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Abstract

An increasing number of applications in the industry as well as in re-
search require the analysis of large datasets using machine learning (ML)
algorithms. However because of the increasing size of available datasets, the
execution time of the applications can become prohibitively long.

Parallel to that, there is a clear trend in the hardware industry of increas-
ing the amount of cores inside CPUs and CPUs inside machines.

The goal of this work is to evaluate whether or not it is possible to take
advantage of this trend to speed-up ML applications using Scala’s parallel
collections and the Menthor framework[3] as it is expected. A widely used
ML algorithm, namely the Expectation Maximization algorithm for Gaus-
sian Mixture models was implemented in two different ways: one using the
parallel collections and the other with the Menthor framework. The imple-
mentations were then carefully benchmarked to assess their performance.

Both implementations perform, as expected, much faster when they run
on multi-core machines. For example when running on consumer-grade
hardware (Intel Core i7 with four cores that supports hyper-threading) the
speedup factor for the parallel collection could reach 3.5 when all cores were
used. The Menthor implementation showed good results. Although the run-
ning time was usually around 50% longer than with the implementation using
the parallel collections it showed very good speedups when multiple cores
were available (4.2 times faster with all cores compared to the use of only
one). The benchmarks run on a server with four AMD Dual-Core proces-
sors also showed good speedups but the results indicated that due to possible
hardware architecture limitations the use of all eight cores (four processors)
is not always significantly better than the runs using only two of the available
cores.

In conclusion, developers should take advantage of this new opportunity
to increase the running speed of their applications by taking full advantage
of the available hardware while writing very little additional code.
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1 Introduction

1.1 Context

An increasing number of applications require the analysis of large data sets. Social
networks analyze user data to carry out targeted advertisements. Online selling
platforms use customer’s shopping history to refine their offerings. In research
topics such as genetics or neurology, the analysis of big data sets have become crit-
ical to allow new discoveries. However a problem is persistent. The multiplication
of analysis and the increase in size of the available data sets require increasingly
long running times. This limitation prevents new applications of being developed
or research from being carried out at a fast pace.

Another clear trend in the industry is the multiplication of cores inside CPUs
and CPUs inside machines. This trend has become a real opportunity and challenge
for developers to take advantage of. The multiplication of cores makes it increas-
ingly difficult to write software that takes advantage of all available hardware while
still being maintainable and scalable.

1.2 Scala

To address these challenges new models and tools were introduced early in the
Scala libraries. Since their introduction, they have been greatly developed and re-
fined. To this day Scala solves the parallelization challenge with high-level, elegant
and easy-to-use libraries such as parallel collections (scala.collection.parallel)
and the Scala actors (scala.actors). Other libraries such as Akka actors and
other frameworks that take advantage of these new opportunities have been devel-
oped by other parties.

1.2.1 Parallel collections

The Scala parallel collections were introduced in Scala 2.9.0. They are composed
of a parallel counterpart to “classical” sequential collections (scala.collection).
Most corresponding collection classes are available in a parallel version. List
becomes ParList, Array becomes ParArray, Map has ParMap etc.

The parallel collections take advantage of Scala’s well-designed type hierarchy
(figure 1) to have all typical methods available such as map, fold, find etc. The
only difference is, of course, that when they are invoked on a parallel object they
transparently run in parallel, trying to take advantage of all available hardware.

To make this possible the parcols use an underlying divide and conquer ap-
proach. [6] Each class uses a splitter method that is recursively applied to divide the
collection into smaller parts that can be processed separately. After that each piece
has been processed, they are recombined using a combiner function that also must
be implemented. The underlying implementation uses Java’s Fork/Join framework
for efficient load balancing. The developer that wants to write parallel applications
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Figure 1: Scala’s collections hierarchy (http://docs.scala-
lang.org/overviews/parallel-collections/architecture.html)

does not have to explicitly do anything but to use the parallel collection or convert
the sequential objects using .par.

