
i

VIETNAM NATIONAL UNIVERSITY - HO CHI MINH CITY

UNIVERSITY OF TECHNOLOGY

FACULTY OF COMPUTER SCIENCE AND ENGINEERING

BACHELOR OF ENGINEERING THESIS

SCALA BENCHMARKING SUITE -

SCALA PERFORMANCE REGRESSION

PINPOINTING

Advisor: M.Sc. Aleksandar Prokopec

 Dr. Phung H. Nguyen

 Prof. Martin Odersky

Examiner: Dr. Tho T. Quan

 ---o0o---

Student: Ngoc Duy Pham (50700393)

January 2012

ii

Scala Benchmarking Suite -

Scala Performance Regression Pinpointing

iii

Bachelor of Engineering Thesis

Scala Benchmarking Suite -

Scala Performance Regression Pinpointing

By

Ngoc Duy Pham

Department of Computer Science

Faculty of Computer Science and Engineering

Ho Chi Minh city University of Technology

January 2012

iv

Guarantee

I guarantee that beside the results referenced from other research works which have

been cited in this thesis, all works presented in this report are done by me and there are not

any contents of this thesis which were submitted to get certificate from this universities or

others.

v

Acknowledgement

My deepest thanks to Alex, M.Sc. Aleksandar Prokopec. He has made available his

support in a large number of ways. During his supervision on the project, he taught me from

Scala to functional programming and even coding convention. His friendliness and

encouragement helped build up my anxiousness to complete the project successfully.

My honor gratitude to Dr. Phung Nguyen. He gave me the inspiration in programming

language, helped me build firm background knowledge for this project, taught me about

scientific writing and much more.

My special thanks to Dr. Tho Quan and Prof. Martin Odersky. They gave me the

valuable opportunity to come and work on this thesis at LAMP – EPFL.

My sincerest and sweetest thanks to Mr. Hoang Hai Ly. He is rich. He gave us his food,

taught us how to cook. He was our Switzerland tour guide when we had free time. He taught

us programming when he had free time. We used to watch movies and cook together at

weekends. He is like an elder brother and I wish he were.

And last but not least, many thanks to Mr. Quoc Viet Hung Nguyen for finding us

accommodation, leading our first steps in Switzerland and letting us eat at his place when we

were not able to cook.

vi

Abstract

Scala is a programming language which integrates features of object-oriented and

functional programming with concise syntax. Currently, Scala grows dramatically and

thereby needs a benchmarking tool to guarantee its performance and reliability.

Scala Benchmarking Suite (SBS) is a tool developed to satisfy the request above. It

allows users to write micro-benchmarks detecting the performance regression with statistical

rigor in a way just as simple as the way they write unit tests. In addition, users can have SBS

profile typical metrics during benchmark runs, such as method invocations, number of

boxings, memory consumption, etc.

And finally, SBS comes with the implementation of a bottleneck finding algorithm,

which combines bytecode instrumentation and statistically rigorous performance regression

detection. The algorithm has the ability to dynamically and programmatically point out the

piece of code that causes a performance drop without the needs for manual effort from users.

