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Abstract 

Scala is a programming language which integrates features of object-oriented and 

functional programming with concise syntax. Currently, Scala grows dramatically and 

thereby needs a benchmarking tool to guarantee its performance and reliability. 

Scala Benchmarking Suite (SBS) is a tool developed to satisfy the request above. It 

allows users to write micro-benchmarks detecting the performance regression with statistical 

rigor in a way just as simple as the way they write unit tests. In addition, users can have SBS 

profile typical metrics during benchmark runs, such as method invocations, number of 

boxings, memory consumption, etc. 

And finally, SBS comes with the implementation of a bottleneck finding algorithm, 

which combines bytecode instrumentation and statistically rigorous performance regression 

detection. The algorithm has the ability to dynamically and programmatically point out the 

piece of code that causes a performance drop without the needs for manual effort from users.  
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Chapter 1  

Introduction 

1.1. Motivation 

The current growth of the Scala programming language is enormous, demonstrated by 

the number of leading companies that are successfully using Scala for critical business 

applications. It is common knowledge that more companies like Twitter, LinkedIn, 

Foursquare, the Guardian, Morgan Stanley, Credit Suisse, UBS, HSBC and Trafigura are now 

using Scala
1
. As a consequence, there is the high demand for performance and reliability to be 

guaranteed. At the time, there is no support for effectively using micro benchmarks to assess 

the affection to performance of small changes to Scala standard library and compiler. It's 

worth having a built-in tool integrated to the language project which does all the performance 

tests at nightly builds to detect all kinds of performance regression. 

During the time spent to implement Scala Benchmarking Suite, we realized that all the 

manual work to find out the performance bottleneck in a program is a pain, even after its 

existence has been detected. The problem impulses us to develop a methodology to help 

developers spare most of the manual effort. The algorithm, which we call performance 

regression pinpointing, tries to dynamically point out the piece of the program that causes the 

performance regression by using the combination of bytecode instrumentation and 

statistically rigorous performance regression detection methodology (see section 2.3). 

 

 

                                                 
1
 http://www.scala-lang.org/node/10923 
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1.2. Contribution 

This thesis makes the following contributions: 

 We provide publicly available software, called Scala Benchmarking Suite, 

which will soon be contributed as a package in the trunk of the project Scala 

programming language. The tool is used to do benchmarking on the Scala 

programming language. It uses a statistically rigorous methodology to evaluate 

and detect regression on the performance of a Scala program. It can also profile 

some typical metrics and dynamically find out the bottleneck inside a code 

snippet. It enables users to write benchmarks as the way unit tests are written 

now - a single Scala source file or a directory contains many of them - and runs 

them individually or by groups. 

 We introduce a methodology, called performance regression pinpointing, to 

dynamically programmatically point out the performance bottleneck lies inside a 

Scala program. It is able to do so by combining the performance evaluation 

using instrumentation technique and the performance comparison using 

statistically rigorous performance detection methodology. 

 Comes along with performance regression pinpointing is the technique to do 

instrumentation on the bytecodes generated by compiling Scala programs. The 

technique is shown that finds performance-relevant parts of the bytecodes from 

all the automatically generated classes and do instrumenting with an 

instrumentation library for Java. 

1.3. Contents overview 

The thesis is organized as follows: 

 In Chapter 1, we give the motivation, contribution and the organization of this 

thesis 

 Chapter 2 introduces the Scala programming language along with some issues 

about dynamic compilation languages that may cause indeterminism in 

performance measurements. It also briefly describes how to add statistical rigor 

to performance evaluation and performance regressions detection. 
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 Chapter 3 introduces the tool Scala Benchmarking Suite – a benchmarking tool 

on the Scala programming language. It lists out the current abilities and features 

as well as the design description and implementation of the suite. 

 In Chapter 4, we introduce our methodology and algorithms to dynamically find 

a performance bottleneck inside a code snippet. We give overviews about a few 

prevalent methodologies and their drawbacks in the comparison to ours. We also 

describe the techniques to implement the methodology which includes Scala 

bytecode instrumentation with Java instrumentation library and keeping previous 

bytecode version collected from the previous builds. 

 In the last chapter, we conclude our work and discuss future directions. 
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Chapter 2  

Background 

This section gives a brief introduction about Scala programming language and 

highlights its advanced features. It also describes the basic ideas about dynamic compilation 

languages, which do most of the recompilations and optimizations at runtime, which lead to 

uncertainties and indeterminism in programs’ performance. Finally, this section summarizes 

the methodology which uses statistics theory as a rigorous data analysis approach for dealing 

with the non-determinism and the experiment designs to evaluate performances. 

2.1. Scala programming language 

Scala [1] is the programming language designed by prof. Martin Odersky – the co-

designer of Java Generics and the main author of the current generation javac compiler. 

Scala determines itself to be a statically typed, scalable language and a fusion of object-

oriented language and functional one. 

This section provides a glimpse of the Scala programming language altogether with its 

advanced features. We assume that readers have the basic knowledge about programming 

languages (mostly concern object-oriented and functional ones) and Java. 

Classes and objects 

Scala is an object-oriented language in the sense that every value (and even method) is 

an object. Scala’s class definition syntax is borrowed from Java, except that Scala classes can 

have parameters and the main constructors can be defined directly in the class body. 

A Scala program is a set of Scala classes that represent abstract things which can 

perform operations, changing states, and communicating with other ones in the system. For 

this abstraction to be more powerful in reality, Scala comes along with polymorphism, which 
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is a concept describes the fact that even though classes are derived or inherited from the same 

parent class, each derived class will have its own behavior performs different functions. 

object is a language primitive which represents a singleton class – class that has only 

once instance. Objects hold all the definitions considered static in Java. Therefore, the 

entry of a Scala program, a main method is defined in an object. An object which has 

the same name and is declared in the same source file with a class is called the companion 

object of the class. It has the accessibility to all the members of the class including the 

private members also. For example, in Listing 2.1 method extract of object 

Companion can access to the private member field from class Companion: 

class Companion { 

 

  private val field = 1 

 

} 

 

object Companion { 

 

  def extract(obj: Companion) = println(obj field) 

 

} 

 

object ProgramEntryPoint { 

 

  def main(args: Array[String]) { 

    // not compile 

    // val obj = new ProgramEntryPoint 

 

    val c = new Companion 

    Companion extract c 

  } 

 

} 

 

// program output: 1 

Listing 2.1 – Example: Scala object 

Traits 

Traits are a fundamental unit of code reuse in Scala. Scala’s trait in some aspect may 

resemble Java’s interfaces, many of which are able to be mixed-in one class definition. The 

biggest difference distinguishes a trait from an interface is that traits can have methods 

implemented. 
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Traits are Scala’s approach to enable multiple-inheritance. A concrete class can be 

composed by mix-in composition from many traits. The diamond problem
2
 does not exist in 

Scala because traits have no constructor and the concrete implementation of a method is 

selected based on the mix-in order. In Listing 2.2, the creation of Centaur illustrates a case 

of multiple inheritance in Scala. Centaur is created by mix-in the two traits Human and 

Horse which have the same super class Creature. Both Human and Horse have their 

own concrete method run, but based on the mix-in order, Centaur inherits its run from 

Horse. 

trait Creature { 

 

  def run: Unit 

 

} 

 

trait Human extends Creature { 

 

  override def run = println("walk with 2 feet") 

 

} 

 

trait Horse extends Creature { 

 

  override def run = println("gallop with 4 feet") 

 

} 

 

class Centaur extends Human with Horse 

 

object MixinComposition { 

 

  def main(args: Array[String]): Unit = { 

    new Centaur run 

  } 

 

} 

 

// program output: gallop with 4 feet 

Listing 2.2 – Example: Scala trait 

Another big use of traits is to widen thin interfaces to rich ones. That solves one of a big 

trade-off in object-oriented design about the selection between providing a large number of 

methods for callers’ convenience and the heavy coding work left for implementers. 

                                                 
2
 http://en.wikipedia.org/wiki/Diamond_problem 
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Built-in control structures 

Scala has a modest number of built-in control structures all of which are if, while 

for, try, match and function call. The reason why is that Scala includes function literals to 

give the developers the ability to create their own using higher-order functions
3
, currying

4
 

and call-by-name parameters
5
. In Listing 2.3, there is an example of creating new control 

structure called afterHello. The control structure executes the body block after printing a 

“Hello!” message: 

// afterHello is a higher-order function 

// and operation is a call-by-name variable 

def afterHello(operation: => Any): Any = { 

  print(“Hello!”) 

  operation 

} 

 

// this is how to use the new control structure 

afterHello { 

  println(“ How do you do!”) 

} 

 

// program output: Hello! How do you do! 

Listing 2.3 – Example: new control structure 

Almost all of Scala’s control structures result in values. This is the approach of 

functional languages in which the programs are the processes to compute values. This facility 

results in simpler code and prevents bugs where the value of a variable is modified 

unexpectedly. 

Functions 

The term function in Scala has a larger meaning than one in Java which literally means 

method. A function in Scala may be a method, a function defined inside a method body (local 

function) or an argument passed to a function (first-class function). Example of those above in 

Listing 2.4: 

class ScalaFunction { 

 

  // foo is a method 

  def foo(): Unit = { 

    // this is a local function of foo 

    def infoo() = println(“defined inside foo’s body”) 

                                                 
3
 http://en.wikipedia.org/wiki/Higher-order_function 

4
 http://en.wikipedia.org/wiki/Currying 

5
 http://en.wikipedia.org/wiki/Call_by_name 
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    infoo() 

    println(“foo”) 

  } 

 

  // f is a first-class function 

  def bar(f: Int => Int): Int = f(0) 

 

} 

Listing 2.4 – Example: Scala function 

All the types of functions mentioned above illustrate a fundamental characteristic of 

functional languages: every function is a value. Like other language in the field of functional 

programming, Scala supports first-class and higher-class functions, partially applied function
6
 

and currying altogether with closures
7
 and light-weight syntax to define anonymous function 

literals
8
. 

Case classes and pattern matching 

Pattern matching
9
 is a fundamental tool in functional programming. Being also an 

object-oriented language, Scala can do pattern matching on class as a convenient replacement 

for type tests and type casts. A simple example is shown in Listing 2.5. The case classes 

imitate data structures used to parse the statements of a programming language. 

trait Statement 

case class Assignment(name: String) extends Statement 

case class IfElse(cond: Boolean) extends Statement 

case class While(block: Statement) extends Statement 

 

def recognize(statement: Statement) = statement match { 

  case Assignment(n) => println(“Assign to ” + n) 

  case IfElse(cond)  => println(“if ” + cond) 

  case While(block)  => println(“while” + block) 

  case _             => throw new Exception(“Not recognize”) 

} 

Listing 2.5 – Example: Scala case class and pattern matching 

Scala's built-in case classes and support for pattern matching
 
models algebraic type

10
 

used in many functional programming languages. Case classes are regular classes which 

                                                 
6
 http://en.wikipedia.org/wiki/Partial_application 

7
 http://en.wikipedia.org/wiki/Closure_(computer_science) 

8
 http://en.wikipedia.org/wiki/Anonymous_function 

9
 http://en.wikipedia.org/wiki/Pattern_matching 

10
 http://en.wikipedia.org/wiki/Algebraic_data_type 
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expose their constructor parameters for outside view. case class keyword automatically 

adds a factory method in the companion object
11

 of the class and also an extractor method to 

support pattern matching. 

Collections 

scala.collections package is the set of all the pre-defined data structures in the 

Scala standard library. They consist of sequences, sets, maps and other data structures express 

the vast variety collections of data elements. They are easy to use, concise, safe, and fast and 

are powerful building blocks rather than a bunch of ill-organized utilities. Scala collections 

are distinguished into mutable and immutable
12

 data types which are respectively familiar 

with imperative and functional programming styles. 

Support for XML
13

 

Scala has built-in support for XML. In Scala, there exist the XML literals and 

mechanisms for constructing them. XML can be processed with pattern matching or can be 

taken part by the methods that have already been defined as members of XML elements. 

Finally, Scala has the library routines that support all the conversions back and forth between 

XML and byte stream or String literals to make it easy for loading – saving and data 

serialization – deserialization. 

// a XML literal 

val xml = <example>text</example> 

 

// pattern matching 

xml match { 

  case <example>{content}</example> => println(content) 

  case _                            => throw new Exception 

} 

 

// storing to file 

scala.xml.XML.saveFull("file.xml", xml, "UTF-8", true, null) 

 

// loading from file 

val loaded = scala.xml.XML.loadFile("file.xml") 

Listing 2.6 – Scala example: XML 

Listing 2.6 illustrates Scala’s ability of handling XML. A XML value name xml can be 

declared just like an Int or Double. Its elements can be easily extracted by pattern 

                                                 
11

 http://daily-scala.blogspot.com/2009/09/companion-object.html 
12

 http://en.wikipedia.org/wiki/Immutable_object 
13

 http://en.wikipedia.org/wiki/XML 
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matching. Also, the processes of storing and loading xml have been already implemented in 

Scala standard library. 

Actors and concurrency 

When it becomes necessary to design a program to express things happened 

independently in parallel, Scala provides the mechanism for that concurrency, which is actors. 

Actors and message passing model the interactions between two or more entities in the 

system. Unlike Java’s support for concurrency (threading and synchronization which uses the 

shared fragments of memory) Scala’s actors library avoids bugs on asynchronous situations 

and deadlocks with the share nothing approach. 

In Listing 2.7, Starter and Replier represent two of the most simple Scala actors. 

The three objects Forth, Back and Stop are the messages passed between Starter and 

Replier, they are defined as case objects for it to be able to apply pattern matching on 

them. A Starter sends four messages Forth to a Replier and expects to receive four 

Back messages, one after each. In the final step, it sends Replier a Stop message to stop 

interacting. 

import scala.actors.Actor 

import scala.actors.Actor._ 

 

case object Forth 

case object Back 

case object Stop 

 

class Starter(replier: Actor) extends Actor { 

 

  def act() { 

    replier ! Forth 

    (0 util 3) foreach { 

      _ => receive { 

        case Back => { 

          println(“Back”) 

          replier ! Forth 

        } 

      } 

    } 

    replier ! Stop 

  } 

 

} 

 

class Replier extends Actor { 

 

  def act() { 



11 

 

    while (true) { 

      receive { 

        case Forth => { 

          println(“Back”) 

          replier ! Forth 

        } 

        case Stop => { 

          println(“Stop”) 

          exit() 

        } 

      } 

    } 

  } 

 

} 

 

Listing 2.7 – Scala example: Actor 

Combining with Java 

The interaction between Scala and Java is seamless, due to the fact that Scala is most 

compiled to Java bytecodes and run on JVM. In a more technical aspect, a Scala program is 

just like any other normal Java programs. The difference is Scala runtime environment is a 

JVM environment added by a hierarchy of the classes from Scala standard library. 