1.2.2 Actors

Scala’s main concurrency construct for writing concurrent code is actors[4]. Unlike
traditional concurrency models, they do not use shared data or locks. Instead they
communicate by passing asynchronous messages. In practice, each Actor can
represent a represents a thread for example. Programming constructs in Scala use
loops to process available messages in the mailbox by using pattern matching.
An efficient implementation makes it possible to have little overhead by avoiding
expensive context switching in some cases. Thus, it is possible for example to have
thousands of active actors using only one active thread, for example.

1.2.3 Menthor

To make it easier to build machine learning applications that take advantage of
multi-core environments with Scala, the Menthor framework was developed by
DR. PHILIP HALLER and HEATHER MILLER [3]. The Menthor framework op-
erates on data graphs. Each vertex holds a value of type Data that is iteratively
updated. Menthor uses, like other graph processing frameworks, an iterative ap-
proach of super-steps that are composed of sub-steps.

At each step, computations are done locally at each vertex. Then each vertex
can send out messages containing its results to its neighbors. During the next
sub-step, each vertex can access a list of received messages. All the steps are
synchronized. It is also possible to apply reduce operations on all the data vertices
using a crunch function. The reduced result is then available at the next sub-step
as a message.

The underlying implementation uses Akka actors that are similar to Scala’s ac-
tors. All vertices are partitioned into groups that are each managed by a Worker
that takes care of transferring messages and crunch results. The Workers are them-
selves managed by Foremen that perform similar tasks. Both the Foremen and the
Workers are actors. The clever use of actors makes it possible for all operations to
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be run in parallel leveraging all available hardware.

1.3 Goal

The purpose of this bachelor semester project is to investigate the use of Scala’s
parallel collections and Menthor framework to take advantage of multi-core ar-
chitectures when writing machine learning applications working with large data
sets. The aim is to provide quantitative results by comparing the running time of
the same machine learning algorithm implemented sequentially, and with parallel
collections as well as with the Menthor framework.

1.3.1 Expected outcome

It is expected that both the parallel collections and Menthor framework implemen-
tations will show significant speed improvements when an increasing amount of
cores are available. The ideal case would be to have linear speedup compared to
the amount of available cores.

It is also expected that the implementation using the parallel collections will be
straightforward given a working sequential implementation. The Menthor imple-
mentation might require a longer learning curve since it uses a specific architecture.

2 Method and implementations
As mentioned previously a machine learning algorithm was implemented with the
following implementations:

1. Scala sequential collections

2. Scala parallel collections

3. Menthor framework

It was chosen to implement a Gaussian Mixture (GM) Expectation Maximization
(EM) algorithm. This kind of algorithm is extensively used for data clustering
applications in industry as well as in research topics such as neurology or biology.
The different implementations were then carefully benchmarked using generated
data of various sizes and difficulty to assess their relative performance in different
environments.

2.1 Expectation maximization algorithm

The expectation maximization algorithm (EM) is a class of algorithm used for
finding maximum a posterior (MAP) estimates or the maximum likelihood of pa-
rameters in statistical models. The algorithm is composed of two alternating steps
that are applied iteratively. First, the expectation (E) step is performed. It uses
current estimates of the parameters to compute the expectation of log-likelihood.
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Figure 2: Example of GM EM output, 10’000 samples, 3 components.

Then the maximization (M) step, uses the log-likelihood calculated in the previous
E step to maximize the parameters. The steps are iteratively applied until a halting
condition is met. The halting condition can either be reaching a maximum number
of iterations or that the variation in log-likelihood is arbitrarily small.

2.1.1 Gaussian Mixture

Gaussian Mixture is a EM algorithm variant for determining parameters in Gaus-
sian mixture models and the clustering of the data. Figure 2 illustrates the output
of a sample EM GM algorithm. The samples are coming from a three Gaussian
sources. The crosses represent the estimated means and the ellips are the respec-
tive covariances.