vii

Contents

Chapter 1 Introduction ... 1

1.1. Motivation ... 1

1.2. Contribution .. 2

1.3. Contents overview .. 2

Chapter 2 Background ... 4

2.1. Scala programming language .. 4

2.2. Benchmarking on Java virtual machine .. 12

2.2.1. Dynamic compilation ... 12

2.2.2. Memory management ... 14

2.2.3. Microbenchmark .. 15

2.3. Statistically rigorous performance regression detection 18

2.3.1. Confidence interval for the means .. 19

2.3.2. Startup performance measuring .. 20

2.3.3. Steady-state performance measuring .. 21

2.3.4. Compare two alternatives ... 22

2.3.5. Compare many alternatives .. 24

Chapter 3 Scala Benchmarking Suite .. 26

3.1. Features ... 26

3.1.1. Benchmark taxonomies .. 31

3.1.2. Measurement methodologies .. 33

3.1.3. Failure reporting methodologies .. 33

3.1.4. Statistical analysis .. 33

3.2. Use case .. 34

3.3. Design description .. 35

3.3.1. Main architecture .. 35

3.3.2. Package scala.tools.sbs.performance .. 44

viii

3.3.3. Package scala.tools.sbs.profiling .. 46

3.3.4. Package scala.tools.sbs.pinpoint... 48

3.3.5. Package scala.tools.sbs.benchmark .. 49

3.3.6. Other supporting packages ... 50

3.4. Experiment .. 52

3.4.1. Experimental setup ... 52

3.4.2. Warming up .. 54

3.4.3. Statistically significant difference detection .. 55

Chapter 4 Performance Regression Pinpointing .. 59

4.1. Prevalent bottleneck finding methodologies ... 60

4.1.1. Profiler .. 60

4.1.2. Further benchmarking .. 60

4.2. Main work flow .. 60

4.2.1. Method body as listing function call expressions 62

4.2.2. Digging finding .. 62

4.2.3. Linear finding ... 63

4.2.4. Binary finding ... 64

4.3. Bounds on running time .. 65

4.4. Scala class instrumentation ... 68

4.5. Backup .class files ... 73

4.6. Package scala.tools.sbs.pinpoint ... 75

4.7. Case study ... 78

4.7.1. Problem with scala.collection.mutable.ListBuffer.size 79

4.7.2. The pinpointing benchmark .. 79

4.7.3. Bottleneck finding process ... 81

Chapter 5 Conclusions ... 86

5.1. Scala and dynamic language benchmarking ... 86

5.2. Scala Benchmarking Suite .. 87

ix

5.3. Performance regression pinpointing ... 87

5.4. Future work ... 87

x

List of Figures

Figure 2.1 – Steady-state measurement process ... 22

Figure 3.1 – Main activity diagram ... 36

Figure 3.2 – The harnesses’ class diagram ... 40

Figure 3.4 – Steady-state performance benchmarking activity diagram......................... 46

Figure 3.5 – Package profiling’s class diagram .. 48

Figure 3.6 – Package benchmark’s class diagram ... 50

Figure 3.7 – All measurements, including warming up phase, of a measuring process on

the benchmark ArrayCopy.. 54

Figure 3.8 – Performance regression detection using confidence interval – regression

detected ... 56

Figure 3.9 – Performance regression detection using confidence interval – no

regression detected ... 57

Figure 3.10 – Performance regression detection using ANOVA – regression detected 57

Figure 3.11 – Performance regression detection using ANOVA – no regression

detected ... 58

Figure 4.1 – Running time at one layer with increasing length of code 67

Figure 4.3 – Bottleneck finding activity diagram ... 78

Figure 4.4 – Pinpoint performance comparison – PinpointDemo.bridge to

Iterator_flatten$.main ... 82

Figure 4.5 – Pinpoint performance comparison – PinpointDemo.bridge 82

Figure 4.7 – Pinpoint performance comparison – PinpointDemo.foo 84

Figure 4.8 – Pinpoint performance comparison – PinpointDemo.failure to

ListBuffer_size$.run .. 85

Figure 4.9 – Pinpoint performance comparison – ListBuffer_size$.run 85

xi

List of Listings

Listing 2.1 – Example: Scala object .. 5

Listing 2.2 – Example: Scala trait ... 6

Listing 2.3 – Example: new control structure ... 7

Listing 2.4 – Example: Scala function .. 8

Listing 2.5 – Example: Scala case class and pattern matching ... 8

Listing 2.6 – Scala example: XML ... 9

Listing 2.7 – Scala example: Actor ... 11

Listing 2.8 – Scala example: Using a Java’s class .. 11

Listing 2.9 – Exmample: Dead code elimination .. 17

Listing 3.1 – Trait scala.tools.sbs.Runner (simplified) 38

Listing 3.2 – Benchmark ArrayCopy – arrays to be cloned .. 53

Listing 3.3 – Benchmark ArrayCopy – operations when run ... 53

Listing 4.1 – Basic instrumentation to measure running time .. 68

Listing 4.2 – Scala to Java example – val ... 70

Listing 4.3 – Scala to Java example – var ... 70

Listing 4.4 – Scala to Java example – trait .. 71

Listing 4.5 – Scala to Java example – object ... 72

Listing 4.6 – Pinpointing benchmark PinpointDemo – simplified 80

Listing 4.7 – Function call expression list of method PinpointDemo.run 81

Listing 4.8 – Function call expression list of method PinpointDemo.bridge 83

xii

Lists of Algorithms

Algorithm 4.1 -Algorithm bottleneck digging finding .. 63

Algorithm 4.2 -Algorithm bottleneck linear finding ... 63

Algorithm 4.3 - Algorithm bottleneck binary finding ... 64

1

Chapter 1

Introduction

1.1. Motivation

The current growth of the Scala programming language is enormous, demonstrated by

the number of leading companies that are successfully using Scala for critical business

applications. It is common knowledge that more companies like Twitter, LinkedIn,

Foursquare, the Guardian, Morgan Stanley, Credit Suisse, UBS, HSBC and Trafigura are now

using Scala
1
. As a consequence, there is the high demand for performance and reliability to be

guaranteed. At the time, there is no support for effectively using micro benchmarks to assess

the affection to performance of small changes to Scala standard library and compiler. It's

worth having a built-in tool integrated to the language project which does all the performance

tests at nightly builds to detect all kinds of performance regression.

