
Scala Benchmark: Invariant Verifier
Optional Semester Project

Pamela Delgado

Supervisor: Aleksandar Prokopec
Professor: Martin Odersky

Programming Methods Laboratory LAMP, EPFL
Lausanne, Switzerland

January 14, 2012

1 Introduction

During the last years parallel and concurrent programming have become sub-
jects of an increasing importance in Computer Science. On one side new tech-
nologies tend to enhance efficiency in hardware, for example by increasing the
number of parallel microprocessors, on the other side the research community
puts great efforts in processing data as efficiently as possible.

Alongside with this dominant paradigm, programming languages started to
be designed to take advantage of these new hardware building blocks. One exam-
ple is Java and its virtual machine, which provides programmers with a thread
managing system underneath. Hence, it is possible to write multi-threaded and
parallelized code using a high-level language that runs on the Java virtual ma-
chine, such as Java itself, or the emergent multi-paradigm Scala language.

However, parallel and concurrent programming can be difficult to test, verify
and debug, since there are simultaneous and possibly interweaving executions
that require to be tracked and checked. As a simple example, if a portion of a
program splits the work in a number of jobs, it might be desirable that those
jobs converge after each one has been processed. These kind of checks and veri-
fications exceed the capabilities of unit tests or other standard utilities like line
by line debugging, forcing programmers to do them manually, for example by
printing the needed information in logs. This task is error prone, time consum-
ing and ineffective in general.

In this project, we propose an alternative for verifying rules defined by the
programmer, that should hold for a parallel program in the Scala language. We

1

built our approach based on the concepts of code instrumentation and the rep-
resentation of rules as invariants that can be represented in an abstract form.
This project has been developed under the umbrella of the Scala Benchmark
suite.

We describe the main contributions of this work as follows:

i) Definition of rules as invariant predicates that describe a desired property
of a Scala code execution.

ii) Implementation of an instrumenter that injects verification code to the
compiled Scala classes, allowing a non-intrusive instrumentation of the
code. This injected code allows later verification of the rules defined be-
fore.

iii) Implementation of a rule verifier that runs the instrumented classes and
verifies if the resulting execution complies to the defined rules.

iv) Experimentation of the approach with common use cases.

The rest of the report is organized as follows: In Section 2 we explain the
basic notions of Java and Scala code execution and instrumentation, and we
present the Scala Benchmark project. In Section 3 we describe our solution,
its architecture and implementation. Section 4 is dedicated to the sample use-
cases for our approach, and Section 5 to the future work, before concluding in
Section 6.

2 Preliminaries

In this section we introduce concepts that are essential in the context of this
project, namely: how the Java Virtual Machine internally works, what are Java
agents and instrumentation, and their implication with Scala programs. We
also introduce the Scala Benchmark suite.

2.1 The Java Virtual Machine

The JVM is a code execution component capable of running Java bytecode.
This can be generated from Java or even other programming languages. One
of the main characteristics of Java is that the code can be either interpreted or
compiled Just-In-Time, in fact the Java Virtual Machine contains a JIT code
generator and an interpreter, as shown in Figure 1 (as JIT has proven to per-
form significantly better). Other features of running code with the JVM are
the sandbox safety, in addition to the Bytecode verifier, and the portability to
different platforms, as the JRE adapts to different Operating Systems (repre-
sented as Native OS + processor in Figure 1).

2

Figure 1: Java Virtual Machine overview

In Figure 2 we can see the internal architecture of the JVM, which is stack
based. Once the program in class files is loaded the Java virtual machine needs
to organize the memory by having several runtime data areas. The method area
and the heap are shared between all threads, each new thread has its own PC
register which is basically a program counter and a Java stack, which stores the
state of a non native method invocations (local variables, parameters when it
was invoked, return value, intermediate calculations). As for the Native method
stack, the state of its native methods is implementation-dependent [6].

Although at first the JVM was meant to run Java compiled code, nowadays
there are some languages which run on top of it, in order to take its advantages.
Among the languages designed expressly for the JVM we find Scala, which
combining object-oriented and functional paradigms is completely interoperable
with Java. In the remainder of this report we will focus on Scala programs as
the verification target.