The detailed steps of the algorithm are presented below. Some mathematical
aspects were left out to emphasize more the structure of the algorithm and focus on
how the algorithm could be implemented. The approach is inspired largely by the
example that can be found on Wikipedia1 and also from [1, 7, 5, 2] which present
more formal approaches.

The data x= (x1,x2, . . . ,xn) is composed of n independent observations each of
dimension d. The latent variables z = (z1,z2, . . . ,zn) determine from which com-

1http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm#Example:_Gaussian_mixture
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ponent the observation originates. We then have

Xi|(Zi = j)∼ Nd(µj,Σ j)

where
P(Zi = k) = τk

and
∑
k
τk = 1

with 0< k < K where K is the number of Gaussian components.
The algorithm should estimate the unknown parameters :

θ= (τ,µ,Σ)

The likelihood function to be maximized is :

L(θ,x,z) = P(x,z|θ) =
n

∏
i=1

K

∑
j=1

I(zi = j)τ j f (xi;µj,Σ j)

where f is the multivariate normal distribution :

f (xi;µj,Σ j) =
1

√

(2π)d
∣

∣Σ j
∣

∣

e−
1
2 (xi−µj)

TΣ−1j (xi−µj)

The GM EM algorithm then consists of the application of the steps described
in Algorithm 1.

Different strategies exist for guessing the initial parameter θ(0). In this work
the Kmeans algorithm was used.

2.2 Implementations

The sequential and parallel versions work in the same way: methods that can be
used are the same, only the type changes. Therefore the algorithm only had to
be implemented in two fundamentally different ways: one using Scala generic
collections and the other using the Menthor framework. Although very different in
design, both implementations had to share as much code and logic as possible to
allow fair comparisons in the benchmarks.

To allow this, a simple class hierarchy was designed. Gaussian is an abstract
class that implements basic initialization procedures and declares the functions that
have to be implemented for the algorithm to run, namely the em function. The
Gaussian class is extended by GaussianCollections and GaussianMenthor
that each implement the em method. The inner-workings of both implementations
are detailed hereafter. It is important to get insights into their implementation to
understand which operations could take advantage of multi-core environments.

Both variants use Scalala2 for linear algebra and mathematical operations.
2“Scalala is a high performance numeric linear algebra library for Scala, with rich Matlab-

like operators on vectors and matrices; a library of numerical routines; support for plotting.”
https://github.com/scalala/Scalala
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Algorithm 1 GM EM Algorithm

1. Start with an initial guess for the parameter θ(0)

2. Expectation step: at the tth step, compute

T (t)
j,i = P(Z j = j|Xi = xi;θ(t)) =

τ(t)i f (xi;µj,Σ j)

∑K
k=1 τ

(t)
k f (xi;µj,Σ j)

Q(θ|θ( j)) = E [L(θ,x,z)]

3. Maximization Step: determine the new estimate θt+1as the maximizer of
Q(θ|θt) over θ

τ(t+1)j =
1
n

n

∑
i=1

T (t)
j,i

µ(t+1)k =
∑n
i=1T

(t)
k,i xi

∑n
i=1T

(t)
k,i

Σ(t+1)k =
∑n
i=1T

(t)
k,i (xi−µ(t+1)k )(xi−µ(t+1)k )T

∑ni=1T
(t)
k,i
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2.2.1 Implementation using Collections

In this implementation, the input data is stored in a generic sequence of DenseVectors.
Each vector represents a sample. The implementation of the EM is pretty straight-
forward. A loop applies the E and M step iteratively. Between each iteration, the
variation in log-likelihood is computed. Whenever the variation is arbitrary small
or if the maximum number of iterations is reached, the algorithm stops and returns
the current estimates.

Expectation In the E step, some parameters used later in the calculations are first
initialized. Then a map function is applied on the input data. The map computes the
expectation value corresponding to each sample.