During the time spent to implement Scala Benchmarking Suite, we realized that all the

manual work to find out the performance bottleneck in a program is a pain, even after its

existence has been detected. The problem impulses us to develop a methodology to help

developers spare most of the manual effort. The algorithm, which we call performance

regression pinpointing, tries to dynamically point out the piece of the program that causes the

performance regression by using the combination of bytecode instrumentation and

statistically rigorous performance regression detection methodology (see section 2.3).

1
 http://www.scala-lang.org/node/10923

2

1.2. Contribution

This thesis makes the following contributions:

 We provide publicly available software, called Scala Benchmarking Suite,

which will soon be contributed as a package in the trunk of the project Scala

programming language. The tool is used to do benchmarking on the Scala

programming language. It uses a statistically rigorous methodology to evaluate

and detect regression on the performance of a Scala program. It can also profile

some typical metrics and dynamically find out the bottleneck inside a code

snippet. It enables users to write benchmarks as the way unit tests are written

now - a single Scala source file or a directory contains many of them - and runs

them individually or by groups.

 We introduce a methodology, called performance regression pinpointing, to

dynamically programmatically point out the performance bottleneck lies inside a

Scala program. It is able to do so by combining the performance evaluation

using instrumentation technique and the performance comparison using

statistically rigorous performance detection methodology.

 Comes along with performance regression pinpointing is the technique to do

instrumentation on the bytecodes generated by compiling Scala programs. The

technique is shown that finds performance-relevant parts of the bytecodes from

all the automatically generated classes and do instrumenting with an

instrumentation library for Java.

1.3. Contents overview

The thesis is organized as follows:

 In Chapter 1, we give the motivation, contribution and the organization of this

thesis

 Chapter 2 introduces the Scala programming language along with some issues

about dynamic compilation languages that may cause indeterminism in

performance measurements. It also briefly describes how to add statistical rigor

to performance evaluation and performance regressions detection.

3

 Chapter 3 introduces the tool Scala Benchmarking Suite – a benchmarking tool

on the Scala programming language. It lists out the current abilities and features

as well as the design description and implementation of the suite.

 In Chapter 4, we introduce our methodology and algorithms to dynamically find

a performance bottleneck inside a code snippet. We give overviews about a few

prevalent methodologies and their drawbacks in the comparison to ours. We also

describe the techniques to implement the methodology which includes Scala

bytecode instrumentation with Java instrumentation library and keeping previous

bytecode version collected from the previous builds.

 In the last chapter, we conclude our work and discuss future directions.

4

Chapter 2

Background

This section gives a brief introduction about Scala programming language and

highlights its advanced features. It also describes the basic ideas about dynamic compilation

languages, which do most of the recompilations and optimizations at runtime, which lead to

uncertainties and indeterminism in programs’ performance. Finally, this section summarizes

the methodology which uses statistics theory as a rigorous data analysis approach for dealing

with the non-determinism and the experiment designs to evaluate performances.

2.1. Scala programming language

Scala [1] is the programming language designed by prof. Martin Odersky – the co-

designer of Java Generics and the main author of the current generation javac compiler.

Scala determines itself to be a statically typed, scalable language and a fusion of object-

oriented language and functional one.

This section provides a glimpse of the Scala programming language altogether with its

advanced features. We assume that readers have the basic knowledge about programming

languages (mostly concern object-oriented and functional ones) and Java.

Classes and objects

Scala is an object-oriented language in the sense that every value (and even method) is

an object. Scala’s class definition syntax is borrowed from Java, except that Scala classes can

have parameters and the main constructors can be defined directly in the class body.

A Scala program is a set of Scala classes that represent abstract things which can

perform operations, changing states, and communicating with other ones in the system. For

this abstraction to be more powerful in reality, Scala comes along with polymorphism, which

5

is a concept describes the fact that even though classes are derived or inherited from the same

parent class, each derived class will have its own behavior performs different functions.

object is a language primitive which represents a singleton class – class that has only

once instance. Objects hold all the definitions considered static in Java. Therefore, the

entry of a Scala program, a main method is defined in an object. An object which has

the same name and is declared in the same source file with a class is called the companion

object of the class. It has the accessibility to all the members of the class including the

private members also. For example, in Listing 2.1 method extract of object

Companion can access to the private member field from class Companion:

class Companion {

 private val field = 1

}

object Companion {

 def extract(obj: Companion) = println(obj field)

}

object ProgramEntryPoint {

 def main(args: Array[String]) {

 // not compile

 // val obj = new ProgramEntryPoint

 val c = new Companion

 Companion extract c

 }

}

// program output: 1

Listing 2.1 – Example: Scala object

Traits

Traits are a fundamental unit of code reuse in Scala. Scala’s trait in some aspect may

resemble Java’s interfaces, many of which are able to be mixed-in one class definition. The

biggest difference distinguishes a trait from an interface is that traits can have methods

implemented.