2.2 Instrumentation

The fact that compiled Scala programs are Java classes allows us to perform
instrumentation as if they were Java programs. For the JDK 5 a new option
-javaagent was introduced along with the java.lang.instrument package.
The agent specified with this parameter can be loaded statically at startup or
dynamically at runtime to attach to a running process. It is possible to instru-

3

Figure 2: Java Virtual Machine internal architecture

ment the classes by modifying the bytecode of the method bodies.

Figure 3: Instrumenting Java bytecode with javaagent.

To create a “javaagent” we need first to implement an instrumenter. Each
instrumenter has to implement the Premain method, which as its name indicates
is invoked prior to the main method of the instrumented program (See Figure 3).
When used the Java agent will be statically loaded at startup. Once we have the
code of the instrumenter compiled we can create a .jar file including its classes
and a Manifest indicating the agent Premain method. In this Manifest file we
can also specify if the classes can be redefined.

2.3 Scala Benchmark

As the Scala developers community starts to add more and more libraries and
functionalities benchmarking them has become cumbersome to be done man-
ually. This is why the Scala Benchmark suite was developed to assess how
changes to the Scala compiler and libraries affect the space and time usage of
various operations, programming patterns and idioms.

4

It is important to test Scala in both performance and correctness, the Scala
benchmark suit follows the statistical approach mentioned in [3] by warming
the JVM and includes the options Startup performance and Steady-state per-
formance along with some profiling tasks.

3 Architecture & Implementation

In this section we describe the architecture and design of the Invariant Verifier.
Its components and the way they interact with each other can be visualized in
Figure 4 .

Figure 4: Invariant Verifier Architecture.

The user is provided with a Rules Template trait and the Formula case
classes, he then implements the Rules Template trait by defining the list of full
name methods to be instrumented and a list of Invariants, expressed as Formula,
to be checked.

The path to the compiled version of this user implementation of Rules Tem-
plate, we call it Rules, together with the directory of compiled user code to be
tested and the Scala libraries paths are given as argument to the Rule Verifier.
This component invokes Invocation Instrumenter giving it the list of methods

5

to be instrumented and the path to the users code.

The Invocation Instrumenter instruments and runs the user code logging
information about invocations to the specified methods, if there is any return
value this is also serialized and saved in a file. Finally, once the running is done,
the Rule Verifier processes the log and checks the compliance of each Invariant
defined by the user.

Each of the above mentioned components needed to verify user’s defined
invariants are described in detail in the following subsections.

3.1 Rules Template

As mentioned before, the developer needs to implement the Rules Template
trait by defining a list of methods to be instrumented plus a list of invariants
that must be checked on the list of invocations after running the program. The
Rules Template not only clarifies and gives an order to the way rules are ex-
pressed but also is needed for the Rules Verifier to get this information using
reflection.

Rules Template trait dictates that the user must specify:

• Methods: the list of methods as a list of String, each one of them should
contain the full path to it, for example: my.package.MyClass.mymethod.

• Main: the starting point for the JVM to run the program.

• Invariants: this is the most important input, specified as a list of Formula,
gives the user a freedom to decide how to -efficiently- express the rules.

In Scala code:

package ch.epfl.lamp.scalainstrument
import ch.epfl.lamp.scalainstrument.formula.Formula

trait RulesTemplate {
def methods : List[String]
def mainClass : String
def invariants : List[Formula]

}

The following section describes Formula, the way it was designed and how
to define a rule in terms of it.

3.2 Formula

Formula is an abstract concept for the way Invariants can be expressed. Its
design was inspired in First Order Logic which is very powerful to express con-
ditions and rules. Similarly to one of Scala main attractiveness, we wanted for

6

this DSL to be as expressive as possible from the point of view of the developer.