Maximization In the M step, the current estimated weights are first computed by
summing the expectation data with a reduce function. Then the estimated means
are computed by multiplying each point with its corresponding estimate using a
map. The new collection is then reduced with a summing function. Finally for each
component, the estimated covariances are computed, once more by applying a map
on the data, and then the estimates are zipped together. The resulting collection is
then also summed.

2.2.2 Parallel vs. sequential

It is important to notice that almost all operations are done collection-wise using
map or reduce functions. It means that they could potentially be run in parallel.

To allow the code to be very flexible, only GenSeq was used in the method
signatures. During run-time we take advantage of polymorphism. If the input
sequence is parallel, so will be the output, and all operations are done in parallel.
No subsequent changes in the code are needed.

To allow easy benchmarking with the parallel and sequential version of the col-
lections, the GaussianCollections was simply sub-classed with GaussianSequential
and GaussianParallel which provide the right input types. This is illustrated in
figure 3. In the final code the choice was made to use Arrays and ParArrays as
input since they are easy to use and known for allowing good performance when
the elements are accesed out-of-order.

2.2.3 Implementation using Menthor

For the Menthor implementation, a graph structure had to be designed to hold the
data. The choice was made to have one sample per vertex. Since there are no
relations between the samples, the vertices were not connected to each other. This
means that the entire graph is unconnected and that no vertex has any neighbor to
send messages to. Given this choice, the algorithm had to be designed to use a
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class GaussianSequential(initStrategy: GaussianInit)
(dataIn: GenSeq[DenseVector[Double]],
gaussianComponents: Int)

extends GaussianCollections(initStrategy)(dataIn.seq, gaussianComponents)

class GaussianSequential(initStrategy: GaussianInit)
(dataIn: GenSeq[DenseVector[Double]],
gaussianComponents: Int)

extends GaussianCollections(initStrategy)(dataIn.seq, gaussianComponents)

abstract class GaussianCollections(initStrategy: GaussianInit)
(dataIn: GenSeq[DenseVector[Double]],
gaussianComponents: Int)

extends Gaussian(initStrategy)(dataIn, gaussianComponents) {

/** The implementation of the EM algorithm */
def em(...) {
...

}
}

Figure 3: GaussianCollections sub-classes

succession of sub-steps as enforced by Menthor. Algorithm 2 gives an overview of
the implementation’s eight sub-steps.

Algorithm 2Menthor sub-steps
1. Compute the expectation at each vertex

2. Crunch step to sum the estimated expectation at each vertex

3. One vertex sets the new estimated weights in the shared data

4. Crunch step to sum the estimated means

5. One vertex sets the new estimated means in the shared data

6. Crunch step to sum the estimated covariances

7. One vertex sets the new estimated covariances in the shared data

8. One vertex computes the likelihood and decides if the iterations should stop

In the implementation of the algorithm, some data from the model such as the
estimated weights, means and covariances are to be used across all vertices. These
objects were stored in one SharedData object to avoid redundant copies.

12



class VertexValue(
val point: DenseVector[Double] = null,
var exp: DenseVector[Double] = null,
private val estMeans: DenseMatrix[Double] = null,
private val estCovariances: Array[DenseMatrix[Double]] = null) {
def means = estMeans
def covariances = estCovariances

}

Figure 4: VertexValue

class RealVertexValue(point: DenseVector[Double])
extends VertexValue(point = point) {

override def means = point.asCol * exp.asRow
override def covariances = {
(0 until gaussianComponents).toArray map(k => {
val delta = point.asCol - CurrentData.means(::, k)
(delta * delta.t) :* exp(k) :/ CurrentData.weights(k)

})
}

}

Figure 5: RealVertexValue

crunch A limitation was that the crunch step only allows for (Data, Data) =>
Data) function to be applied on all vertices. However in this implementation it is
necessary to apply different operations involving different types of data when the
crunch step computes the estimated means or covariances. In these cases, the input
and output of the function are not of the same type.