In Scala, one can easily call Java APIs without worrying about the incompatibility. 

There is actually a little notice about difference in syntax that makes Java in Scala looks just 

like the “original” Scala. For example, a call to Java’s Thread.sleep() method is as 

simple as shown in Listing 2.8. 

object A { 

 

  def run = java.lang.Thread.sleep(5000) 

 

} 

Listing 2.8 – Scala example: Using a Java’s class 

In Java, use of Scala classes may encounter some difficulty. The reason is the way Scala 

compiler compiles Scala source codes into bytecodes. Additionally, there are things in Scala 

that Java does not have. Those require some deep knowledge to be overcome (a few of them 

will be described in section 4.4). 
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2.2. Benchmarking on Java virtual machine 

See articles [4, 5] for further details. 

2.2.1. Dynamic compilation 

The compilation process for a dynamically compiled language like Java or Scala is 

different from that of statically compiled languages like C. Compilers for statically compiled 

languages convert source code directly to machine code that can be immediately executed on 

the target platform. But the cost to pay is that different hardware platforms require different 

compilers. Meanwhile, dynamically compiled languages require a specific runtime 

environment (typically a virtual machine) for each different hardware platform but they gain a 

vast benefit: all the effort to recompile the whole user project when new platforms come into 

place is gone – compile once run everywhere. Compilers for dynamically compiled languages 

convert the source code into portable runtime code, which consists of virtual machine 

instructions for the runtime environment. Unlike those compilers for statically compiled 

languages, compilers for statically compiled languages do very little optimization - the 

optimizations are performed instead in the runtime when the program is executed. Runtime 

environments using dynamic compilation typically have programs run slowly for the first few 

time intervals, and then after that, most of the compilation and recompilation is done and it 

runs more quickly. 

Just-in-time compilation 

The first generation of JVMs was entirely an interpreter. That JVM interpreted the 

bytecodes rather than compiling them to machine code and executing the machine code 

directly. But interpretation simply is slow. Nowadays, JVMs used just-in-time (JIT) compilers 

to speed up execution. It converts all bytecodes into machine code before execution, but does 

so in a lazy fashion: The JIT only compiles a code path when it knows that code path is about 

to be executed. This approach allows the program to start up more quickly, as a lengthy 

compilation phase is not needed before any execution can begin. JIT removed the overhead of 

interpretation but to avoid a significant startup penalty for Java applications. The JIT compiler 

has to be fast to prevent influencing the actual performance of the user program too much, 

which means that it could not spend as much time doing optimization. 

HotSpot dynamic compilation 

The Java HotSpot Virtual Machine is a JVM for desktops and servers. It is a core 

component of the Java SE platform. It implements the Java Virtual Machine Specification and 
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includes dynamic compilers that adaptively compile Java bytecodes into optimized machine 

instructions and efficiently manages the Java heap using garbage collectors. Based upon the 

platform configuration, it will select a suitable compiler, Java heap configuration, and garbage 

collector. 

The HotSpot execution process combines interpretation, profiling, and dynamic 

compilation. Rather than convert all bytecodes into machine code before they are executed, 

HotSpot first runs as an interpreter and only compiles the "hot" code - the code executed most 

frequently. As it executes, it gathers profiling data, used to decide which code sections are 

being executed frequently enough to merit compilation. No time is wasted compiling code 

that will execute infrequently, and the compiler can spend more time on optimization of hot 

code. Furthermore, by deferring compilation, the compiler has access to profiling data, which 

can be used to improve optimization decisions, such as whether to inline a particular method 

call. 

HotSpot has two compilers: the client compiler and the server compiler: 

 The client compiler has been optimized to reduce application startup time and memory 

footprint, employing fewer complex optimizations than the server compiler, and 

accordingly requiring less time for compilation. 

 The server compiler has been optimized to maximize peak operating speed, and is 

intended for long running server applications. It can perform many of the standard 

optimizations found in static compilers, such as code hoisting, common sub-

expression elimination, loop unrolling, range check elimination, dead-code 

elimination, and data-flow analysis, as well as a variety of optimizations that are not 

practical in statically compiled languages, such as aggressive inlining of virtual 

method invocations. 

Continuous recompilation 

After a code path is interpreted a certain number of times, it is compiled into machine 

code. But the JVM continues profiling, and may recompile the code again later with a higher 

level of optimization if it decides that code path is particularly hot or future profiling data 

suggests opportunities for additional optimization. The JVM may recompile the same 

bytecodes many times in a single application execution. 
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Dynamic deoptimization 

Many standard optimizations can only be performed within a “basic block” and so 

inlining method calls is often important to achieve good optimization. By inlining method 

calls, not only is the method call overhead eliminated, but it gives the optimizer a larger basic 

block to optimize, with substantial opportunity for dead-code optimizations. 

On-stack replacement 

The initial version of HotSpot performed compilation one method at a time. A method 

was deemed to be hot if it cumulatively executed more than a certain number of loops, which 

it determined by associating a counter with each method and incrementing that counter every 

time a backward branch was taken. However, after the method was compiled, it did not switch 

to the compiled version until the method exited and was re-entered -- the compiled version 

would only be used for subsequent invocations. The result, in some cases, was that the 

compiled version was never used, such as the case of a compute-intensive program, where all 

the computation is done in a single invocation of a method. In such a situation, the 

heavyweight method may have gotten compiled, but the compiled code would never be used. 

More recent versions of HotSpot use a technique called on-stack replacement (OSR) to 

allow a switch from interpretation to compiled code (or swapping one version of compiled 

code for another) in the middle of a loop. 

2.2.2. Memory management 

Java HotSpot Virtual Machine performs automatic memory management therefore helps 

Java developers avoid the complexity and inconvenience of memory allocation as well as 

deallocation. To achieve this target, the memory available for user’s programs in runtime is 

well-organized and automatic managed by a program called garbage collector. With garbage 

collection run along at runtime, developers no longer worry about errors such as memory 

leaks and dangling references. 

The memory (heap space) is organized by HotSpot JVM into generations, that is, 

separate pools holding objects of different ages. The purpose is for a garbage collection 

algorithm named generation garbage collection to be used. The algorithm exploits 

observations regarding software applications written in object-oriented languages, known as 

weak generation hypothesis, which says that: 
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 Almost all objects do not live long, which means they will soon no longer be 

referenced 

 There are few references from older to younger objects exist 

The most widely-used generation organization configuration consists of: 

 Young generation – usually small and likely stores many of short-lived objects. When 

a new object is created, it is placed in this memory fragment.  

 Old or tenured generation – stores objects that meet some promotion criteria, such as 

having survived a certain number of garbage collections. 

 PermGen or permanent generation – holds data needed by the virtual machine to 

describe objects that do not have equivalence at the Java language level (such as 

objects describing classes and methods as well as the classes and methods 

themselves). This generation is never garbage collected. 

Garbage collection occurs in each generation (except the PermGen) when the generation 

fills up. For the young generation, the garbage collection strategy is the minor collection. The 

strategy is fast since collections on young generation occur frequently and for the pause of 

user’s program running to be short. The garbage collection used when tenured generation is 

full is called the major collection or full collection. It is not only attempt to collect the objects 

allocated in tenured generation. When it runs, all generations are collected. 

Garbage collection is quite a complex task taking time and resources of its own, 

therefore, may heavily influence the overall performance of the user’s programs. 

2.2.3. Microbenchmark 

The traditional way to determine if an approach is faster than another one is to write a 

small benchmark program, often called a microbenchmark. Writing - and interpreting - 

benchmarks is far more difficult and complicated for dynamically compiled languages than 

for statically compiled ones. In many cases, microbenchmarks written in dynamic compilation 

language don’t give the expected results. 

HotSpot JIT will continuously recompile Java bytecodes into machine code as the 

program runs, and recompilation can be triggered at unexpected times by the accumulation of 

a certain amount of profiling data, the loading of new classes, or the execution of code paths 

that have not yet been traversed in already-loaded classes. Timing measurements in the face 



16 

 

of continuous recompilation can be very noisy and misleading, and it is often necessary to run 

the source code for very a long time before obtaining useful performance data. 

JVM warming up 

Measuring the performance of on approach generally means measuring its optimized 

compiled implementation performance, not interpreted one. That requires "warming up" the 

JVM - executing the target operation enough times that the compiler will have had time to run 

and replace the interpreted code with compiled code before starting to measure the desired 

execution performance. 

With today's dynamic compilers, it is a lot more difficult. The compiler runs at an 

unpredictable time, the JVM switches from interpreted to compiled code at will, and the same 

code path may be compiled and recompiled more than once during a run. 

Garbage collection 

Garbage Collection is another element that can badly distort timing results - a small 

change in the number of iterations could mean the difference between no GC and one GC, 

skewing the "time per iteration" measurement. If the benchmarks run with -verbose:gc JVM 

option, timing data can be adjusted accordingly to the quantity of time spent in garbage 

collection. Even better, ensuring that many garbage collections are triggered, more accurately 

amortizing the allocation and garbage collection cost. 

Dead-code elimination 

One of the challenges of writing good benchmarks is that optimizing compilers are 

adept at spotting dead code - code that has no effect on the outcome of the program execution. 

But benchmark programs often don't produce any output, which means some, or all, of the 

source code can be optimized away, at which point the result measurement is less execution 

than what it should be. That dead-code optimization that makes such short work of the 

benchmark (possibly optimizing it all away) is not going to do quite as well with code that 

actually does something. 

Because runtime compilation uses profiling data to guide its optimization, the JIT may 

well optimize the test code differently than it would do to real code. As with all benchmarks, 

there is a significant risk that the compiler will be able to optimize away the whole thing, 

because it will realize that the benchmark code neither actually do anything nor produce any 

result that is used for anything. Writing effective benchmarks requires fooling the compiler 

into not pruning away code as dead, even though it really is. 
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For example, supposed that we want to measure the performance of the function 

scala.Math.sqrt(), we intend to do so by repeating the operation for 500.000 times. 

Unfortunately, with our first implementation in object Wrong in Listing 2.9, the JIT will 

recognize that all the calls to sqrt() are good for nothing and optimize it away. Therefore, 

the running time result is too small to be mentioned. We will fix that in object Right by 

fooling the JIT that the values computed using sqrt() are used to update the public var 

str which may be read by another object in the future. That makes the 500.000 calls to sqrt() 

remain at runtime so that we can measure their performance. 

// this does not work 

object Wrong { 

 

  def main(args: Array[String]): Unit = { 

    // these 500.000 calls to Math.sqrt() 

    // will be optimized away 

    (0 until 500 * 1000) foreach (Math sqrt _) 

  } 

 

} 

 

// this will work 

object Right { 

 

  var str = "" 

 

  def main(args: Array[String]): Unit = { 

    (0 until 500 * 1000) foreach (i => 

      str = "" + (Math sqrt i)) 

  } 

 

} 

Listing 2.9 – Exmample: Dead code elimination 

In addition, the problem is not strictly that the optimizer is optimizing away the 

benchmark, but that it is able to apply a different degree of optimization to one alternative 

than to another, and that the types of optimizations that it can apply to each alternative would 

not likely be applicable in real-world code. 

 

The Heisenberg principle 

The performance of operation X is being measured, so there should be nothing to run 

besides X. But often, the result is a do-nothing benchmark, which the compiler can optimize 

away partially or completely, making the test run faster than expected. If extraneous code Y is 
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put into the benchmark, the performance of X + Y is to being measured, introducing noise 

into the measurement of X, and worse, the presence of Y changes how the JIT will optimize 

X. Writing a good microbenchmark means finding that elusive balance between not enough 

filler and dataflow dependency to prevent the compiler from optimizing away the entire 

program, and so much filler that truthfully performance gets lost in the noise. 

2.3. Statistically rigorous performance regression detection 

Performance of a program runs on JVM platform is not trivial to benchmark because it 

is affected by various factors (some of the most commons are described in section 2.2). JVM 

uses timer-based sampling to drive the JIT compilation and optimizations. That methodology 

may lead to non-determinism and execution time variance: different executions of the same 

program may result in different samples being taken and, by consequence, different methods 

being compiled and optimized to different levels of optimization. There exist many other 

sources of non-determinism such as thread scheduling in timeshared and multiprocessor 

systems, garbage collections, and various system effects like system interrupts etc. 

Another issue on performance benchmarking is that, researchers and/or software 

developers use a wide variety of Java performance evaluation methodologies. These 

methodologies differ from each other in a number of ways. Some report average performance 

over a number of runs of the same experiment; others report the best performance observed; 

yet others report the worst. Some iterate the benchmark multiple times within a single JVM 

invocation; others consider multiple JVM invocations and iterate a single benchmark 

execution; yet others consider multiple JVM invocations and iterate the benchmark multiple 

times. All these prevalent methodologies can be misleading, and can even lead to incorrect 

conclusions. The reason is that the data analysis is not statistically rigorous. 

This section briefly describes how to use statistics theory as a rigorous data analysis 

approach for dealing with the non-determinism in managed runtime systems as well as the 

experiment designs to evaluate the benchmarks’ performances advocated in [2]: 

 Adding statistical rigor to performance evaluation studies of managed Java runtime 

systems. The motivation for statistically rigorous data analysis is that statistics, and in 

particular confidence intervals, enable one to determine whether differences observed 
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in measurements are due to random fluctuations in the measurements or due to actual 

differences in the alternatives compared against each other. 

 Performance evaluation methodologies for start-up and steady-state performance, and 

the following methods to detect statistically significant difference in the achieved 

performances of different alternatives which can be used to detect performance 

regressions of Scala programs. 