We started with an example of Invariant we found in Scala parallel collec-
tions. ParIterableLike in the standard library has a lot of collection methods
inside, most of these are implemented in terms of a Task being launched, for
example the filter:

def filter(pred: T => Boolean): Repr = {
executeAndWaitResult(new Filter(pred, cbfactory, splitter)

mapResult { _.result })
}

protected[this] class Filter[U >: T, This >: Repr](pred: T =>
Boolean, cbf: () => Combiner[U, This], protected[this] val
pit: IterableSplitter[T])
extends Transformer[Combiner[U, This], Filter[U, This]] {
@volatile var result: Combiner[U, This] = null

def leaf(prev: Option[Combiner[U, This]]) = {
result = pit.filter2combiner(pred, reuse(prev, cbf()))

}

protected[this] def newSubtask(p: IterableSplitter[T]) = new
Filter(pred, cbf, p)

override def merge(that: Filter[U, This]) = result = result
combine that.result

}

This Task object describes how parts of the collection are split into subsets
(“split” method newSubtask), and then processed (through the leaf method).
The results are then combined in the merge method. The idea behind the
splitting of tasks is to achieve better load balancing and once the threshold is
reached, “leaf” will be called to combine elements [5].

In this scenario, the following invariant should hold at all times: if there
are any splits at all, then a “split” call should precede a “leaf”. Expressed in
another way: for all split calls there should exist a leaf such that this leaf is
called after that split. If we express this rule in a First-Order logic way we
have:

∀s in“split”⇒ ∃p in“leaf” ∧ s isbefore p

With this example we can see some elements that can be matched with
propositional and first order logic (∀, ⇒, ∃, ∧) and some other specifically re-
lated to invocations like “in”, which refers to invocation of a method, and “is
before” which means that the invocation time of s is before the invocation time
of p. To implement Formula we taken into account these and what we consider
the most basic and useful cases to express Invariants. The following table lists

7

the operators implemented in Formula, each one of these correspond to a case
class.

Type First order logic Formula equivalent

Constant T Constant(true)
Constant F Constant(false)
Logical ¬ Neg
Logical ∨ ‖
Logical ∧ &&
Logical ⇒ ==>
Logical ∀ Forall
Logical ∃ Exists
Invocation specific in
Invocation specific Filter(true)
Invocation specific Filter(false)
Invocation specific isBefore

Table 1: Formula case classes and first order logic equivalence

Using this classes we can write our example of Invariant as:

def splitInvariant Forall(x => (x in "split")
==> Exists(y => (y in "leaf") && isBefore(x, y)))

It is important to notice that when using Formula, the user has to be wise
in writing correct Invariants and take into account the effectiveness specially
when dealing with a big list of invocations. Nevertheless, some optimizations
were possible in the implementation of the project, they are described in the
following subsection.

3.2.1 Optimizations

When implementing the Formula checking of Invocations inside Invariant checker,
some optimizations were possible at the logic level. In the cases of ∨, ∧ and ⇒
we looked at their truth logic tables.

p q p ∧ q p q p ∨ q p q p⇒ q
T T T T T T T T T
T F F T F T T F F
F T F F T T F T T
F F F F F F F F T

Table 2: Truth tables for ∨, ∧ and ⇒

From this table, for the logical conjunction we know that if one predicate,
for example p, is false the other, for example q, is irrelevant (there is no need

8

to evaluate it) and if one of the predicates is true the other one needs to be
evaluated. Similarly, in the case of disjunction if one of the predicates is true

the other is not evaluated, while if one of them is False the result is the evalua-
tion of the other. Implication truth table is not symmetric in the sense that p
and q are treated differently, the optimization here is to skip evaluation of q in
the case the first predicate p is false (returning True as result).

Also the quantifiers have their optimizations, which is important for scal-
ability given that they are evaluated for each invocation. In the case of ∀ we
know that as soon as we have a false result for a given Invocation, further
evaluation is not needed. In the case of ∃, as soon as we have a true result for
an Invocation, the cycle stops returning true.

The case of in was a little different, because it has to be considered in ∀ as
a filter this is why a case class Filter is returned. If the predicate in applied
to an invocation returns false, the result Filter(false) will prevent from
evaluating the rest of the implication and from returning a false value. However
when in is combined with ∃ its Filter result acts like a normal Constant.