To overcome this issue a simple wrapper class was implemented. RealVertexValue
(see Figure 5) objects hold the sample and the current expected value in each ver-
tex. It also provides methods means and covariances that return the part of the
mean and covariance that must be computed at each vertex before being summed
altogether. This class is also sub-classed with VertexValue (see figure 4) that
is only used during the crunch step. It helps carrying the current sum. When
means and covariances are called on this object it simply returns the running
sum. Figure 6 illustrates the use of both classes. x and y can be either of type
RealVertexValue or VertexValue but when they are summed, they get wrapped
in a VertexValue object. This was made possible to do in a readable way by
taking advantage of Scala’s default parameters.
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2.2.4 Menthor improvement: crunchToOne

The Menthor architecture was not at all optimized for this particular implementa-
tion, which could introduce significant overhead. Indeed, in the original implemen-
tation of Menthor, the result of the crunch step is sent as a message to all vertices.
However here, only one vertex needs the result to store it in a shared data struc-
ture. The framework was modified to allow this behavior by implementing the
crunchToOne function. To make this possible, the entire structure of the Menthor
framework had to be slightly altered. The results of the crunchToOne step had to
be wrapped in a marker object for the foremen and workers to know it only had to
be delivered to a specific vertex.

The only difference at the end with crunch, is that for the next step only the
first vertex of the graph receives the results, saving the sending of n−1 redundant
messages (where n is the number of vertices).

2.2.5 Notes on testing

To be sure the algorithm was correctly implemented in Scala, its outputs where
carefully compared to a MATLAB version of the algorithm upon which the imple-
mentation was based. Extensive unit tests were also written to support the devel-
opment and maintenance of the code base.

2.3 Experimental setup

Scala code benchmarking is delicate since there are several actors that can affect
the running time that can come into play. Care had to be taken to avoid problems
with the following mechanisms.

Garbage collection During the lifetime of an application running on the JVM
garbage collection is invoked periodically by the JVM. Its task is to reclaim
the memory used by objects that are no longer referenced. Every time the
garbage collector is called, there is an impact on performance, since a part
of the CPU is dedicated to that task. To avoid this problem, the GC can
be called manually when the code is not being benchmarked. It lowers the
probability of being called later on by the JVM.

HotSpot optimizations HotSpot is the JVM developed by Oracle. When the byte-
code of a Scala application is loaded in the JVM, it is not optimized yet.
During the run of the JVM the “hot spots” will be localized and optimized
allowing the application to run faster. It typically takes a few runs of the

crunch((x,y) => new VertexValue(exp = x.exp + y.exp))

Figure 6: Crunch usage
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class BenchmarkedClass extends TicToc {
def runAlgo(...) {
// Initialization code
tic
// Code to be benchmarked
toc("description")
// Other code

}
}

Figure 7: TicToc usage

same code for the performance to become stable. Other implementations of
the JVM implement similar mechanisms.

Benchmark code The code used for the benchmarking can itself introduce over-
head when invoked. Therefore, the number of operations used when bench-
marking have to have a very small footprint. The benchmarking code should
also be implemented to only take into account the desired parts of the code
and not the application as a whole.

Other applications If other processes are running alongside the application, they
can randomly impact performance and introduce variance in the results.

The detailed techniques used to minimize the errors introduced by these issues are
detailed below.

2.3.1 Benchmark code

To time the code the TicToc trait provided with Menthor was used. TicToc makes
it possible to time various parts of the code with little intrusion and minimal over-
head. It also provides basic functions to display and output the benchmarking
results to a file.

The only parts of the code that were benchmarked were the execution of the
EM algorithm. To do this, the Gaussian class implemented the TicToc trait. Both
subclasses could then delimit the parts of the code that were to be timed (example
in figure 7). The time to read the data from the file, initialize parameters etc. were
not taken into account.