2.3.1. Confidence interval for the means 

In each experiment, a number of samples is taken from an underlying population. A 

confidence interval for the mean derived from these samples then quantifies the range of 

values that have a given probability of including the actual population mean. The confidence 

interval [c1, c2] is defined such that the probability of µ being between c1 and c2 (i.e c1 ≤ μ ≤ 

c2) equals the confidence level of 1 − α; α is called the significance level. Let: 

 μ is the population mean
14

, that is the expected accuracy value we want to measure 

 σ2 is the population variance
15

 that is a measure of how far a set of sample values is 

spread out from the mean. σ is called the standard deviation
16

, the “average” of the all 

the differences of every value from the mean 

 n is the number of samples taken 

The sample mean is the average value of all the collected samples, computed as 

 ̅    
∑   

 
     

 
 

The sample standard deviation
17

 s is the most common estimator for σ, calculated as the 

squared root of the sum-of-squares of all the subtractions of each sample by the sample mean, 

divided by the number of samples subtracted by 1: 

    √
∑       ̅    

     

     
 

The following mathematical formulas are used to calculate the confidence interval for 

the respective case of: 

                                                 
14

 http://en.wikipedia.org/wiki/Mean#Population_and_sample_means 
15

 http://en.wikipedia.org/wiki/Variance#Population_variance_and_sample_variance 
16

 http://en.wikipedia.org/wiki/Standard_deviation 
17

 http://en.wikipedia.org/wiki/Standard_deviation#With_sample_standard_deviation 
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When the number of measurements is large (n ≥ 30) 

      ̅            

 

√ 
 

      ̅            

 

√ 
 

The value z   α 2 is defined such that a random variable Z that is Gaussian distributed 

with mean µ = 0 and variance σ2 = 1 (normal distribution), obeys the following property: the 

probability of a variable Z is less than or equals z1 – α 2 equals to 1 – α / 2. It is usually pre-

computed. 

When the number of measurements is small (n < 30) 

      ̅                   

 

√ 
 

      ̅                   

 

√ 
 

The value t   α 2; n - 1 is defined such that a random variable T that follows Student’s t 

distribution with n – 1 degrees of freedom, obeys the following property: the probability of a 

variable T is less than or equals t1 – α 2; n - 1 equals to 1 – α / 2. It is also usually pre-computed. 

2.3.2. Startup performance measuring 

The goal of measuring start-up performance is to measure how quickly a Java Virtual 

Machine can execute a relatively short-running Java program. There are two key differences 

between startup and steady-state performance. First, startup performance includes class 

loading whereas steady-state performance does not, and, second, startup performance is 

affected by JIT compilation, substantially more than steady-state performance. 

For measuring startup performance, use a two-step methodology: 

 First, measure the execution time of multiple JVM invocations, each VM invocation 

running only one single benchmark iteration. This results in p measurements xij with 1 

≤ i ≤ p and j = 1 

 Then, compute the confidence interval for a given confidence level as described in 

Section 3.2. If there are more than 30 measurements, use the standard normal z -

statistic; otherwise use the Student t -statistic 
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In practice, the first JVM invocation in a series of measurements may change system 

state that persists past this first JVM invocation. To reach independence, the first JVM 

invocation is discarded and only the subsequent measurements are retained. 

2.3.3. Steady-state performance measuring 

Steady-state performance concerns long-running applications for which start-up 

performance is less interested. Since most of the JIT compilation is performed during start-up, 

steady-state performance suffers less from variability due to JIT compilation. However, the 

other sources of non-determinism, such as thread scheduling and system effects, still remain 

under steady-state, and thus need to be considered. 

There are two issues with quantifying steady-state performance. The first issue is to 

determine when steady-state performance is reached. The second issue with steady-state 

performance is that different JVM invocations running multiple benchmark iterations may 

result in different steady-state performances. Different methods may be optimized at different 

levels of optimization across different JVM invocations, changing steady-state performance. 

To address these two issues, the following methodology is used for quantifying steady-

state performance. Consider p JVM invocations (each for one alternative), each running at 

most q benchmark iterations: 

 For each JVM invocation i of the p invocations, determine the iteration si (si ≤ q) 

where steady-state performance is reached, i.e., once the coefficient of variation (CoV) 

of the k iterations (si – k to si) falls below a preset threshold, say 1% or 2%. 

 For each invocation, compute the mean xi of the k benchmark iterations under Steady-

state: 

 ̅    ∑    

  

          

 

 Compute the confidence interval for a given confidence level across the computed 

means from the different JVM invocations. The overall mean equals 

 ̅    ∑  ̅ 
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Where k is the number of measurements we want to retain per invocation 

  

Figure 2.1 – Steady-state measurement process 

In practice, the actual measurement process is illustrated in Figure 2.1. The running time 

of the benchmark is high in the beginning, and then the benchmark runs faster through all of 

the JIT optimizations. The measurements inside the dash line window are the measurements 

from iterations si – k to si. They are used for determining that the benchmark running has 

reached its steady-state. That target is achieved by calculating its coefficient of variations 

(CoV) which should fall below the preset threshold. The measurements intended to be the 

result is the series of measurements in the next k iterations, i.e the measurements inside the 

continuous line window. The purpose of continuing collecting the next k iterations is to avoid 

the first few measurement results that maybe have not reached steady-state yet. 

After achieving a number of series of running time, one of the two following statistics 

tests is applied to detect statistically significant differences among those alternatives. 

2.3.4. Compare two alternatives 

The simplest approach to comparing two alternatives is to determine whether the 

confidence intervals for the two sets of measurements overlap. If they do overlap, the 

difference seen in the mean values is possibly due to random effects. If the confidence 

intervals do not overlap, however, we conclude that there is a statistically significant 

difference with the probability of 1 – α (this also means that there is a probability of α 
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suggests that the difference between the two alternatives is caused by random effects). The 

statistics necessary to be computed described as follows. Let: 

 n1,  ̅  , s1 are respectively the number of measurements, sample mean and sample 

standard deviation of the first alternative 

 n2,  ̅  , s2 are respectively the number of measurements, sample mean and sample 

standard deviation of the second alternative 

The difference of the means is 

 ̅     ̅     ̅  

The standard deviation of the difference of the means is 

     √
  
 

  
   

  
 

  
 

The following mathematical formulas are used to calculate the confidence interval for 

the respective case of: 

When n1 ≥ 30 and n2 ≥ 30 

                    

                    

When n1 < 30 or n2 < 30 

                       
   

                       
   

With ndf is called the degrees of freedom, computed as 

      
 
  
 

  
   

  
 

  
  

   
   ⁄   

      
   

   
   ⁄   

      

 

If [c1; c2] includes zero, we can conclude, at the confidence level chosen, that there is no 

statistically significant difference between the two alternatives. 
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2.3.5. Compare many alternatives 

In the case the number of alternatives is larger than 2, a more general and more robust 

technique is applied. The technique is called Analysis of Variance (ANOVA) test. It separates 

the total variation observed in (i) the variation observed within each alternative, which is 

assumed to be a result of random effects in the measurements, and (ii) the variation between 

the alternatives. If the variation between the alternatives is larger than the variation within 

each alternative, then it can be concluded that there is a statistically significant difference 

between the alternatives.  

To explain the ANOVA test, let: 

 k is the number of alternatives to be compared 

 n is the number of measurements for each alternative 

 yij is the jth
 performance value measured for alternative i  i ≤ k, j ≤ n  

The mean of each alternative is computed as 

 ̅    
∑    

 
    

 
 

The overall mean is computed as 

 ̅    
∑ ∑    

 
     

 
     

     
 

The variation due to the effects of the alternatives, sum-of-squares due to the 

alternatives (SSA) is computed as 

       ∑  ̅     ̅   

 

     

 

The variation due to random effects within an alternative is computed as the sum-of-

squares of the errors (SSE) between the individual measurements and their respective 

alternative mean 

      ∑ ∑        ̅  
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When the above components are computed, a statistical test named F-test is performed 

to detect the statistically significant difference. F-test assess whether the expected values of a 

quantitative variable within several pre-defined groups differ from each other. The formula to 

compute the statistic F value is 

    
            

           
 

with k is the number of alternatives. This F value follows the Fisher’s F distribution with k – 

1, n·k – k degrees of freedom. If this F value is larger than the pre-computed Fk – 1; n·k – k, we 

can conclude that there is actually statistically significant difference and vice versa. 
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Chapter 3  

Scala Benchmarking Suite 

Scala Benchmarking Suite – SBS (scala.tools.sbs) is a tool developed to do 

benchmarking on the Scala programming language. It is designed mainly being intended to 

detect various kinds of regressions on Scala standard library and Scala compiler, which are 

caused by changes to the source code, on the nightly build of each revision. Also, it can be 

used by Scala developers for their own purposes of improving Scala program quality by the 

mean of performance and optimization. 

3.1. Features 

This is the comprehensive list of features currently supported: 

 Enable users to write their own benchmarks in the same way they write tests now - 

a file or a directory of files which corresponds to a Scala program. Users no longer 

need to worry about the implementation of benchmark iteration, warming up phase 

or statistical rigor, etc., which are all controlled by the built-in mechanisms of SBS 

 Compile benchmarks using the compiler distribution comes along with the Scala 

standard library which is used to run the suite. Users can specify whether to (re) 

compile the benchmarks. The effect of the changes made to the compiler is 

reflected through the performance of the bytecodes compiled with it 

 Run benchmarks selectively to obtain benchmarking results, such as performance 

numbers, number of times a method has been called, amount of memory 

consumed, etc. The metrics which regard performance are measured separately 

with the others to prevent them from being influenced. Users have the ability to 

specify more than one metrics at a time during a run. A specific metric can be 

recorded independently or together with the others 
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 Have benchmarks divided into groups and being able to run groups selectively and 

automatically, e.g. in nightly builds. 

 Obtain benchmark results and keep benchmark results histories for comparison in 

the future. This is the main feature to keep track of the performance along the 

growth of the Scala standard library and compiler 

 Using histories, automatically detect a failing benchmark, using statistical analysis. 

Performance histories are kept from previous SBS run on the accepted revisions of 

Scala. 

 Be able to specify the used JVM when running a benchmark/benchmark group to 

detect the different performance of the same benchmark on various environment 

 Benchmarks have default arguments, but when running them selectively, they can 

be passed in additional args (for instance, an array buffer is benchmarked with 

10000 elements, but the user could run this specific benchmark with -Dsize=5000 

if he so desires) - these arguments are defined on a per benchmark basis 

 Comparative benchmarking - compare 2 approaches lively to point out the better 

one. 

 Produce reports about the benchmark results, to send this through e-mail or be 

available through a web interface - report percentage losses and improvements in 

performance 

 Various kinds of reports - first implement just text-only, but it is left extensible for 

various graphical representations 

 Have verbose and debug output options 

 Allow interfacing the suite through command line, ant and sbt
18

. Make it easy to 

continue developing with sbt project manager, integrate to Scala nightly build with 

ant and for the normal users to use as a jar package through command line 

Usage: sbs [<options>] [<benchmark> <benchmark> ...] 

<benchmark>: a path to a benchmark, typically a .scala file or a directory. All the per-

benchmark <options> will be overridden by corresponding ones in .arg file with the same 

name with the snippet benchmark or values overridden from templates in the case of 

initializable benchmark. Following is the comprehensive list of all the possible arguments: 

Benchmarking modes: 

                                                 
18

 https://github.com/harrah/xsbt/wiki 
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--steady-performance SBS runs in steady state benchmarking mode 

--startup-performance SBS runs in start-up state benchmarking mode 

--memory-usage SBS measures benchmarks’ memory usage in 

steady state 

--profile SBS profiles activities of benchmarks’ runs (class 

loading, method invocations, etc) 

--pinpoint SBS runs pinpointing regression detection mode 

--all SBS runs all current supported benchmarking 

modes 

Statistics metrics: 

--least-confidence-level <value> smallest acceptable confidence level (default: 90) 

--precision-threshold <value> % (default: 2%) 

--timeout <value> maximum time for each measurement (ms) 

--noncompile if set, SBS will not re-compile the benchmarks 

Arguments necessary for performance benchmarking (see section 2.3.3 for the meaning 

of these arguments): 

--measurement <value> number of measurements (sample size) - default: 

11 

--multiplier <value> number of benchmark run repetitions per 

measurement - default: 1 

--sample <value> number of pre-created samples used for 

statistically rigorous regression detection - 

default: 0 

--re-measurement <value> maximal number for re-measurements a metric in 

case the measurement result is not acceptable (too 

much noise for example) - default: 1 
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--warm-repeat <value> maximal multiplier number of measuring 

repetitions for warming up. For example, if user 

specified --measurement 10 --warm-repeat 10, 

SBS at most repeat the benchmark running for 

100 times at warming up phase. Default: 5 

Arguments necessary for profiling: 

--profile-classes <classes> classes to be profiled - split by ; - default:  

<empty> 

--profile-exclude <classes> classes to be ignored - split by ; - default: 

<empty> 

--profile-method <method> the method to be profiled - default: <empty> 

--profile-field <field> the field to be profiled - default: <empty> 

--profile-gc if set, SBS will profile the running of the garbage 

collectors 

--profile-boxing if set, SBS will profile the number of boxing - 

unboxing 

--profile-step if set, SBS will profile the number of steps 

performed 

Arguments necessary for pinpointing regression detection: 

--pinpoint-class name of the class contains the method to be 

regression detected - default: <empty> 

--pinpoint-method name of the method - default: <empty> 

--pinpoint-bottleneck if set, SBS will detect the bottleneck using 

performance regression pinpointing methodology 

(see section 4) 

--pinpoint-previous <location> the location of the previous build, should not be 

included in classpath - default: <empty> 
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--pinpoint-exclude classes to be ignored - split by ; - default: 

<empty> 

Specifying paths and additional values, ~ means SBS root: 

--benchmarkdir path from ~ to the working directory contains 

mostly log files and report files - default: . 

--bindir path from ~ to the directory contains binary files 

of the benchmarks - default: <empty> 

--history path to measurement result histories - default: . 

--classpath classpath for benchmarks running - default: 

<empty> 

--scala-library path to scala-library.jar - default: <empty> 

--scala-compiler path to scala-compiler.jar - default: <empty> 

--javaopts flags to java on all runs - default: JAVA_OPTS 

environment variable - currently unset 

--scalacopts flags to scalac on all tests runs - default: 

JAVA_OPTS environment variable - currently 

unset 

--java-home path to java 

Options influencing output: 

--show-log if set, SBS will show the log message on the 

console 

--verbose verbose logging output 

--debug debugging logging output 

--quiet no console output 

Other options: 

--cleanup delete all stale files and dirs before run 
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--noclean-log do not delete any logfiles 

--help print usage message 

3.1.1. Benchmark taxonomies 

With respect to metric: 

 Running time - easy to measure but unreliable, and has to be measured on the 

same platform to analyze history - no profiler should be used here 

 Profiling a specific value - using a profiler with the JVM invocation 

o Classes that loaded 

o Number of times specific field(s) accessed/modified 

o Number of times specific method(s) invoked 

o Number of steps performed 

o Memory consumption 

o Number of GC cycles 

o Number of boxings/unboxings 

A benchmark can possibly specify more than a single metric. In this case, the running 

time and profiled values are not measured during the same run. We separate runs for different 

profiled metrics. 

