163:2.0 3696:1.0 5738:2.0 7505:1.0 8286:1.0 3181:1.0

neg | cv690_5425.txt | 367:4.0 1557:2.0 2102:4.0 2814:2.0 1586:2.0 23901:2.0 8:7.0

.......

Listing 5.2: Preprocessed samples

5.3 Command line utilities
The project has the following command line utilities for working with the data sets:

• Given a data set this command line program selects features and creates preprocessed training file. The [data
set] parameter can be moviereviews, newsgroups or wikipedia.

parallelnlp menthor.apps.BuildCorpus [data set] [features size] [data set path] [output

training file] [output feature file]

• Performs classification on movie reviews data set. [algorithm] parameter: can be maxent or naivebayes; and
[training mode]: sequential, parallel, parallelbatch.

parallelnlp menthor.apps.MovieReviewClassifier [algorithm] [traning mode] [movie reviews

training file] [features file]

• Performs classification on 20 Newsgroups data set. [algorithm] parameter: can be maxent or naivebayes; [train-
ing mode]: sequential, parallel, parallelbatch; and [evaluation] can be true or false. Turning off evaluation is
useful for benchmarking when you what to only know the performance of the parallel part.

parallelnlp menthor.apps.NewsgroupsClassifier [algorithm] [traning mode] [newsgroups training

file] [newsgroups test path] [features file] [evaluation] [benchmark output file]

[benchmark iterations]

• The same options as for 20 Newsgroups, but works on wikipedia corpus.

parallelnlp menthor.apps.WikiepdiaClassifier [algorithm] [traning mode] [newsgroups training

path] [newsgroups test path] [features file] [evaluation] [benchmark output file]

[benchmark iterations]

5.4 Performance Benchmarks
Algorithms are tests with 1,2,4,6,8 cores, for each core we have performed 5 iterations but we did not take consider the
first one because JVM JIT compiler still did not optimize the code at this stage and it usually has lower performance.

5.4.1 Maximum Entropy
• Vertex for a set of sample

In table 5.4.1 and figure 5.1 you can see that there is an average improvement of 1.65x times for every 2 cores.
The biggest improvement is between 1 and 2 cores - 1.86x times. The overall improvement between 1 and 8
cores is 7.38x times.

17

Cores Avarage Time
1 346361.75
2 185633.75
4 111657.75
6 73359.75
8 46883.5

Table 5.3: Maximum Entropy results

Figure 5.1: Maximum Entropy plot

• Vertex for every sample
The average time for this strategy on 8 cores is 5241952 ms which around 111x times worse then the time for
vertex for set of samples strategy. This results shows that vertex for every sample can be impractical for some
tasks, especially when the data is not naturally a graph and can be processed in other manner.

• Sequential

Cores Avarage Time
1 67235
8 67140.75

Table 5.4: Maximum Entropy results

As expected there is no speed up between 1 and 8 cores for the sequential version. The comparison with 8 cores
of parallel version shows that parallel version is only 1.40x times then the sequential version, which means
that due to parallelization overhead the parallelized algorithms should be applied only on large datasets, and on
machines with many processors in order for the communication overhead to be paid off.

5.4.2 Naive Bayes
• Vertex for a set of sample

18

Cores Avarage Time
1 8509
2 4731.5
4 3071.5
6 2247.25
8 1619.75

Table 5.5: Naive Bayes results

Figure 5.2: Naive Bayes plot

In table 5.4.2 and figure 5.2 you can see that there is an average improvement of 1.52x times for every 2 cores.
The biggest improvement is ,again, between 1 and 2 cores - 1.79x times. The overall improvement between 1
and 8 cores is 5.25x times. The overall improvement is smaller compared to Maximum Entropy because Naive
Bayes is computationally much less expensive.

• Vertex for every sample
The average time for this strategy on 8 cores is 62300.5 ms which around 38x times worse then the time for
vertex for set of samples strategy.

• Sequential

Cores Avarage Time
1 5224.75
8 5579.75

Table 5.6: Naive Bayes results

As expected there is no improvement in the running time between 1 and 8 cores for the sequential version. The
comparison with 8 cores of parallel version shows that parallel version is only 3.10x times then the sequential
version, which is better than the improvement with Maximum Entropy.

19

Chapter 6

Conclusions and Feature work

Panellizing machine learning algorithms is challenging but frameworks like Menthor makes it much easier. With this
project we have shown that we can easily implement a parallel version of algorithms without much effort and with
good scalability.

It will be interesting to implement other popular machine learning algorithms like SVM and Neural Networks.
Also, due to Menthor distributed computation features the algorithms can be run transparently on clusters of computers,
the results from such experiments would give us some insight on how communication overhead in a network of
computers affects the performance, and data sets of what size are appropriate for distributed computation.

20

Bibliography

[1] Adam Berger. The improved iterative scaling algorithm: A gentle introduction. January 13 1997.

[2] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

[3] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y. Ng, and Kunle Oluko-
tun. Map-reduce for machine learning on multicore. In Bernhard Schölkopf, John C. Platt, and Thomas Hoffman,
editors, NIPS, pages 281–288. MIT Press, 2006.

[4] W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: information retrieval in practice. Pear-
son Education, Boston, MA, USA, 2010.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM,
51:107–113, January 2008.

[6] Philipp Haller. The many flavors of parallel programming in scala. Presented at Scalathon 2011 at the University
of Pennsylvania in Philadelphia, 2011.

[7] Philipp Haller and Heather Miller. Parallelizing machine learning- functionally: A framework and abstractions
for parallel graph processing, 2011.

[8] Gideon Mann, Ryan T. McDonald, Mehryar Mohri, Nathan Silberman, and Dan Walker. Efficient large-scale
distributed training of conditional maximum entropy models. In Yoshua Bengio, Dale Schuurmans, John D.
Lafferty, Christopher K. I. Williams, and Aron Culotta, editors, NIPS, pages 1231–1239. Curran Associates, Inc,
2009.

[9] Christopher Manning and Hinrich Schütze. Foundations of Statistical Natural Language Processing. MIT Press,
Cambridge, MA, 1999.

[10] Kamal Nigam, John Lafferty, and Andrew Mccallum. Using maximum entropy for text classification, April 29
1999.

[11] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summarization based
on minimum cuts. In Proceedings of the ACL, 2004.

[12] Jason Rennie, Lawrence Shih, Jaime Teevan, and David Karger. Tackling the poor assumptions of naive bayes
text classifiers. In Proceedings of ICML-03, 20th International Conference on Machine Learning, Washington,
DC, 2003. Morgan Kaufmann Publishers, San Francisco, US.

[13] Ralf Schenkel, Fabian M. Suchanek, and Gjergji Kasneci. YAWN: A semantically annotated wikipedia XML
corpus. In Alfons Kemper, Harald Schöning, Thomas Rose, Matthias Jarke, Thomas Seidl, Christoph Quix, and
Christoph Brochhaus, editors, BTW, volume 103 of LNI, pages 277–291. GI, 2007.

[14] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text categorization. In Interna-
tional Conference on Machine Learning, pages 412–420, 1997.

21