2.3.2 Benchmark run

To reduce the impact of the time it takes for HotSpot to optimize the code during
run time, the EM algorithm was run multiple times in a row. Typically, after only
a few runs, the optimizations are done and the speed is constant. Therefore each
benchmark run consisted of the the iterative execution of the program 15 times in
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a row on the same JVM. The first five (usually biased by HotSpot) results were
discarded and the average of the ten other was made.

Between each run the Garbage collector was called. Calling it before running
the algorithm lowers the probability of the garbage collector running during the
execution of the code that is being benchmarked.

2.3.3 Launch scripts

The application was always launched remotely to avoid unnecessary processes
(GUI, other applications etc.) running on the machines. A script took care of
packaging the latest version of the code into a JAR and executing it with the dif-
ferent subsets of available cores and data sets. The execution of the code could be
monitored remotely by using top on Linux to make sure no other user or process
was interfering.

2.3.4 Machines and configuration

The benchmarks were run on machines with distinct configurations to have differ-
ent comparison bases.

MTCQUAD The MTCQUAD server has 4 Dual-Core AMD Opteron 8220 SE
running at 2.8Ghz which gives a total of 8 physical cores.

ICBC07 The ICBC07 machines run on an Intel Core i7 920 at 2.66Ghz. It has 4
real cores and supports hyper-threading3.

All tests were carried out with Scala 2.9.2. The MTCQUAD machine was run-
ning Oracle JVM 1.6 64bit in server mode. The ICBC07 machines were running
OpenJDK 1.6 32bits in server mode.

2.3.5 Core usage

On both machines the cores could not be physically switched off. Their use had
to be prevented by the operating system so the JVM only has access to a subset
of the available cores. When running the benchmarks in a Linux environment the
taskset command was used to make this possible, by setting the CPU affinity of
a new process. Figure 8 illustrates the use of taskset to execute the application
that was previously packed into a JAR on cores 0 and 4. On Windows, a similar
command exists: start.

3“Intel Hyper-Threading Technology uses processor resources more efficiently, enabling
multiple threads to run on each core. As a performance feature, Intel HT Tech-
nology also increases processor throughput, improving overall performance on threaded
software.” source: http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-
threading/hyper-threading-technology.html
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2.3.6 Data sets

Two datasets were used for the benchmarking. The first one had 50’000 points
coming from six Gaussian sources. With the default parameters, it converged after
six iterations. The second dataset is much larger, with 600’000 points coming from
five sources. It converges after eight iterations.

3 Results

3.1 General remarks

Figures 9 and 10 show the plots of all the implementations running respectively on
the ICBC07 and MTCQUADmachines.

Plots at the top of each figure represent the average running time in millisec-
onds of each implementation depending on the number of cores.

Plots at the bottom show the speedup factor for each implementation. Each
series are normalized to the run with one core. They are used to asses separately
the speedup of each implementation.

3.2 ICBC07

Important note The CPU has only four physical cores. Intel’s hyper-threading
makes the OS see it as eight distinct cores. The hardware tries to optimize the core
usage by interleaving the simultaneous execution of the eight threads transparently.
In the benchmarks the cores were always combined in pairs. For example when two
cores were used it was the two cores associated to the same physical core.

One can notice that the running time when only one core is available is the
fastest with the sequential implementation. The Parallel implementation is around
5% slower whereas the Menthor implementation takes around twice as much time
to run.

We also see that the running time of the Menthor implementation is always
around 1.7 - 2 times longer than the parallel collections implementation with the
small dataset. With the large data set the numbers are 1.4 - 1.7. It only gets
faster than the sequential implementation when it has more than 5 cores (3 physical
cores).

The running time of the sequential implementation improves slightly when
more cores are available.