With respect to measurement type 

(This mainly concerns running performance benchmarks): 

 Startup - perform measurements only once during JVM warm-up time and record 

them - what’s measured may include both JIT compiled and interpreted code, 

along with the compilation time, class loading etc. 

 Steady-state - run the benchmark code multiple times during a single JVM 

invocation until steady-state is detected (using the coefficient of variation), then do 

K iterations and measure the observed value - compute the mean of these K 

measurements 

 Comparative - compares 2 programs (snippets, functions) and measures relative 

performance 

 Performance regression pinpointing – compares 2 versions of the same program to 

detect performance regression and to point out the bottleneck (if any) 
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The taxonomies above may dictate how benchmarks are divided into logical groups, 

which makes them easier to select all at once. A group of benchmarks all are in a certain 

directory corresponding to their benchmarking mode. 

With respect to how and when they’re run: 

 Individual - for individual use and parameter tweaking, these are not run on a 

nightly or regular basis, but on demand - the developer can play around with the 

parameters to test the code or changes he made 

 Nightly - these are run on a regular basis to detect regressions on various 

revisions of Scala, based on statistical analysis the difference in performance 

with the performance histories kept from earlier builds 

Benchmark directory structure 

The working directory consists of the log files, report files and sub-directories: 

 bin – holds binary (i.e. .class) files of benchmarks. All the bytecodes 

compiled from benchmark sources go here 

 Mode directories – a directory exists for each benchmarking mode. Their names 

depend on the definition of the corresponding BenchmarkMode. Each mode 

directory holds the source files and the argument files of its benchmarks. 

Additionally, each benchmark has its own directory for generated histories 

(which are typically .xml files) 

For example, a typical benchmark directory is shown below 

\benchmark 

          \steady 

                 \Benchmark_1 

                             \history_1.xml 

                             \history_2.xml 

                  \Benchmark_1.scala 

          \startup 

          \pinpoint 
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This design of directory structure is convenient to run selectively benchmarks 

depending on their mode of run all at once. 

3.1.2. Measurement methodologies 

There are several ways to run a benchmark: 

 Run-once - such a benchmark is run once and the measured times are reported 

(e.g. printed on the screen) - typically the individual benchmarks are run this 

way 

 Statistically analysis - the benchmark is run N times and the results are analyzed 

- a mean value, variance and a confidence interval for the value are computed. 

Confidence interval should be specified (perhaps only in strict steps, e.g. 90%, 

95%, 99%) 

3.1.3. Failure reporting methodologies 

Clearly, this involves comparing the result of the benchmark against results from the 

previous runs – at least a history of previous performance measurements should be kept. 

Ways to discriminate failing benchmarks: 

 Confidence interval - if the mean value fell out of the confidence interval of the 

last result, report an error 

 Difference - compare the difference of the current and the previous result - if the 

confidence interval of the difference does not include zero, report an error 

 Difference with up to M previous - same as difference, but compare against M 

previous results – using analysis of variance 

3.1.4. Statistical analysis 

In memory consumption, steady-state performance and pinpointing benchmarking 

mode, methodologies described in section 2.3 is applied. Typically: 

 In memory consumption and steady-state performance mode, when no history 

available, no statistical analysis. When there is a single xml history, applied 

methodology described in section 2.3.4. Otherwise, methodology described is 

section 2.3.5 is used 
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 In pinpointing mode, methodology in section 2.3.4 is used in every comparison 

between current and previous performances (see section 4) 

3.2. Use case 

Here we describe the parameters for running SBS, the typical use case and an example 

of a typical benchmarking suite run. All of these considerations will reflect the architecture of 

the suite. 

A benchmark suite run requires a set of parameters to be specified: 

 A set of benchmarks to be run, specified as a list of benchmark groups and/or 

individual benchmarks 

 The JVM options to use to run the benchmarks 

 Optionally a set of JVM parameters, unless the per-benchmark defaults are to be 

used 

 If a single benchmark was specified, its default arguments may be overridden (if 

the benchmark has any arguments specified - e.g. collection size or number of 

actors used) 

 Measurement type, unless the default per-benchmark type is to be used (e.g. 

startup, steady-state) 

 Measurement methodology, unless the default per-benchmark defined 

methodology is to be used (e.g. run-once, statistical analysis) 

 For statistical analysis, various parameters such as confidence intervals or 

coefficients of variance, unless per-benchmark defaults are to be used 

 Location where to run these - locally or on a remote machine 

 Whether to compare results to previous results and the failure discrimination 

strategy 

 Where is the history for previous runs kept - needed if results are to be compared 

against previous results 

 Other options (e.g. verbosity level, influencing logging…) 

A typical benchmark suite run is as follows: 

1. Parse input arguments 

2. Compile the sources of the benchmarks if necessary 
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3. Run all the benchmarks with the specified arguments 

4. Load the previous results if necessary 

5. Run comparisons to previous results if necessary 

6. Post-process results if necessary (e.g. preparing reports, storing run results, etc.) 

3.3. Design description 

For convenience purpose, all the package and type names mentioned in the following 

sub-sections are originally prefixed by scala.tools.sbs. 

3.3.1. Main architecture 

Figure 3.1 depicts the main activities of a SBS run session, which are, with respect to 

the order: 

 Parsing user arguments using ArgumentParser. An instance of the class 

Config is created representing the environment and user’s requirements of the 

run. Logging activities also starts at this point, their instances and I/O format 

depends on user’s requirements 

 Reading information about the benchmarks to be run from user arguments or 

from per-benchmark specific argument files. Users are able to specify one or 

more benchmark at a time with command line - this ability is convenient for 

running selective benchmarks. They also can specify several directories contain 

lots of benchmarks inside in the case SBS is used in nightly builds, in grouping 

benchmarks or the number of benchmarks is just too large to fit in. 
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ReportRunnerBenchmarkCompilerArgumentParserBenchmarkDriver

Parse arguments

Print help
[invalid argument or help]

Read benchmark info

Compile benchmarks
Prepare

working directory

[valid argument]

Run benchmarks

Report results
[compilation failed]

[compilation OK]

 

Figure 3.1 – Main activity diagram 

 Preparing the working directory structure, including creating places for each 

mode to store their histories and logging, cleaning unwanted files, etc. 

 Compiling all the benchmarks needed using BenchmarkCompiler. If a 

benchmark has already been compiled before and the change (if any) does not 

concern it implementation, it is not necessary to re-compile the benchmark (i.e. 

changes were made to the standard library, and are reflected through the re-

compilation of the standard library, which has taken its place before the SBS run 

session). 

 For each selected BenchmarkMode, do benchmarking on all the list of the 

benchmarks specified to run in the mode using the corresponding instance of 

Runner 

 Finally processing (typically is reporting) the generated benchmarking results 
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Object scala.tools.sbs.BenchmarkDriver 

BenchmarkDriver is the central back bone of SBS. Its main method is the entry 

point and controls the work flow of every SBS run session. BenchmarkDriver receives 

user arguments and instantiates the necessary objects. 

Class scala.tools.sbs.ArgumentParser 

ArgumentParser receives the Array of user’s arguments to create the Config, 

the log file and read the information of the to-be-run benchmarks. 

A typical benchmark is stored in local disk in the form of a Scala source file or a 

directory of Scala source files. It may come along with an argument file – a file with the same 

name and the extension .arg. This file contains the additional per-benchmark information 

such as the number of iterations, whether to recompile, the time out, etc. All the benchmarks’ 

information read is represented as a set of benchmark.BenchmarkInfo. 

ArgumentParser runs only once for each SBS run session and has no state. So, 

ArgumentParser is implemented to be an object with a small number of static methods. 

Class scala.tools.sbs.Config 

An instance of Config reflects the benchmarking “environment”. It consists of the 

user arguments has been parsed and the constant values, such as precision threshold etc., used 

by most of all classes in SBS. 

Trait scala.tools.sbs.Runner 

Runner is one of the most important traits in SBS. Each of its concrete implements 

and their supporting types should represent the necessary activities to produce the 

benchmarking results. An important part of Runner is shown in Listing 3.1. 

With the purpose to have SBS easily extensible, Runner is designed to represent a vast 

various ways and metrics of measurement. Depends on the running mode, a suitable Runner 

is instantiated. Each implementation of Runner has its own sub-type of 

benchmark.Benchmark which it can process (for example, a profiling.Profiler 

(see section 3.3.3) can only run a profiling.ProfilingBenchmark). At the first step 

of running a benchmark, a Runner checks whether the benchmark is suitable (see Listing 

3.1). That can be fulfilled using the method check(), which is inherited by Runner from 

the trait common.RuntimeTypeChecker. check() tests whether the type 
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represented by the Runner’s field upperBound is a super-type of the benchmark’s type by 

using scala.reflect.Manifest. 

trait Runner extends Configured with RuntimeTypeChecker { 

 

  def benchmarkFactory: BenchmarkFactory 

 

  def run(benchmark: Benchmark): BenchmarkResult = 

    if (check(benchmark.getClass)) { 

      val result = doBenchmarking(benchmark) 

      result.toReport foreach log.info 

      result 

    } 

    else { 

      throw new  

        MismatchBenchmarkImplementationException( 

          benchmark, 

          this) 

    } 

 

    ... 

 

}  

Listing 3.1 – Trait scala.tools.sbs.Runner (simplified) 

A little thing about Scala – Java Generics
19

 is necessary to be described here to for one 

to be able to understand the role of scala.reflect.Manifest. Generics is a facility 

of generic programming that allows a type or method to operate on objects of various types 

while providing compile-time type safety (in our case these types are the sub-types of 

benchmark.Benchmarks). Java’s, therefore Scala’s, approach to implement Generics is 

type erasure
20

 that removes the type parameter information at compile time. So that, every 

objects at runtime have the type of java.lang.Object. That makes the operation 

isinstanceof T (T is a type parameter) always yields true and thereby meaningless. 

With Scala, one can work around the type-polymorphism problem using the 

scala.reflect.Manifest. Manifests are descriptors for types which can be used in 

runtime to test type-relating constraints and are our solution applied in SBS. 

In addition, a runner must define its own factory to generate the concrete benchmarks.  

The factory is hold in the field benchmarkFactory at SBS runtime. For instance, 

performance.Measurer has its fields defined as follow: 

                                                 
19

 http://en.wikipedia.org/wiki/Generics_in_Java 
20

 http://en.wikipedia.org/wiki/Type_erasure 

http://en.wikipedia.org/wiki/Generic_programming
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protected val upperBound = manifest[PerformanceBenchmark] 

val benchmarkFactory = 

  new PerformanceBenchmarkFactory(log, config)  

The harnesses 

Harness is the common term for every object named suffixed by “Harness” in 

SBS. 

To satisfy the constraints that require benchmarks run in a clean JVM, a harness is a 

controller for running benchmarks in a separated JVM and is a sub-type of the trait 

common.ObjectHarness. A harness in general is the main Scala class in its JVM and has 

its own main() function as the entry point. 

A harness typically does the following steps: 

 Recreating the Config and the log 

 Loading the benchmark classes and iterating its runs using reflection 

 Reporting measurement result to the main JVM 

A new JVM is needed for a harness to run to satisfy the constraints of benchmarking 

environment. It is launched using common.JVMInvoker (see section 3.3.6). The hierarchy 

of harnesses is illustrated in Figure 3.2. 
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+main()
+dispose()

<<trait>>
common.ObjectHarness

<<object>>
common.RunOnlyHarness

<<object>>
performance.SteadyHarness

+measure()

<<trait>>
performance.MeasurementHarness

+check()

-upperBound

<<trait>>
common.RuntimeTypeChecker

<<object>>
performance.MemoryHarness

<<object>>
profiling.GCHarness

+start()
+end()

<<object>
 pinpoint.strategy.PinpointHarness

 

Figure 3.2 – The harnesses’ class diagram 

Adding new benchmarking mode into SBS 

SBS is designed to be easily extendable in order to meet all the requirements may 

appear in the future. To extend the abilities of SBS to be able to do some additional kind of 

benchmarking, follow these steps: 

 Create an object which extends the trait BenchmarkMode. It represents 

the newly added mode and lets BenchmarkDriver be able to switch onto the 

new benchmarking mode in a SBS run session 

 Create a command line option for users to be able to select the new mode. The 

option must be declared in the trait BenchmarkSpec so that a var named 

_modes appends the new mode object whenever the option is specified. All 

other options’ definitions and metrics that the new mode needs also go here 

 Create a new package in package scala.tools.sbs for all the 

implementations of the new benchmarking mode (not necessary, this is just for 

convenience and neatly looking code purpose) 
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 Define a new kind of benchmark provides all the necessary information to the 

new benchmarking mode and a new result type. The implement of the 

benchmark kind has to be a sub-type of benchmark.Benchmark for the 

Runner to accept it, the result type is a sub-type of BenchmarkResult 

 Create a new factory class for creating instances of the new benchmark type 

from user arguments. This factory must be a sub-type of 

benchmark.BenchmarkFactory (see section 3.4.5) 

 Create a sub-type of Runner which is used to run in the new mode. The field 

upperBound must hold the manifest of the new benchmark type and the 

field benchmarkFactory holds an instance of the new benchmark factory 

When all of the above are complete, the new benchmarking mode is ready to run. 

Following is an example. Supposed that we want to add a new benchmarking mode 

called NewMode to SBS. The steps to have it ready in SBS are described below: 

 Define the mode object 

object NewMode extends BenchmarkMode { 

  val location = "newmode" 

  override val toString = "NewMode" 

  val description = "for example purpose" 

} 

 Insert an option (as the following line of code) to BenchmarkSpec 

"newmode" / "run in the new mode" --> ( 

  _modes ::= NewMode) 

 Create the new package scala.tools.sbs.newmode 

 Define the new type of benchmarks, which is the following class: 

package scala.tools.sbs 

package newmode 

 

class NewBenchmark extends Benchmark { 

 

  def name = “NewBenchmark” 

  def arguments = List[String]() 

  def classpathURLs = List[URL]() 

  def sampleNumber = 0 

  def createLog(mode: BenchmarkMode): Log = null 

  def timeout = 10000 

  def init() = () 

  def run() = () 
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  def reset() = () 

  def context: ClassLoader = 

    Thread.currentThread().getContextClassLoader() 

  def toXML: scala.xml.Elem = <newbench /> 

 

} 

 Define class NewBenchmarkFactory which is used to create Benchmark 

instances which actually are NewBenchmarks for them to be able to run by the 

new runner 

package scala.tools.sbs 

package newmode 

 

class NewBenchmarkFactory(val log: Log, 

                          val config: Config) 

  extends Configured 

  with BenchmarkFactory { 

 

  /* In real life, createFrom() should use method 

   * load() inherits from BenchmarkFactory to read 

   * .arg files or instantiate an 

   * InitializableBenchmark. 