3.3 Invocation Instrumenter

As mentioned in Section 2, the fact that Scala compiled classes are Java byte-
code let us use Java instrumentation tools and run user’s instrumented code
in the JVM. In Java there are basically three instrumentation approaches: in-
strument source files, use Java Debug Interface and instrument class files. As
we want to perform a non-intrusive invariant verification we will not choose to
instrument the source files even though this is the easiest way of instrumenting
code. As for the JDI, this is already used in the Scala Benchmark suite and
it has proved to be slow. In addition, we only want to instrument to obtain
basically the order in which certain invocations have been done and probably
the pre and post conditions of it. This is why we decided to instrument the
source files.

Although the java.lang.instrument package allows access to redefine each
loaded class, building instrumentation in bytecodes is cumbersome. In response,
some editing tools like BCEL, ASM, SERP, Tool have been developed. For this
project the tool ASM was used which comes with a bytecode viewer plugin for
Eclipse, but still it was difficult or long to debug things in the instrumenter.

Following an analysis of the requirements, we determined how instrumenta-
tion is performed. Since we want to make the instrumentation as efficient as
possible and introduce the lowest overhead, only methods involved in the invari-
ants were instrumented. We inserted code using an ASM ClassVisitorAdapter

and a MethodAdapter, for each invocation of a method included in user’s list
new bytecode is inserted before and after the execution of the body.

9

The bytecode inserted at the beginning calls to the Logger registering the
timestamp and the class and method names (method logInvocation). The
following code excerpt shows how we add the corresponding bytecode.

mv.visitMethodInsn(org.objectweb.asm.Opcodes.INVOKESTATIC,
"ch/epfl/lamp/scalainstrument/instrumenter/Logger",
"getInstance",
"()Lch/epfl/lamp/scalainstrument/instrumenter/Logger;");

mv.visitLdcInsn(idTimestamp + className + methodName /*+...*/);
mv.visitMethodInsn(org.objectweb.asm.Opcodes.INVOKEVIRTUAL,

"ch/epfl/lamp/scalainstrument/instrumenter/Logger",
"logInvocation",
"(Ljava/lang/String;)V");

While the bytecode inserted at the end sends to the Logger the new times-
tamp, the return object and its ID which we decided to keep as the initial
timestamp (when the method was just called). The following code excerpt add
the bytecode that will do that by inserting a call to the logReturnValue method.

mv.visitMethodInsn(org.objectweb.asm.Opcodes.INVOKESTATIC,
"ch/epfl/lamp/scalainstrument/instrumenter/Logger",
"getInstance",
"()Lch/epfl/lamp/scalainstrument/instrumenter/Logger;");

mv.visitVarInsn(postponedOpcode, postponedVar);
mv.visitLdcInsn(endTimestamp + idTimestamp /*+ ...*/);
mv.visitMethodInsn(org.objectweb.asm.Opcodes.INVOKEVIRTUAL,

"ch/epfl/lamp/scalainstrument/instrumenter/Logger",
"logReturnValue",
"(Ljava/lang/Object;Ljava/lang/String;)V");

The Logger itself is implemented in Java as part of the Invocation Instru-
menter, it uses the Singleton pattern to ensure a unique access to the log file in
case of multiple threads and it simplifies the amount of bytecode to be inserted.

An example of this instrumentation can be seen below. Suppose we want
to instrument a simple method makeTriangle that returns an object of type
Triangle.

def makeTriangle(length: Int):Triangle ={
val triangle = new Triangle(length,0,0)
triangle

}

Its corresponding byte code would be:

// Method descriptor #28 (I)LTriangle;
// Stack: 5, Locals: 3
public Triangle makeTriangle(int length);
0 new Triangle [41]
3 dup

10

4 iload_1 [length]
5 iconst_0
6 iconst_0
7 invokespecial Triangle(int, int, int) [55]
10 astore_2 [triangle]
11 aload_2
12 areturn

And after instrumenting the resulting bytecode of the example would be:

// Method descriptor #29 (I)LTriangleScala;
// Stack: 5, Locals: 3
public Triangle makeTriangle(int length);