The speedup plots indicate that the speed of both the parallel and Menthor im-
plementations scale with the number of cores. When all cores are used the speedups

$ taskset -c 0,4 java -jar em.jar

Figure 8: taskset usage limiting the execution of em.jar to core ids 0 and 4
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Figure 9: Run on ICBC07 machines

are respectively 3.5 and 4.2 for the 50k and 3.3 and 4.1 for the 600k run compared
to the use of one core. If the cores are grouped in pairs to only compare the speedup
when the cores are fully used we get the speedup from 1 to 4 physical cores to be
respectively 2.8 and 3.6 for the 50k dataset and 2.7 and 3.2 for the 600k dataset.

One can also notice that steps appear in the speedup plots for every pair of
cores that is added.

3.3 MTCQUAD

The results coming from the MTCQUAD machine share similarities with the out-
come coming from the ICBC07 machine. The running time of the Menthor imple-
mentation is always significantly slower than with the parallel collections. When
only one core is available for the 50k dataset, it takes twice as much time to com-
plete, when all cores are available this number goes down to 1.5. These numbers
are respectively 1.7 and 1.2 for the larger dataset. When three cores or more are
available Menthor beats the running time of the sequential implementation.

The execution time of the sequential implementation is also nearly constant,
with the 600k dataset it shows a slight improvement when it is slightly decays with
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Figure 10: Run on MTCQUADmachine

the other dataset.
Both implementations show important speedups when more cores are avail-

able. One can notice that the relative speedup each time a core is added decays
inversely proportional for the Menthor implementation. When both cores from the
first CPU are used, the speed improved by around 60% for both datasets. When a
third core is added, it is improved further by around 30% compared to two cores,
then 15% with the fourth and so on.

For the parallel collections implementation the speedup grows quickly until
two CPUs (four cores) are used. When all the CPUs are used, the variation is only
of +12% for the 50k dataset and for the 600k dataset the performance drops by a
couple of percent.

One can also notice the small drop in performance going from 5 to 6 cores and
7 to 8 cores with the parallel collections implementation when running with the
large dataset.

3.4 crunchToOne

The outcome of the benchmarks comparing the Menthor implementation using
crunch and crunchToOne is illustrated in figure 11. For the 50k dataset the the
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Figure 11: crunch vs. crunchToOne running on ICBC07

implementation using crunchToOne runs on average about 20% faster than the
other. For the 600k, set the difference is much bigger: the implementation using
the crunch function take over three times more time to execute.

4 Discussion

4.1 Running time and speedup

4.1.1 General observations

On both machines the parallel and Menthor framework implementations run, as
expected, faster the more cores are available. Nevertheless, due to hardware differ-
ences, the scaling behaves differently. These differences are detailed below.

The Menthor framework implementation runs slower than the parallel imple-
mentation with all configurations and datasets. Several explanations are possible.
First the steps in the Menthor framework are synchronous. Hence, there is waiting
between the substeps until they are all completed. Regardless of whether or not the
wait is necessary. Many more objects are instantiated during the run which is time
expensive. Empty lists are created at each vertex during each substep for example.
The actors might also introduce overhead since there are more actor threads than
available cores. On the other hand, the Menthor implementation scales slightly
better than the parallel version. This must come from the fact that it makes better
use of the CPU time. Each actor performs relatively small operations so there is
less overall waiting time.

4.1.2 ICBC07

The results align well with the hypothesis. The speedup grows nearly linearly. This
is possible since allmost all operations in the application can be done in parallel.
(c.f. part about the implementation).
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The fact that the Menthor implementation scales slightly better with the larger
dataset might come from the architecture. Smaller collections, and less expen-
sive operations are used in the Menthor implementation. When using the parallel
collection, the arrays have to be recursively split before they can be processed sep-
arately.

The steps in the speedup graph come from the hyper-threading mechanism.
When the second core in each pair of virtual pair is added, a slight improvement is
possible, since the use of the CPU is optimized.