   * See the pre-created BenchmarkFactory-s for 

   * more details. 

   */ 

  def createFrom(info: BenchmarkInfo): Benchmark =  

    new NewBenchmark 

 

} 

 Modify method apply() of object BenchmarkFactory to have it create 

NewBenchmarkFactory in the case –-newmode is selected 

object BenchmarkFactory { 

 

  def apply(log: Log, 

            config: Config, 

            mode: BenchmarkMode): BenchmarkFactory = 

    mode match { 

      case DummyMode => 

        new DummyBenchmarkFactory(log, config) 

      case Profiling => 

        new ProfilingBenchmarkFactory(log, config) 

      case Pinpointing =>  

        new PinpointBenchmarkFactory(log, config) 

 

      //insert this 

      case NewMode => 

        new NewBenchmarkFactory(log, config) 
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      case _ => 

        new PerformanceBenchmarkFactory(log, config) 

  } 

 

} 

 Define new runner which has field upperBound holds the manifest of 

NewBenchmark and field benchmarkFactory holds an instance of 

NewBenchmarkFactory. These fields will be later used to create (load) the 

benchmarks 

package scala.tools.sbs 

package newmode 

 

class NewRunner extends Runner { 

 

  protected val upperBound = manifest[NewBenchmark] 

 

  val benchmarkFactory = 

    new NewBenchmarkFactory(log, config) 

 

  protected def doBenchmarking(benchmark: Benchmark): 

    BenchmarkResult = { 

    // do things here 

  } 

 

} 

 Modify the factory object for the runners: Insert a case of NewMode to method 

apply() 

object RunnerFactory { 

 

  def apply(config: Config, 

            log: Log, 

            mode: BenchmarkMode): Runner = 

    mode match { 

      case Profiling => 

        ProfilerFactory(config, log) 

      case Pinpointing => 

        ScrutinizerFactory(config, log) 

      case StartUpState | SteadyState | MemoryUsage =>  

        MeasurerFactory(config,  

                        log, 

                        mode, 

                        MeasurementHarnessFactory) 

      case Instrumenting => 

        InstrumenterFactory(config, log) 
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      // Insert this line 

      case NewMode => new NewRunner 

 

      case _ => 

        throw new NotSupportedBenchmarkMode(mode) 

  } 

 

} 

The new mode is now completely added to SBS. Users can have SBS run the new 

benchmarking mode with the command option –-newmode. 

3.3.2. Package scala.tools.sbs.performance 

This package implements the most important and heavily-used benchmarking modes: 

benchmarking steady-state performance. Besides, it comes along with the ability to do 

benchmarking start-up performance and memory consumption in steady-state. 

The central unit of package performance is the trait named Measurer which 

extends Runner. Measurer has two concrete classes, StartupHarness and 

SubJVMMeasurer. 

 StartupHarness measures the running time in start-up state of the 

benchmark, not necessary for it to run in a new JVM. 

 SubJVMMeasurer uses the corresponding harness to measure the steady-state 

performance or the memory consumption 
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<<object>>

performance.SteadyHarness

+measure()

<<trait>>

performance.MeasurementHarness

<<object>>

performance.MemoryHarness

+measure()

#doGenerating()

#regress()

<<trait>>

Measurer
SubJVMMeasurer

+reduceConfidenceLevel()

+isConfidenceLevelAcceptable()

+resetConfidenceInterval()

+confidenceInterval()

+min()

+max()

+mean()

+standardDeviation()

+CoV()

+significantLevel()

+confidenceLevel()

+testDifference()

<<trait>>

Statistics

-inverseGaussianDistribution()

-inverseStudentDistribution()

-inverseFDistribution()

-testConfidenceIntervals()

-testANOVA()

SimpleStatistic

«uses»

+add()

+append()

+mode()

+apply()

+foldLeft()

+head()

+last()

+tail()

++:()

+length()

+map()

+foreach()

+forall()

<<trait>>

regression.History

-data

regression.ArrayBufferHistory

«uses»

+generate()

+load()

+store()

<<trait>>

regression.Persistor

+loadFromFile()

+loadSeries()

+location

regression.FileBasedPersistor

«uses»

+apply()

+head()

+tail()

+last()

+length()

+clear()

++=()

+sum()

+foldLeft()

+foldRight()

+foreach()

+forall()

+remove()

+isReliable()

+toXML()

-data

-_confidenceInterval

Series

+achieve()

+cleanUp()

SeriesAchiever

«uses»

«uses»

«uses»

«uses»

StartupHarness

 

Figure 3.3 – Package performance’s class diagram 

Figure 3.3 illustrates the static structure of the most important elements of package 

performance, includes: 

 Class Series represents a series of performance measurements. 

 Class SeriesAchiever is the controller of benchmarking iterations. 

SeriesAchiever guarantees that the benchmark has reached steady-state 

after warming up phase and redoes the whole measurement if the final series is 

not reliable 

 Package regression – contains classes support statistically rigorous 

performance regression detection: 

o Trait Statistics provides the operations concern statistical metrics. 

It computes CoV of a series as well as its mean and sample standard 

deviation. The most important functionality of Statistic is checking 
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the statistically significant difference among the current series and 

histories using statistically rigorous performance detection methodology 

o Trait History consists of a list of performance Series from previous 

benchmarking runs 

o Trait Persistor loads and stores Series into the storage. Currently, 

Persistor is implemented to work with measurement histories in the 

form of .xml files 

A typical run in steady-state benchmarking mode is described in Figure 3.4 

Series StatisticSteadyHarnessSubJVMMeasurer

Launch JVM Measure

Check reliability

Load histories Detect regression

Report measurement resultDispose result

Check warmed up

[still cold]

[warmed up]

[reliable]

[unreliable]

[measurement OK]

[failed]

Save result

 

Figure 3.4 – Steady-state performance benchmarking activity diagram 

3.3.3. Package scala.tools.sbs.profiling 

Package scala.tools.sbs.profiling implements a benchmarking mode 

under the form of a profiler using the high level API Java Debug Interface (JDI) which is a 
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part of Java Platform Debugger Architecture (JPDA). The profiler is used to record the 

activities of a benchmark running session and profile typical metrics specified by user, 

includes: 

 Classes that are loaded together with its methods that ran and/or fields accessing 

and modifying 

 Number of boxings/unboxings 

 Number of steps performed 

 Memory activities that consists of types of garbage collectors have been run, 

their number of cycles and time spend. Also, memory usage on heap and non-

heap memory, their init, used, committed and maximal memory 

fragments 

Interaction to this package i.e. the profiler is done through a trait, sub-type of 

trait Runner, named Profiler, which has its implementation to be JDIProfiler. 

Figure 3.5 depicts the relations among the types in package profiling. 

The architecture of the profiling process follows the guide from Sun to write a debugger 

based on the JDI API. When starting running, a JDIProfiler launches a new JVM 

running the user program and creates a mirror of that JVM for management representing as an 

instance of class com.sun.jdi.VirtualMachine. The mirror of the JVM is then 

passed to be processed by a JDIEventHandler. All the requests for event generating are 

registered. Finally, a JDIThreadTrace is created for each of the JVM’s threads recording 

the events generated. 

The result created using JDIProfiler is contained in an instance of class Profile. 

It is then passed to MemoryProfiler to continue recording the activities of memory usage. 

The ProfilingBenchmark is run in a new JVM under the control of GCHarness to 

make sure the values recorded are achieved satisfied all the constraints of benchmarking 

environment. 
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#profile()

<<trait>>

Profiler
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JDIProfiler
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-handleEvent()

-setEventRequest()

-vmDisconnectedEvent()

-benchmark

-connected

-traceMap

JDIEventHandler

+fieldAccessEvent()

+filedModifyEvent()

+methodEntryEvent()

+methodExitEvent()

+stepEvent()

+threadDeathEvent()

-benchmark

-jvm

-profile

-steps

-thread

JDIThreadTrace

+profile()

MemoryProfiler

+measure()

-mode

-upperBound

GCHarness

+box()

+boxing()

+classes()

+loadClass()

+loadClass()

+memoryActivity()

+performStep()

+steps()

+toXML()

+unbox()

+unboxing()

+useMemory()

-_boxing

-_unboxing

-_classes

-_memoryActivity

-_steps

Profile

1

1

«refines»

«uses»

«uses»

1 *
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Figure 3.5 – Package profiling’s class diagram 

3.3.4. Package scala.tools.sbs.pinpoint 

This package implements the bottleneck finding methodology named performance 

regression pinpointing. Package scala.tools.sbs.pinpoint heavily depends on the 

package scala.tools.sbs.performance since it also uses the same process of 

measurement and regression detection. Many of its important classes extend classes from 

package scala.tools.sbs.performance including the harnesses and benchmarks. 

Package scala.tools.sbs.pinpoint will be described in details in section 4.8. 
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3.3.5. Package scala.tools.sbs.benchmark 

This package contains all of the class definitions to represent the information about user 

benchmarks. 

BenchmarkInfo stores the basic information about a benchmark: its name, where to 

find the source code, whether to compile…In addition, it composes the corresponding 

concrete benchmark object using a concrete factory. 

The snippet benchmarks and initializable benchmarks are the two supported kind of a 

benchmark implementation. That may be 

 A snippet benchmark – is a standalone Scala program that can run on Scala 

independently from SBS. User defined it with a main method in an object 

 An initializable benchmark – is mainly a class which implements a special trait 

from SBS – a sub-type of BenchmarkTemplate which is provided to the 

user and has the interface depends of the benchmarking mode. The initializable 

benchmark is used when a lot of data has to be generated before starting the 

benchmark. In practice, to be precise in performance measurements, we do not 

want the cost of data preparation to influence the overall running time. In that 

case, a initializable benchmark is used and its method named init() runs all 

the initializations (things like loading data from files, creating large arrays or 

instantiating data-heavy classes, etc.)  

The benchmark templates are the interfaces provided to the user to implement their 

initializable benchmarks. Those are sub-type of BenchmarkTemplate and are defined 

depends on the benchmarking mode they are intended to run in. 

A BenchmarkFactory using reflection to load the classes corresponds to the benchmark. 

It defined the loading process from classpath but leaves the creating of benchmark 

instances to the concrete sub-type. 

The current benchmark hierarchy of package benchmark is depicted in Figure 3.6: 
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Figure 3.6 – Package benchmark’s class diagram 

3.3.6. Other supporting packages 

Package scala.tools.sbs.common 

Consists of several very important traits, some of them define a number of the core 

operations in SBS 

 Reflector – has a simple implement to be SimpleReflector. A 

Reflector provides the ability to dynamically load the definition of classes, 

create class instances and find the location where the given class locates in 

classpath using reflection
21

. Reflector is used in order to create 

                                                 
21

 http://en.wikipedia.org/wiki/Reflection_(computer_programming) 
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benchmark.Benchmark instances or support instrumentation phase of 

performance regression pinpointing (see section 4.5) 

 ObjectHarness – trait ObjectHarness is the super-type of all the 

harnesses in SBS (see section 3.3.1 – small topic The Harnesses). An object 

sub-type of ObjectHarness reports the result from a measurement by 

printing the xml element representing the result to its standard output, which is 

transferred back to the main JVM as a data stream
22

 

 RuntimeTypeChecker – uses scala.reflect.Manifest to test for 

type-related constraints at runtime. It is mixed-in the implements of Runner 

and the harnesses 

 Backuper – backups and restores the unwanted files form their original 

locations. Backuper is mostly used in the instrumentation phase of 

performance regression pinpointing (see section 4.5) 

 BenchmarkCompiler – compiles the benchmark source files into Java byte 

codes. Its single implement, BenchmarkGlobal, uses the standard built-int 

Scala compiler which is scala.tools.nsc.Global to do the compilation 

and reporting on benchmarks that cannot compile 

 JVMInvoker – has an implement to run Scala in new JVM, named 

ScalaInvoker. The most important operation of JVMInvoker is invoking a 

new JVM for some purpose and then using the two argument functions String 

=> E, String => R (E and R are type parameters) to process each line of the 

standard output and standard error, producing the two ArrayBuffer[R] and 

ArrayBuffer[E] as the return values 

Package scala.tools.sbs.io 

io package defines the traits Log and Report which currently simply write plain 

texts to .txt files. A special sub-type of Log is the object UI. It prints messages directly 

to the console to interact with users. 

Package scala.tools.sbs.util 

Package util consists of a few utilities 

 object Constant holds the platform-specific pre-computed values such as 

path.separator, file.separator, etc. 

                                                 
22

 http://www.scala-lang.org/api/current/scala/sys/process/ProcessIO.html 
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 object FileUtil implements all the file-system-related operations 

including file reading and writing, preparing working directory structure etc. 

3.4. Experiment 

In the next sub-sections, we will evaluate the performance and try detecting regression 

on the benchmark named ArrayCopy (described in section 3.4.1) using statistically rigorous 

data analysis. For doing so, we consider an experiment in which we compare the statistically 

significant difference in the performances measured from different iterations of the 

benchmark. Section 3.4.1 discusses the experimental setup: the benchmark, the configurations 

of the virtual machine and the hardware platform. In section 3.4.2, we illustrate the process 

evaluating the performance of the benchmark which includes the warming up phase. Finally, 

sub-section 3.4.3 uses the figures included to depict the comparing results. 

3.4.1. Experimental setup 

This section describes the implementation and running environment for the benchmark 

ArrayCopy. 