0 invokestatic ch.epfl.lamp.scalainstrument.instrumenter.
Logger.getInstance() : ch.epfl.lamp.scalainstrument.
instrumenter.Logger [58]

3 ldc <String "1326405832880 Invoking TriangleHelloScala\
$ makeTriangle"> [60]

5 invokevirtual ch.epfl.lamp.scalainstrument.instrumenter
.Logger.logInvocation(java.lang.String) : void [64]

8 new Triangle [42]
11 dup
12 iload_1 [length]
13 iconst_0
14 iconst_0
15 invokespecial Triangle(int, int, int) [67]
18 astore_2
19 invokestatic ch.epfl.lamp.scalainstrument.instrumenter.

Logger.getInstance() : ch.epfl.lamp.scalainstrument.
instrumenter.Logger [58]

22 aload_2
23 ldc <String "1326405832911 Returning 1326405832880">

[69]
25 invokevirtual ch.epfl.lamp.scalainstrument.instrumenter

.Logger.logReturnValue(java.lang.Object, java.lang.
String) : void [73]

28 aload_2
29 areturn

As reflected in the bytecode, a more complex transformation was needed
to get the returning value as an object. This statefull transformation of the
method, as stated in [2], memorizes the state of loading an object to the stack
and postpone it for later. In the case of areturn then we can insert the byte-
code as shown before, and in the case of other instruction the postponed load
is executed accordingly.

During the development of Invocation Instrumenter also references [1] and
[4] were helpful.

11

3.4 Rule Verifier

The Rule Verifier is the main orchestrator of the project, the user Rules class,
the application compiled code and needed libraries directories are its input. The
Rules class is first reflected to get the list of full name methods to be instru-
mented and the path to the main (starting point of the application) method.
With this data and the code and classpath directories the Rule Verifier then
invokes the Invocation Instrumenter which is written in Java.

The following is an example of how the Rule Verifier would call the instru-
menter, once the list of methods has been reflected from Rules class. In this
example the starting point is TriangleHelloScala.

>java -cp libs\asm-3.3.1.jar;libs\asm-tree-3.3.1.jar;
testCases;libs\scala-library.jar;libs\scala-compiler.jar
-javaagent:libs\InvocationInstrumenter.jar=
methods=TriangleHelloScala.makeTriangle;
AnotherClass.itsmethod,logpath=logPath TriangleHelloScala

Once the Instrumenter has finished, a log file with the list of invocations is
produced and the return values (if any) of the instrumented methods are serial-
ized and saved in files. The Rule Verifier parses the log into a list of Invocations
storing the starting and ending timestamps, method and class full name and
the ID name of the return serialized object file.

The final step is to verify the rules, again by reflecting Rules class the list
of invariants is obtained. Each invariant is then checked with the full list of
invocations.

4 Cases of study

Adding some parenthesis for clarification and a way of specifying the name of
the class for the in operator, the rule explained in the previous section about a
split being invoked before a leaf is fully expressed as:

def splitLeafInvariant =
Forall(x => (x in (splitLeafClass,"split"))
==> Exists(y => (y in (splitLeafClass,"leaf")) &&

isBefore(x, y)))

Apart from the example with splits and leafs, we found other test cases in
collections. These cases of study and its corresponding Invariants are explained
below.

Case Splitters. Once the Splitter is splitted it becomes invalid in the
sense that after calling split no method can be called at all. Or formulated in
another way, for all split calls it does not exist any other call to any method of
that class:

12

val splitterClass = "scala.collection.parallel.Splitter"
def splitterSplitInvariant = Forall(x => (x in (splitterClass

,"split"))
==> Neg (Exists(y => (y in splitterClass) && isBefore(x,

y))))

Case Builders result. Builders in collections there is an invariant, result
method can be called only once.

val builderClass = "scala.collection.mutable.Builder"
def builderInvariantResult = Forall(x => (x in (builderClass,

"result"))
==> Neg (Exists(y => (y in (builderClass,"result")) &&
isBefore(y,x))))