4.1.3 MTCQUAD

The general observations are still true for the run on the MTCQUADmachine. But
a surprising result is that the application does not scale to take full advantage of
the eight physical cores, that are available. Even when allowed to use all cores it
only had a maximum speedup of 3.1 with the Menthor framework. This must be
explained by the machine’s architecture. It is composed of four distinct Dual-core
CPUs. The architecture is not capable of properly balancing the load or might
me limited by memory acces or bus speed. There is likely more latency when
communicating between two processors on different chips than communicating
between cores on the same chip.

4.2 Implementations

4.2.1 Collections

The code was first written based on a MATLAB implementation of the algorithm
by keeping a much resemblance in the structure. The problem however was that
the code was very procedural and relied heavily on the Scalala library by using
DenseMatrix and DenseVectors to hold all the data.

The code was then iteratively modified to rely more on the Scala collections to
hold the data. There was an important shift from procedural to a more functional
code. However the use of the Scalala library was not completely abandoned, since
it provided elegant solutions for some linear algebra operations.

Once the sequential version using Arrays was working, it was, as expected,
very easy to make it ready to accept parallel collections objects as inputs. Only the
method signatures were altered to use GenSeq instead of explicit concrete types in
addition to sub-classing GaussianCollections. No other code had to be changed.

Programmers should have a very easy time making their sequential code take
advantage of parallel speedups. Developers coming from procedural backgrounds
can also take advantage of these collections when using for loops or other con-
structs - they are not constrained to use functional constructs.
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4.2.2 Menthor

The implementation using the Menthor framework was, at first, more complicated.
There was a learning curve for adapting to the framework’s structure and design.
In contrast with the other implementation, it put more emphasis on the processing
of each sample instead of taking input data as a collection which is not usual when
coming from a procedural programming background.

It was also a difficult to take ful advantage of the crunch function. An another
approach was tried by using “master nodes” that would take care of reducing the
results coming from “child nodes”. This however would not have been as scal-
able and easy to maintain as an implementation using the crunch step. The optimal
number and size of partitions would have been necessary to find out etc. In the end,
as previously mentioned, the crunch function combined with a wrapper object was
used. However a method with the same signature as fold Left (foldLeft[B](z:
B)(f: (B, A) => B): B) for example would have made the development eas-
ier.

Once these problems were solved, the implementation was easy. The code is
makes also the mathematical steps and formulas appear more clearly which is good
for code maintenance.

If another algorithm was now to be developed in addition it would not need as
much time for adapting since the learning curve was already passed.

4.2.3 Improvement: crunchToOne

The results strongly support the implementation of the crunchToOne function. The
running time of the smaller dataset are sped up by 20%, which is already non-
negligible. As for the 600k dataset the speed improvements are drastic. The reason
is that the ratio of messages that don’t have to be sent scales linearly with the
number of vertices. When, for the smaller dataset, the ratio of saved messages is
1:50’000, it becomes 1:600’000 for the larger one. The waiting time between the
substeps is also reduced.

4.3 Conclusion

Overall, the work shows very encouraging results that align with the hypothesis.
Developers should not refrain from using parallel collections whenever possible
since it provides tangible speedups for real applications. This is consistent with the
benchmarks in [6]. Other works go into more details on what size the collections
should be to have an optimal outcome.

For a more specific machine learning application, the Menthor framework was
also a good solution. It provides good speedup and is relatively easy to use. The
EM GM algorithm however is certainly not the best suited for this kind of frame-
work since it does not originally rely on graphs. However the framework is flexible
enough to be used anyway.
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Regarding the hardware, it appears that the use of configurations with a single
CPU with multiple cores is preferable than to have multiple CPUs with less cores.

4.3.1 Future work

Future work could investigate how the implementations scale when even larger
datasets are provided to verify is the trend is confirmed. It would be also interest-
ing to run the same benchmarks on other machines with different hardware (more
CPUs, more cores / CPU etc.)
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