The benchmark ArrayCopy 

The benchmark used in this experiment is called ArrayCopy. The main activity of the 

benchmark is to clone a set of arrays. The arrays to be cloned consist of arrays of types: 

Object, Boolean, Byte, Char, Double, Float, Int, Long and Short, each has size 

of 48000. 

val size = 48000 

 

val objectArray  = new Array[Object](size) 

val booleanArray = new Array[Boolean](size) 

val byteArray    = new Array[Byte](size) 

val charArray    = new Array[Char](size) 

val doubleArray  = new Array[Double](size) 

val floatArray   = new Array[Float](size) 

val intArray     = new Array[Int](size) 

val longArray    = new Array[Long](size) 

val shortArray   = new Array[Short](size) 

 

val lst = List( 

  objectArray, 

  booleanArray, 

  byteArray, 
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  charArray, 

  doubleArray, 

  floatArray, 

  intArray, 

  longArray, 

  shortArray 

) 

Listing 3.2 – Benchmark ArrayCopy – arrays to be cloned 

When run, as shown in Listing 3.2, benchmark ArrayCopy clones every element of the 

scala.List of scala.Array named lst. It generates the new scala.List by using 

the higher-order function map. map maps each element of lst, which is an array, into the 

new element of newLst by applying the first-order function passed to it, in this case, the 

function clone of the scala.Array elements. 

val newLst = lst map (_.clone) 

Listing 3.3 – Benchmark ArrayCopy – operations when run 

The precision threshold is set to 2% by default (user can also modify the threshold with 

SBS option --precision-threshold, see section 3.1 for the comprehensive list of user 

arguments). 

The number of measurements (the number of sample to apply statistical analysis) 

retained to be kept is set to 13. This means that, for a performance measuring to be considered 

success, it achieves a series of running time which has the length of 13 and its confidence 

interval is less than 2% of its mean (we have described confidence interval statistics in section 

2.3.1). 

The iteration of the benchmark is initially set to 41. This means that a running time 

achieved is the time needed for ArrayCopy to run 41 times. This makes sure the running time 

measured is large enough (in general cases, up to several hundreds of milliseconds) thereby 

meaningful. 

Java Virtual Machine 

We use the JVM distributed by Sun, Java SE 6 build 29: Java version 1.6.0_29, Java SE 

Runtime Environment (build 1.6.0_29-b11), Java HotSpot Server VM (build 20.4-b02, mixed 

mode). We consider running the Server VM of Java HotSpot Virtual Machine with the default 

garbage collection strategy: Copy and MarkSweepCompact. 
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Hardware platform 

We considered a single hardware platform in our performance evaluation experiment: 

Intel Core 2 Duo CPU T5800 2.00GHz (2 CPUs) has 2048MB of main memory. The machine 

runs the Windows 7 ThinPC operating system. In all the performance evaluations, we 

consider the machine either unloaded or idle. 

3.4.2. Warming up 

As explained in section 2.2.1 and 2.3.3, for a measurement to be complete in steady-

state, the benchmark will have to run through its warming up phase which makes the 

bytecodes fully optimized and perform the highest performance for the measurement. 

Figure 3.7 illustrates the first measuring process of benchmark ArrayCopy to achieve a 

series of running time performance and store it as a history for detecting regression in the 

future. 

 

Figure 3.7 – All measurements, including warming up phase,  

of a measuring process on the benchmark ArrayCopy 

The graph shows that SBS run through 30 measurements in total to retain the final 

series of 13 running time samples. And therefore, SBS used the first 17 measurements to 

warm up the benchmark. To be more precise in material data, we can explain the detection of 

reaching steady-state as follows: 

 First, measure the running time to get a series of 13 samples. The series has its 

length exactly is equal to the length we want to retain. At the time, the mean and 

sample standard deviation of the current series is computed, which are 
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respectively 581.46 and 69.92. That makes the coefficient of variation 12%, 

much larger than we expect. The conclusion here is that the benchmark has not 

reached its steady-state 

 The measuring is continued. For each new measurement, the oldest sample in 

the series is removed and the new one is appended. The measuring and 

computing are repeated until the CoV of the current series becomes less than 

2%. The computed metrics for the next runs, respectively are the mean, the 

sample standard deviation and the CoV, are listed below: 

run mean standard deviation CoV 

14 563.3846154 24.82451229 4.4% 

15 557.5384615 21.08955265 3.7% 

16 551.8461538 15.9991987 2.9% 

17 548.0769231 9.393805924 1.7% 

 At run 17, the CoV has become less the 2%, the steady-state is detected. The 

final series retained is composed by the next 13 samples measured from run 18 

to run 30 

These measurement results are kept and used as the history to detect performance 

regression in the future. 

3.4.3. Statistically significant difference detection 

The steps performed in the experiment as follow: 

 A series was initially stored as the first history. That was the series we had 

achieved by the measuring described in section 3.4.2 

 The benchmark iteration was changed from 41 to 45 for the benchmark to have a 

worse performance. That caused the performance regression that we intend to 

detect using confidence interval test. This is considered as a failing benchmark 

and the measurement results were not stored as history. Illustrated by Figure 3.8 

 The benchmark iteration was changed from 45 back to 41. That caused the 

benchmark to perform its original performance so that no regression can be 

detected by confidence interval test. The measurement results are stored as 

another history. Illustrated by Figure 3.9 

 The benchmark iteration was changed to 45 once again. The benchmark then 

had a worse performance. Since we already had 2 series as persisting histories, 
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the ANOVA test was performed instead of the confidence interval test. 

Illustrated by Figure 3.10 

 The benchmark iteration was changed back to 41 to illustrate the case ANOVA 

test detects no performance regression. Illustrated by Figure 3.11 

All the series are achieved in steady-state (all the measurements taken in steady-state, 

the benchmark had run through warming up phase like ones in section 3.4.2). 

Performance regression detected using confidence interval 

After changing the benchmark iteration to 45, the performance measuring was 

performed and the result series is depicted in Figure 3.8 in its comparison with the history. 

 

Figure 3.8 – Performance regression detection using confidence interval –  

regression detected 

It can be seen with naked eye that the new performance is almost 600 milliseconds and 

significantly worse than the original one which even cannot reach 550 milliseconds. The 

confidence interval computed is [-58.21; -47.95] at the confidence level reduced to 90%. 

Since the confidence interval did not contain zero, there is performance regression detected. 

No performance regression detected using confidence interval 

The benchmark iteration was changed back to 41, causing the benchmark performs its 

original performance as depicted in Figure 3.9. 
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Figure 3.9 – Performance regression detection using confidence interval –  

no regression detected 

The new performance is now about 550 milliseconds just like the samples stored in 

history. The confidence interval computed is [13.64; 1.79] at the confidence level 99%. The 

confidence interval did contain zero, so there is no performance regression detected and the 

measurement results are stored as another history. 

Performance regression detected using ANOVA 

After once again changing the benchmark iteration to 45, the performance results are 

measured and shown in Figure 3.10 in its comparison with the histories. 

 

Figure 3.10 – Performance regression detection using ANOVA –  

regression detected 
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The running time of the benchmark is now high again. The statistics computed as 

follow: 

 F-value computed 137.36 

 F12; 36 according to F-distribution 5.25 

Since F-value is much larger than F12; 36 from the distribution, there is performance 

regression detected. 

No performance regression detected using ANOVA 

Finally, Figure 3.11 depicts the series achieved after changing benchmark iteration back 

to 41 along with the series from histories. 

 

Figure 3.11 – Performance regression detection using ANOVA –  

no regression detected 

The benchmark performance changed back to its original value which is about 550 

milliseconds. The statistics computed at this point: 

 F-value computed 3.99 

 F12; 36 according to F-distribution 5.25 

In this case, F-value is smaller than F12; 36 from the distribution, and so, no performance 

regression detected. 

 

0

100

200

300

400

500

600

Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Run
10

Run
11

Run
12

Run
13

R
u

n
n

in
g 

ti
m

e 
(m

s)
 

History 1

History 2

Current measurements



59 

 

Chapter 4  

Performance Regression Pinpointing 

 

Despite the fact is that statistically rigorous performance regression detection 

methodology is trustworthy and reliable, by using the benchmarking tools provided by SBS 

introduced so far, we can only detect whether there is performance regression exists inside our 

program. In particular, when having a large codebases and a big number of committers to a 

project (like, for example, an OS, language or some framework) it is sometimes hard to find 

out where is the change that causes the performance regression. In fact, just one very little 

false change in deep down to the standard library implementation may result in a largely 

significant lost in overall performance. Such cases actually exist in reality and many of them 

have been found so far. 

Those changes are called performance regression and should be considered as 

implementation errors, not causing the system to crash but heavily influencing speed and load 

when they are left unchecked. Scala (or any other language and/or framework) developers and 

library designers may need a tool to debug those errors to help them get the regression 

point(s) fixed before delivering the product to their clients. 

In this section, we would like to introduce a regression detecting method, called 

performance regression pinpointing, which is already implemented as a benchmarking mode 

run in SBS. This methodology should be used to point out the as-small-as-possible piece of 

code that causes the performance regression. The main idea is using bytecode instrumentation 

to measure the performance of a piece of code and statistically detect its difference from the 

performance of a previous version implementation kept from earlier builds. 

Starting from here, we will call a performance regression point a bottleneck. 
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4.1. Prevalent bottleneck finding methodologies 

4.1.1. Profiler 

When it comes into bottleneck finding inside a code snippet, the most preferred solution 

is to use a profiler. With an enough-powered profiler, one can measure the performance of a 

single method during a running pass to use for comparing in the future. This solution is not 

statistically rigorous thereby may lead to miss-judging and wrong conclusions as described in 

section 2.3. 

Another drawback of this approach is the way a profiler is implemented. In Java world, 

a profiler is written based on a native API called Java VM Tool Interface (JVMTI) and 

packed as a program called an agent. At the profiling time, the agent is required to run along 

in the same JVM with the code snippet. It influences the run of the snippet to produce useful 

data and reports them in some I/O heavy way. That significantly violates the constraints that 

require the benchmarks to run on a clean runtime environment. 

4.1.2. Further benchmarking 

Another approach is writing more benchmarks for typically suspicious part of the 

benchmark that caused the performance regression. This may lead to miss-conclusions if done 

in “native” ways – methodologies that are not statistically rigor (see section 2.3). In 

statistically rigorous methodology, this requires addition manual effort to generating sample 

histories to compare with the performance of those parts mentioned above. With this 

approach, benchmarkers/developers have to repeat the process: writing more and more 

benchmarks, generating more and more sample histories and hoping the bottleneck will soon 

be found. 

4.2. Main work flow 

Rather than using approaches mentioned in section 4.1, we intend to dynamically 

programmatically point out the bottleneck lies inside the interested code snippet. Our 

approach is to find the bottleneck by detecting the difference in performance between two 

versions of Scala .class files: 

 The current version – the newest built classes which cause performance drop 
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 The previous version – the classes from one of the earlier builds, which are well-

tested and have an accepted performance 

In compare to the prevalent methodologies described in section 4.2, our approach has 

several fundamental differences and advantages: 

 Programmatic – not only measures the performance of a piece of code, also finds 

the bottleneck inside it if exists. Without any manual effort required from user, 

uses a binary-search like algorithm to narrow the piece of code that causes the 

performance drop. In the best case that the narrowed piece is a single function 

call expression, the whole process is recursively applied to the just-collected 

function. 

 Clean JVM – the inspected code snippet is run in a clean new JVM without any 

agent and event processing comes along. More precise performance 

measurement, no halting in method invocations to generate events or process 

requests. 

 Automatically performance drop detection – runs once and compares the 

performance difference from an earlier accepted version of .class files. 

 Statistically rigorous difference detection – difference in performances is 

detected using statistically rigorous performance regression detection 

methodology rather than comparing derived metrics such as average, maximal, 

minimal running time... 

The algorithms shown in following sub-sections illustrate the main flow of our 

technique. For convenience, we represent the inspected source code (typically a method) by 

“slicing” it into lists of function call expressions, called layers. A layer consists of all the 

function call expressions which have a same property: when any of them is called, the call 

stack will have the same height. The layers are numbered by their relative depth to the 

inspected method, which means that the layer 0 consists of only one method: the inspected 

method itself. For example: 

def foo { 

  bar 

  baz 

} 

 

def bar { 

  one 

  two 
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} 

 

def baz = zero 

 layer 0: foo 

 layer 1: bar, baz 

 layer 2: one, two, zero 

In the following sub-sections, we introduce three algorithms. One of those is called 

Digging Finding. It is a recursive algorithm used to navigate the overall finding process into 

one-level-deeper layer when the bottleneck found at the current layer is a single function call. 

The other two are the finding algorithms applied on the function call list of the inspected 

method at each layer DiggingFind (see section 4.2.2) visits. 

4.2.1. Method body as listing function call expressions 

A fact should be noticed is that mere computations (such as arithmetic operations +, -, 

*, / etc.) are not likely causing the performance drop because they are compiled directly into 

simple Java bytecodes. If we put them aside, all left in a method body is only method or 

function call expressions. A method body might also contain loops which cause a 

performance regression, but in this case the enclosing method is detected as the bottleneck. A 

function call expression becomes a basis unit that may produce the bottleneck. 

With the instrumentation approach (see section 4.4) the body of a method is read from a 

.class file that contains the compiled bytecodes. Therefore, the method body is represented 

as a flat list of function call expressions with no respect to other bytecode instructions 

corresponding to basic operations such as adding, loading, jumping etc. For example, a def 

foo = bar(baz) is translated as List(baz, bar) just like a def foo = baz + 

bar. 

In the next sections, we use the term function call expression list to address all of the 

lists of function call expression described above. 

4.2.2. Digging finding 

In the first step, the inspected method, which is the method we intend to locate the 

bottleneck inside, is checked whether to have the same list of function call expressions for 

both the current and the previous version of implementation. One big note is that, the 

inspected method body is not expected to be changed between the two versions; otherwise, an 
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exception is raised. The changes, if any, should occur in the implementation of layers deeper 

than layer 0. If any change happens at layer 0, probably it is the cause of regression, the 

process is decided to stop and return the inspected method as the bottleneck. 

Algorithm: DiggingFind 

Input: the method to inspect 

Output: the bottleneck if exists 

if (method.currentCallList matches method.previousCallList) { 

  val found = binaryFind(method.callList) 

  found match { 

  case bn: Bottleneck => if (bn.length == 1) { 

    val newFound = diggingFind(bottleneck.method) 

    newFound match { 

      case NoBottleneck => found 

      case something    => newFound 

    } 

    else found 

  case _ => NoBottleneck 

} 

else throw Error 

Algorithm 4.1 -Algorithm bottleneck digging finding 

After the function call expressions list have been checked, a narrowing algorithm, that 

may be Linear Finding or Binary Finding in the following sections, is applied to find the 

bottleneck. If the bottleneck exists, and happens to be a single function call, it will be 

recursively inspected by diggingFind() to find the inner bottleneck. 

4.2.3. Linear finding 

This algorithm together with BinaryFind (described in section 4.3.3) is used to 

narrow the length of the function call list which causes the performance regression. 