Case Builders plus. Another invariant found in Builders is that there should
not be a call to += after calling result unless clear has been called first (be-
tween result and +=).

def builderInvariantPlus = Forall(x => (x in (builderClass,"
result"))
==> (Neg(Exists(y => (y in (builderClass,"+=")) &&

isBefore(x,y))))
|| (Exists(y => (y in (builderClass,"+=")) && isBefore(x,

y)
&& Exists(z => (z in (builderClass,"clear")) && isBefore(

z,x)))))

Case Combiners result. This case is similar to Builder result invariant.

val combinerClass = "scala.collection.parallel.Combiner"
def combinerInvariantResult = Forall(x => (x in (

combinerClass,"result"))
==> Neg (Exists(y => (y in (combinerClass,"result")) &&

isBefore(y,x))))

Case Combiners plus. This case is similar to Builder plus invariant.

def combinerInvariantPlus = Forall(x => (x in (combinerClass
,"result"))
==> (Forall(y => ((y in (combinerClass,"+=")) && isBefore

(x,y))
==> Exists(z => (z in (combinerClass,"clear")) &&

isBefore(z,x)))))

Case Iterators. This is a simple case, once hastNext’s result is false then
next should not be called. In this case is useful to have the result to deserialize
it.

val iteratorClass = "scala.collection.Iterator"
def iteratorInvariant = Forall(x => (x in (iteratorClass,"

hasNext")) && Result[Boolean](false) ==> Neg (Exists(y =>
(y in "next") && isBefore(x,y))))

13

Case Threads. When using threads in parallel collections calls to update

can be specified only after or before a filter or map (not in between).

5 Future Work

Even though the information of the instrumented methods and the implemen-
tation of basic cases of Formula cover the invariants exposed before 4 that were
found in parallel collections, there are some functionalities that can be added in
a future work.

• In the instrumenter side we could add more information about invocations,
for example save the values of the arguments passed to methods, a way of
identifying each class instance and which class has invoked the method.
An invariant that could use this last information is: if a stream is created
from array buffer, then there should not be mutations to the array.

• In Formula it would be useful to create a transitive closure, represented
as * for recursive calls, folds, etc. For example in Stream there is an
invariant: since streams are not constructed eagerly, we do not want to
mix lazy evaluations between mutable or immutable objects. However,
when we see at the implementation of the toStream method we see that
the way is constructed is a recursive call.

• Also in Formula some way of controlling rules correctness can be added,
and some other Formula case classes together with their precedence.

• A formal proof of Formula’s completeness and soundness and its PSPACE
completeness with respect to satisfiability as a derivation of second order
Booleans.

• Search and define test cases invariants for Actors.

6 Conclusion

As a conclusion we can say that this project has allowed us to succeed in three
main contributions: the use of instrumentation to non-intrusively and effec-
tively inject code in methods invocations, the introduction of Formula and a
semi-formal way of describing invocation invariants, and finally the implemen-
tation of an Invariant checker including its optimizations.

Working in this project has been very rewarding in the sense of learning,
from how to instrument code and deal with bytecodes to face some challenges
and learn guidelines when designing a small Domain Specific Language.

14

References

[1] J. Aarniala. Instrumenting Java bytecode. In Seminar work for the Com-
pilerscourse, Department of Computer Science, University of Helsinki, Fin-
land, 2005.

[2] E. Bruneton. ASM 3.0 a Java bytecode engineering library. Technical report,
2007.

[3] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java per-
formance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.

[4] E. Kuleshov. Using ASM framework to implement common bytecode trans-
formation patterns. Proc. of the 6th AOSD, ACM Press, 2007.

[5] A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky. A generic parallel
collection framework. Euro-Par 2011 Parallel Processing, pages 136–147,
2011.

[6] B. Venners. Inside the Java virtual machine. McGraw-Hill, Inc., 1996.

15

	Introduction
	Preliminaries
	The Java Virtual Machine
	Instrumentation
	Scala Benchmark

	Architecture & Implementation
	Rules Template
	Formula
	Optimizations

	Invocation Instrumenter
	Rule Verifier

	Cases of study
	Future Work
	Conclusion