Algorithm: LinearFind 

Input: a list of function call expressions 

Output: the bottleneck if exists 

if (list.length == 0) 

  NoBottleneck 
else if (list.head.currentPerf == list.head.previousPerf) 

  Bottleneck(callList.head) 
else 

  linearFind(callList.tail) 

Algorithm 4.2 -Algorithm bottleneck linear finding 
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In algorithm 4.2 and algorithm 4.3, currentPerf and previousPerf respectively 

are the performances performed by the two, current and previous, versions of implementation. 

They are obtained using statistically rigorous performance regression methodology (see 

section 2.3); each running time value of the piece of code is measured by instrumenting the 

bytecodes complied from the program (see section 4.4 for more detail). Algorithm 

BinaryFind is a simple recursive algorithm which does comparing the performances 

performed by the two, current and previous, versions of implementation. It returns the first 

bottleneck found when the corresponding function call is detected that currently performed 

statistically worse than the previous version. In the case there is no bottleneck lies inside the 

inspected method, the algorithm returns NoBottleneck when it receives an empty list as 

the argument callList. 

4.2.4. Binary finding 

The function BinaryFind defined by the pseudo code in Listing 4.2 briefly describes 

how we can “precisely” find out the performance bottleneck inside a piece of code which is 

simply represented as a list of method call expressions. 

Algorithm: BinaryFind 

Input: a list of function call expressions 

Output: the bottleneck if exists    

if (callList.currentPerformance ==   

    callList.previousPerformance) 

  NoBottleneck 
else if (callList.length == 1) 

  Bottleneck(callList) 
else { 
  val (first, second) = binaryDivide(callList) 
  try { 
    val firstFound = binaryFind(first) 

    firstFound match { 
      case _: Bottleneck => fisrtFound 
      case _             => binaryFind(second) 

    } 

  } 
  catch { case Error => Bottleneck(callList) } 

} 

Algorithm 4.3 - Algorithm bottleneck binary finding 

The algorithm input is initially a list of all of the method call expressions in the whole 

method body. Actually it is not as simple as a relation operation == (equivalent to equals) 
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like the one in the pseudo code, at the first step of the algorithm, we use statistically rigorous 

performance regression detection methodology to achieve the runtime performance and 

detect whether the difference exists between the performances of the current version and the 

previous one. We will describe the process in more details in section 4.5 and 4.6. 

When there is no statistically significant difference detected, we return the result 

indicates there is no bottleneck found inside the inspected piece of code. (Note that type 

NoBottleneck and type Bottleneck are both subtypes of type Found in the pseudo 

code). 

Otherwise, the inspected piece of code is a bottleneck itself, and it alone causes a 

significant drop in the overall performance so that it can be detected using statistically 

rigorous performance regression detection methodology. One may satisfy with this result and 

happily return the snippet itself to the user. But with our methodology, we intend to be more 

precise and specific. We try to narrow the range of the bottleneck as small as possible, and in 

the best case, to a single method call expression. 

Pseudo function call binaryDivide() is used for splitting the original list into two 

function call expression lists, both have their length which are equivalent to each other. The 

narrowing operation is recursively applied again and again until no statistically significant 

difference found, or, the function call expression list becomes a single function call 

expression. 

4.3. Bounds on running time 

The whole bottleneck finding process will terminate normally on the cases specified 

below: 

• when reaches the depth user specifies 

• when reaches a method specified to be ignored 

• when reaches a native method 

• when reaches a method has been inspected before 

In the case there is some error occurs when running performance measurement process 

or there is no statistically significant difference detected inside the inspected method, the 
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whole finding process will stop also. And finally, the current bottleneck collected is reported 

to user. 

Given the instrumentation, backup-ing and difference detecting processes run in 

constant time. Let: 

 t is the time needed to run the inspected piece of code for both the current and 

previous versions 

 D is the maximal depth of the digging process, specified by user 

 d is the actual depth of the digging process, d ≤ D 

 si is the length of the list of function call expressions of the inspected method at layer i 

(i ≤ d) 

Suppose the length of the function call expression list at layer i is      2  , the binary 

finding algorithm runs at most ki times to narrow the list to a single function call expression. 

Therefore, maximal running time at layer i is 

          2     

The maximal total running time (which also is the normal one) for all d layers is  
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The maximal running time at layer i, which will be taken when the bottleneck is the last 

function call in the function call list at layer i, is 

               

The maximal total running time for all d layers with linear finding algorithm is 

       ∑        

 

     

     ∑   

 

     

 

 

Figure 4.1 – Running time at one layer with increasing length of code 

Figure 4.1 visually illustrates the comparison of the complexity – running time of 

Binary Finding and Linear Finding in its average case and worst case. The time consumed by 

Binary Finding becomes significantly small in compare to Linear Finding when the length of 

the function call list increases. This can be explained by the o-notation of Binary Finding is 

O(log2(n)) while Linear Finding is O(n) with n is the length of the function call list of the 

inspected method at some of the layers. 
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4.4. Scala class instrumentation 

The most important step of performance regression pinpointing is to achieve the series 

of running time of a small piece of code snippet. Each performance measurement (which is 

one element of the series) needs to be as accurate as possible, so we do not allow any 

influence to the measurement process. Those activities such as: generating event/request, I/O, 

interacting with other OS processes… should be prevented. 

In prevalent methodologies, one may create samples by interrupting the execution at 

some instruction, using the old Java Virtual Machine Profiler Interface (JVMPI) introduced in 

Java 1.4.2. JVMPI has been removed since JDK 6 and replaced by Java Virtual Machine Tool 

Interface, which is a part of Java Platform Debug Architecture (JPDA). JPDA defines an 

event/request based interacting protocol between the host and client JVMs. Probably these are 

not the best choices to be applied in our approach. 

Instead, we directly instrument the Scala .class file in which the inspected method is 

declared. The most basic implementation to do instrumentation to get the running time is to 

inject two instructions, say, start() and stop() at the beginning and the end of the 

inspected code: 

start() // injected using instrumentation 

// do something really costs much time here 

stop()  // injected using instrumentation 

Listing 4.1 – Basic instrumentation to measure running time 

What start() and stop() do are essentially get the two values of current system 

time with System.currentTimeMillis() (written with Java) and calculate their 

subtraction to achieve the running time. But the problem is that, start() and stop() are 

not available in the constant pool of the inspected class. That leads to the necessary of re-

compiling and loading the class again, what is, by specification, not allowed by Sun’s JVM. 

In fact, class reloading is allowed by Sun’s implementation of JVM, but the JVM has to be 

invoked with the option --debug, which enables JPDA in the JVM working session with 

other agents run along. That certainly violates our requirements about a clean JVM for 

measuring performance. 
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Fortunately, we have solved those problems completely with our combination of 

measurement methodology and a Java bytecode instrumentation library call Javassist
23

. 

Javassist is a class library for editing bytecodes in Java. It provides an API level of Java 

source code, which means, user can simply manipulate a Java class with its high level objects 

such as class, constructor, field, method… without the need of knowledge of the specification 

of the Java bytecode. It comes along with a Java compiler of itself to recompile the class after 

being modified. 

After instrumentation phase, the inspected class is loaded and run in a clean brand new 

JVM invocation to be measured the performance. It is run under the control of a harness 

(which is described in section 3.3). The harness class should implement the two method 

start() and stop(), and the path to it had been provided to Javassist Java compiler to 

have start() and stop() available. 

Another difficulty is to find the implementation of the interested piece of code in the 

classpath. Scala has lots of automatically generated .class files for traits, objects, 

anonymous functions… and their actual body probably is not located in the class file which 

has the name of the class they were declared in. Even though one might have written the 

entire Scala program himself, at the first glance he may not know which .class file 

contains the body of the method he is interested in at all. 

Finally, to make things even more complicated, currently there is no tool or library 

supports Scala class instrumentation. Javassist has no specific component to be used on Scala 

class files. Essentially, at bytecode level, Scala class is just an ordinary Java class. But there 

some important transitions from Scala to Java happen at compile time: Scala class hierarchy, 

val and var implementation, function value, trait and object… 

To overcome those problems above, the knowledge of how Scala codes compile into 

Java bytecodes is necessary. We explain some of those along with the process to get the 

implementation of the inspected method can be instrumented using Javassist as follows: 

 val is translated into two components: a private final field together with 

an accessor method which has the same name, same access level with the val 

and an empty parameter list. val accessing through Java is done by using the 

accessor method. For example: 

                                                 
23

 http://www.csg.is.titech.ac.jp/~chiba/javassist/ 
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// defined in Scala 

class A { val a = 1 } 

 

// translated in Java 

class A { 

  private final int a = 1; 

  public int a() { 

    return this.a; 

  } 

} 

 

// access in Scala 

val x = (new A) a 

 

// access in Java 

int x = (new A).a(); 

Listing 4.2 – Scala to Java example – val 

 var is translated with the same name convention as val, but the generated 

private field is not final. In addition, var has a modifier method which has the 

name composed using the name of the var prefixed by _$eq. This modifier 

method in general has one parameter named x$1 which has the same type with 

the var. For example: 

// defined in Scala 

class A { var a = 1 } 

 

// translated in Java 

class A { 

  private int a = 1; 

  public int a() { 

    return this.a; 

  } 

  public void a_$eq(int x$1) { 

    this.a = x$1; 

  } 

} 

 

// modify in Scala 

(new A).a = 0 

 

// modify in Java 

(new A).a_$eq(0); 

Listing 4.3 – Scala to Java example – var 

 class and abstract class is compiled just like Java classes 
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 trait is a special mechanism in Scala, used for multiple inheritance (mix-in 

composition) and implementing rich interfaces (described in more details in 

section 2.1). For more than one trait to be able to be mixed-in together, the only 

way in Java is to be represented as interfaces. In fact, a trait is compiled into two 

class files: 

o one has the original name and is an interface with all the method 

prototypes included. 

o one has the original name suffixed by $class and is an abstract 

class. All the methods that have already been implemented in the trait 

definition are re-defined in this abstract class as static methods. 

These static methods’ respective parameter lists are prepended by a 

parameter name $this which has the type which is the generated 

interface. Also, all the references to this in the methods’ bodies are 

changed into $this. Classes that have the trait mixed-in are compiled 

implementing the generated interface and forward all the calls to 

methods in the trait to the corresponding static method in the generated 

abstract class with the first arguments always are this. 

// defined in Scala 

trait T { def foo = 1 } 

 

class C extends T 

 

// translated in Java 

interface T { 

  int foo(); 

} 

 

abstract class T$class { 

  public int foo(T $this) { 

    return 1; 

  } 

} 

 

class C implements T { 

  public int foo() { 

    return T$class.foo(this); 

  } 

} 

Listing 4.4 – Scala to Java example – trait 
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 object is another special type definition in Scala, it supposed to be the  

singleton class – a class that always have a single instance at runtime. An 

object is compiled into two .class files: 

o one has the original name and is a final class with all the methods 

from the object definition implemented as static final. Everything 

that they do is to, from the other generated class, first get the value of a 

special static field named MODULE$ (described below) and then invoke 

the corresponding method on it. 

o one has the original name appended by $ and is also an final class. All 

the methods that were in the object definition are re-defined in this final 

class. It has no constructor and has a special additional field named 

MODULE$ which has its type this class itself. This field is the only 

instance of the “object class”. For example: 

// defined in Scala 

object O { def foo = 1 } 

 

// translated in Java 

final class O { 

  public static final int foo() { 

    return O$.MODULE$.foo(); 

  } 

} 

 

final class O$ { 

  public static final O$ MODULE$ = new O$; 

  public int foo() { 

    return 1; 

  } 

} 

Listing 4.5 – Scala to Java example – object 

We do not expect that it is necessary for users to have the knowledge about the back-

end design of Scala programming language and the instrumentation approach. Therefore, 

method bodies inside class definitions is looked for based on our inference and assumption. 

Typically, the class looking process first looks for the desired method in class that one’s name 

is prefixed by $class and $. If nothing found in there, it then will look for method body in 

the class that has the name exactly matches what users specified. The reason of doing that is, 

the fact that the true definition of a method is not lies inside the class users expected it to do is 
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inferred. What is defined in user specified class is typically an interface or a bridge method, 

which we do not want (nor are able to) do instrumentation on. 

So, following is the four-step process we advocate to do instrumentation on a method – 

specified by user that – named foo and defined in the class (or trait or object) named Clazz: 

 Look in classpath for the class named Clazz$class. If it can be found, it is 

the class we want. Otherwise, look for the class named Clazz$ with the same 

expectation. If Clazz$ can neither be found, the target class is Clazz. Clazz 

surely exists for user program to be able to run 

 Backup a copy of .class file contains the class has just been found, away 

from classpath because we do not want a ClassLoader to load it instead 

of the instrumented one 

 In the class found, look for the method named foo. Do instrumentation on foo 

using Java bytecode instrumentation library 

 After running, remove the instrumented class from classpath and restore the 

original version from backup place for future use 

This process has been successfully applied in practice within the implementation of 

Scala Benchmarking Suite and worth to try until an instrumentation library specific for Scala 

programming language comes into place. 

4.5. Backup .class files 

As mentioned in the end of the previous section, some activities of moving .class 

files around are necessary for the measurement phase to be correct. This section gives a brief 

introduction to Java class loading and describes the need of backup-ing .class files in or 

out the classpath as well as our approach to provide the right version of a .class file to 

the JVM. 

With our approach to do comparing over two versions of .class files to detect the 

bottleneck, it is necessary to point out that, at a typical point in time during the bottleneck 

finding process, there are maybe up to three versions of the same .class files: 

 The current version – a set of .class files contain the definitions of current 

build 
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 The previous version – a set of .class files contain the definitions of previous 

build 

 The instrumented version – a set of .class files which can originally be the 

current or the previous classes. These .class files contain the class we have 

instrumented to achieve its measurements 

It is very important to be able to load the right version during measurement phase. Or 

we will end up, without any idea that we do, measure the wrong performance or even be able 

to measure nothing at all. To explain the solution to this problem, a general knowledge of 

Java class loading may be necessary. 

Essentially, a Scala runtime session is just a Java runtime session with the main class 

which is scala.tools.nsc.MainGenericRunner (if Scala is about to run on JVM 

and compiled to Java bytecodes instead of CLR). This main class loads and runs users’ Scala 

programs using reflection. Scala has its own class loader, but the class loaders are 

implemented by inheriting from Java class loaders, thereby leaves all the native activities to 

Java. 

A class is known by Java runtime environment when it is referenced by its name by a 

class that has been already loaded. As referenced in Oracle’s documentations, the order of 

searching locations for a class loader is as follows: 

 Bootstrap classes: the runtime classes in rt.jar, internationalization classes 

in i18n.jar, etc. 

 Installed extensions: classes in JAR files in the lib/ext directory of the JRE, 

and in the system-wide, platform-specific extension directory. 

 The user class path: classes, including classes in JAR files, on paths specified by 

the system property java.class.path. If a JAR file on the class path has a 

manifest with the classpath attribute, JAR files specified by 

the classpath attribute will be searched also. By default, 

the java.class.path property's value is the current directory. It can be 

changed by using the -classpath or -cp command-line options, or setting 

the CLASSPATH environment variable. 

Accordingly, given a class name at runtime, the class locates in rt.jar is loaded no 

matter whether another one with the same name exists in user classpath. But we could not 
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find the search order rules for the user-defined classpath. In many tests and tries on Sun’s 

JVM, we can see that classes are searched following the first-come-first-serve order. That 

means the class locates in the first location specified in classpath will be loaded. But there is 

no evidence that we know of, and it may depend on the implementation of the JVM. So, no 

conclusion at all. 

Instead of relying of luck, we decided to move the undesired classes out of the 

classpath. This is done by (i) loading the class (ii) tracing back to its location and (iii) 

moving it into the backup location with the respect to platform-specific directory structure for 

packages. It requires that the locations of the previous version and the instrumented version 

are not included in the original classpath. Finally, to make it sure, the path to the previous 

version is prepended to classpath during its measuring performance while the path to the 

instrumented version is placed at the first location in both of the measurement phases. 

There exists another solution, which seems better, which is defining a custom class 

loader. This class loader is supposed to find, instrument and transform the original classes at 

measurement phase. The reason why that is not preferred in this case is that the SBS is 

supposed to work with problems in the Scala standard library. It suggests that the class is 

going to be transformed likely has been loaded. The approach to load and redefine a class at 

runtime is not interesting with the constraints about the clean JVM environment for 

benchmarking. 

4.6. Package scala.tools.sbs.pinpoint 

Performance regression pinpointing has been implemented as a benchmarking mode 

run in the Scala Benchmarking Suite, which will soon be integrated into Scala’s trunk. This 

section describes the structure and working flow of that implement – package 

scala.tool.sbs.pinpoint. 

The important components consists of 

 Trait Scrutinizer – the central trait of the package. Trait Scrutinizer 

extends trait Runner and is implemented by class MethodScrutinizer 

 Trait ScrutinyRegressionDetector detects the statistically significant 

running time difference between the two versions of the benchmark classes. It is 

implemented by the class MethodRegressionDetector 
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 Package strategy holds the traits which define all the higher-order function 

which are factored out to do their specific work: 

o Trait TwinningDetector – serially runs the benchmark on its two 

versions of classes. After the performances is achieved, detects the 

difference between those 

o Trait PreviousVersionExploiter – backups the .class files 

corresponding to the current version and run the benchmark on its 

previous version 

o Trait InstrumentationRunner – does some kind of 

instrumentation and run the benchmark to achieve the desired metrics 

 Package instrumentation consists of the trait CodeInstrumentor and 

its Javassist-based implement, class JavassistCodeInstrumentor. 

Package instrumentation defines all the necessary operations to 

accomplish our goal measuring the performance of a specific piece of code 

 Package bottleneck holds the trait BottleneckFinder and its sub-

classes BottleneckDiggingFinder –  BottleneckBinaryFinder 

which implement the algorithm DiggingFind and BinaryFind described 

in the sections 4.2.2 and 4.2.4 (we did not implement algorithm LinearFind 

in SBS) 

 Besides, there are several supporting traits and classes which define benchmarks, 

exceptions, results, etc. 

In Figure 4.2, we visually illustrate the simplified static structure of the package 

pinpoint. Components included are only traits and classes which define operations controlling 

the finding process 
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+find()
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Figure 4.2 – Package pinpoint’s simplified class diagram 

The work flow in a pinpoint benchmarking mode run is already described in section 4.2 

except the first step to compare the two, current and previous, performances of the inspected 

method. Following is the illustration for a run process finding the bottleneck 
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Figure 4.3 – Bottleneck finding activity diagram 

4.7. Case study 

This section explains the benchmark design and implementation to illustrate the process 

of finding the bottleneck by performance regression pinpointing. Firstly, we introduce a real 

life performance problem found in the Scala bug tracking system which is easy to reproduce 

and understand. Next is the implementation of a benchmark that has the problem intended to 

appear in. Finally, we briefly explain and illustrate the process of finding the bottleneck inside 

the benchmark. 
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4.7.1. Problem with scala.collection.mutable.ListBuffer.size 

The problem raised by the ticket number SI-4933 in the Scala bug tracking system. It 

stated that the operation of method size from class 

scala.collection.mutable.ListBuffer took the complexity of O(n) instead of 

O(1) like method length although they two had the same meaning in the case of sequences. 

The reason why that happened was that length returned the value of a private variable 

which was updated every time elements were added or removed but in the meantime, size 

was inherited from scala.collection.TraversableOnce counting all the elements 

currently in the list (more details about scala.collection in Chapter 27 – [1]). 

The problem fixed in Scala revision r25684 by overriding size to return the result of 

length. In the next section, we use the latest Scala revision as the previous version which 

has ListBuffer.size run in O(1). To produce the current version that drops in 

performance, we comment out the overriding of size to have it run in O(n). The benchmark 

is composed in the way which does lots of call to ListBuffer.size on large length lists 

so that the difference in performance of O(1) and O(n) can be detected. 

4.7.2. The pinpointing benchmark 

The benchmark used in this case study is called PinpointDemo. It runs lots of 

invocations of ListBuffer.size to reflect the problem described in the previous section 

along with some other costing time activities. The important parts of the benchmark 

implement is shown in Listing 4.6 

class PinpointDemo { 

 

  val failure = ListBuffer_size 

  val ok      = Iterator_flatten 

 

  def run() = { 

    bridge 

    ok.main 

  } 

 

  def bridge = { 

    foo 

    failure.run 

  } 

 

  def foo = Thread sleep 50 
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} 

 

object ListBuffer_size { 

 

  val lb =  

    for (_ <- 1 to 100000) yield ListBuffer((0 to 50): _*) 

 

  def run() { 

    val ls = (1 to 15000) map (lb map (_ size)) 

    ls foreach (_ => ()) 

  } 

 

} 

 

object Iterator_flatten { 

 

  def main /* does something costing time here */ 

 

} 

Listing 4.6 – Pinpointing benchmark PinpointDemo – simplified 

Class PinpointDemo defines 3 methods run, bridge and foo together with 2 

fields ok and failure. Their roles and operation as follow: 

 run calls bridge before calling the method main of the object stored in field 

ok 

 bridge calls foo, then calls the method run of the object stored in field 

failure 

 foo makes the whole benchmark sleep for 50 milliseconds 

 ok holds the object Iterator_flatten 

 failure holds the object ListBuffer_size 

 The two objects ListBuffer_size and Iterator_flatten are put in fields to 

force their data initialized before running to avoid the data initialization influencing the 

performance. 

Object ListBuffer_size makes sure that the performance regression exists. It 

consists of a very large number of scala.collection.mutable.ListBuffer 

objects and performs operations based on lots of invoking the method size. The object is 

defined in this way so that when the overriding of size forwarding to length is 

commented out, PinpointDemo.run will introduce a significant lost in performance. The 

last line of ListBuffer_size.run is used to fool the JIT compiler of the JVM not to 
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optimize away the cloning process. The method foreach applies the anonymous function _ 

=> () to each element of ls. 

The inspected method – entry of the finding process – is set to be the method run of 

class PinpointDemo. 

The depth of the finding process is set to 2. 

The number of measurements to be kept for each series is set to 13. 

4.7.3. Bottleneck finding process 

This section follows the finding of the bottleneck inside PinpointDemo.run step by 

step and explains what happening at the time. 

The inspected method is method PinpointDemo.run as specified in the previous 

section. The method body is translated into a function call expression list as shown in Listing 

// method definition 

def run() = { 

  bridge() 

  ok.main() 

} 

 

// function call expression list 

PinpointDemo.bridge:()V 

PinpointDemo.ok:()LIterator_flatten$; 

Iterator_flatten$.main:()V 

Listing 4.7 – Function call expression list of method PinpointDemo.run 

It consists of 3 function call expressions: 

 PinpointDemo.bridge – call to method bridge() of the class 

PinpointDemo 

 PinpointDemo.ok – the getter of field ok which holds the object 

Iterator_flatten 

 Iterator_flatten$.main – call to method main() of the object 

Iterator_flatten 

The first step is to detect performance regression on the piece of code represented by the 

function call expression list above. The result is displayed in Figure 4.4: 
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Figure 4.4 – Pinpoint performance comparison – PinpointDemo.bridge to 

Iterator_flatten$.main 

The confidence interval computed from the two series of running time is [-23.58; -

18.88] at the confidence level reduced to 90%. This means that the overall performance drops 

about 20 milliseconds and the performance regression does exist. 

In the next step, the function call expression list is split into two shorter lists to perform 

the BinaryFind algorithm. The first list consists of only one function call – 

PinpointDemo.bridge. Its performance comparison is shown in Figure 4.5. 

 

Figure 4.5 – Pinpoint performance comparison – PinpointDemo.bridge 
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The confidence interval computed is [-34.29; -30.02] at confidence level 90%. It 

indicates that PinpointDemo.bridge is actually a bottleneck causing the performance 

drop about 30 milliseconds to the method PinpointDemo.run. 

The finding process now ignores the second half of the list and digs into method 

PinpointDemo.bridge hoping to find the bottleneck inside it. The inspected method is 

now PinpointDemo.bridge and its body is translated into a function call expression list 

as shown in Listing 4.8 

// method definition 

def bridge = { 

  foo 

  failure.run 

} 

 

// function call expression list 

PinpointDemo.foo:()V 

PinpointDemo.failure:()LListBuffer_size$; 

ListBuffer_size$.run:()V 

Listing 4.8 – Function call expression list of method PinpointDemo.bridge 

Figure 4.6 depicts the performance comparison for the whole list. 

 

Figure 4.6 – Pinpoint performance comparison – PinpointDemo.foo to 

ListBuffer_size$.run 
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The confidence interval computed is [-35.72; -32.28] indicating the existence of 

performance regression. BinaryFind algorithm now splits the list into 2 halves, the first 

half has only one function call to foo and the other consists of the two remaining. 

 

Figure 4.7 – Pinpoint performance comparison – PinpointDemo.foo 
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Figure 4.8 – Pinpoint performance comparison – PinpointDemo.failure to 

ListBuffer_size$.run 

The current version shows its significantly lost in performance by over 30 milliseconds. 

Therefore, the function call expression list is split again into two. Each of the two consists of 

only one function call: PinpointDemo.failure and ListBuffer_size$.run 

respectively. 

With the function call PinpointDemo.failure, this is the getter of the field 

failure. It does not consume much running time, so all measurements result in zeros – no 

performance regression detected. 

In the contrary, ListBuffer_size$.run costs much running time of the 

benchmark and shows the poor performance. In the current version, it runs slower by 30 

milliseconds in the comparison to the previous one as illustrated in Figure 4.9: 

 

Figure 4.9 – Pinpoint performance comparison – ListBuffer_size$.run 
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found.
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Chapter 5  

Conclusions 

In the preceding chapters, we have described the backgrounds which are an overview on 

the Scala programming language, issues concerning difficulties of benchmarking on dynamic 

compilation platform and the statistically rigorous methodology for qualifying Java 

performance (Chapter 2). In Chapter 3, we introduced the tool named Scala Benchmarking 

Suite – SBS which is designed mainly being intended to detect various kinds of regressions 

on Scala standard library and Scala compiler. Finally, in Chapter 4, we described our 

approach to find the underlying performance bottleneck by combining bytecodes 

instrumentation with statistically rigorous performance detection methodology. We next step 

back and reflect on the significance of this work. 

5.1. Scala and dynamic language benchmarking 

Scala is a programming language created in Programming Methods Laboratory – 

LAMP, EPFL - Switzerland. It supports both object-oriented and functional programming 

styles with a concise syntax and advanced features. 

Scala can compile into Java bytecodes to be run on Java Virtual Machine. JVM is a 

dynamic compilation language runtime environment which does most of the code 

optimizations at runtime. It also comes with an advanced garbage collection mechanism. 

Those advanced features run unmanageable by user and thereby introduce noises and 

uncertainties to the performance measurements. 

A methodology has been advocated to use statistics theory as a rigorous data analysis 

approach for dealing with the non-determinism altogether with the experiment designs to 

evaluate performances. 
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5.2. Scala Benchmarking Suite 

Scala Benchmarking Suite is a tool used to evaluate the performance of programs 

written in the Scala programming language and to detect performance regressions caused by 

changes to the language. It is an extensive tool for tracking program performance and 

detecting performance regressions. SBS is integrated with Scala nightly build system as well 

as can be used as a standalone tool for statistically rigorous benchmarking on Scala. 

Currently, SBS has the ability to measure and statistically detect performance 

regressions in start-up or steady-state of a Scala program. It can also profile a certain metrics 

during a benchmark run and the ability to point out the piece of code that causes the 

performance regressions. 

5.3. Performance regression pinpointing 

With benchmarking, we can only detect whether there is performance regression exists 

inside our program and have to do guessing on almost all of the post-process to find out the 

bottleneck. 

Based on the fact that developers and/or library designer lack their useful tools to 

automatically locate the performance bottleneck, we introduced a methodology to 

programmatically point out the as-small-as-possible piece of code that causes the performance 

regression. We have described the main work flow which is recursively repeating the 

regression causer narrowing process in a method body. Also, we advocated the behind-the-

scene trick which is using bytecode instrumentation to measure the performance of a piece of 

code and statistically detect its difference from the performance of a previous version 

implementation kept from earlier builds. 

5.4. Future work 

Being limited in time we have just been able to come so far and there are things have to 

be improved. The strengthens of performance regression pinpointing currently come up with 

the following two approaches 
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 One is to (re-) generate the AST for the inspected method and do 

instrumentation at the first level nodes of the tree. The AST can be achieved 

through the compilation of the benchmark or de-compilation .class file 

 The other one is to record all of the function invocations through one running 

pass of the inspected method and use the invocation-dependency-graph as the 

input for narrowing algorithms 

Another thing to do is continuing maintaining SBS. Not only because it is the biggest 

and most useful one among our projects, working on SBS also allows us to have more 

experience programming in the very interesting language Scala. 
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