6

Traits are Scala’s approach to enable multiple-inheritance. A concrete class can be

composed by mix-in composition from many traits. The diamond problem
2
 does not exist in

Scala because traits have no constructor and the concrete implementation of a method is

selected based on the mix-in order. In Listing 2.2, the creation of Centaur illustrates a case

of multiple inheritance in Scala. Centaur is created by mix-in the two traits Human and

Horse which have the same super class Creature. Both Human and Horse have their

own concrete method run, but based on the mix-in order, Centaur inherits its run from

Horse.

trait Creature {

 def run: Unit

}

trait Human extends Creature {

 override def run = println("walk with 2 feet")

}

trait Horse extends Creature {

 override def run = println("gallop with 4 feet")

}

class Centaur extends Human with Horse

object MixinComposition {

 def main(args: Array[String]): Unit = {

 new Centaur run

 }

}

// program output: gallop with 4 feet

Listing 2.2 – Example: Scala trait

Another big use of traits is to widen thin interfaces to rich ones. That solves one of a big

trade-off in object-oriented design about the selection between providing a large number of

methods for callers’ convenience and the heavy coding work left for implementers.

2
 http://en.wikipedia.org/wiki/Diamond_problem

7

Built-in control structures

Scala has a modest number of built-in control structures all of which are if, while

for, try, match and function call. The reason why is that Scala includes function literals to

give the developers the ability to create their own using higher-order functions
3
, currying

4

and call-by-name parameters
5
. In Listing 2.3, there is an example of creating new control

structure called afterHello. The control structure executes the body block after printing a

“Hello!” message:

// afterHello is a higher-order function

// and operation is a call-by-name variable

def afterHello(operation: => Any): Any = {

 print(“Hello!”)

 operation

}

// this is how to use the new control structure

afterHello {

 println(“ How do you do!”)

}

// program output: Hello! How do you do!

Listing 2.3 – Example: new control structure

Almost all of Scala’s control structures result in values. This is the approach of

functional languages in which the programs are the processes to compute values. This facility

results in simpler code and prevents bugs where the value of a variable is modified

unexpectedly.

Functions

The term function in Scala has a larger meaning than one in Java which literally means

method. A function in Scala may be a method, a function defined inside a method body (local

function) or an argument passed to a function (first-class function). Example of those above in

Listing 2.4:

class ScalaFunction {

 // foo is a method

 def foo(): Unit = {

 // this is a local function of foo

 def infoo() = println(“defined inside foo’s body”)

3
 http://en.wikipedia.org/wiki/Higher-order_function

4
 http://en.wikipedia.org/wiki/Currying

5
 http://en.wikipedia.org/wiki/Call_by_name

8

 infoo()

 println(“foo”)

 }

 // f is a first-class function

 def bar(f: Int => Int): Int = f(0)

}

Listing 2.4 – Example: Scala function

All the types of functions mentioned above illustrate a fundamental characteristic of

functional languages: every function is a value. Like other language in the field of functional

programming, Scala supports first-class and higher-class functions, partially applied function
6

and currying altogether with closures
7
 and light-weight syntax to define anonymous function

literals
8
.

Case classes and pattern matching

Pattern matching
9
 is a fundamental tool in functional programming. Being also an

object-oriented language, Scala can do pattern matching on class as a convenient replacement

for type tests and type casts. A simple example is shown in Listing 2.5. The case classes

imitate data structures used to parse the statements of a programming language.

trait Statement

case class Assignment(name: String) extends Statement

case class IfElse(cond: Boolean) extends Statement

case class While(block: Statement) extends Statement

def recognize(statement: Statement) = statement match {

 case Assignment(n) => println(“Assign to ” + n)

 case IfElse(cond) => println(“if ” + cond)

 case While(block) => println(“while” + block)

 case _ => throw new Exception(“Not recognize”)

}

Listing 2.5 – Example: Scala case class and pattern matching

Scala's built-in case classes and support for pattern matching

models algebraic type

10

used in many functional programming languages. Case classes are regular classes which

6
 http://en.wikipedia.org/wiki/Partial_application

7
 http://en.wikipedia.org/wiki/Closure_(computer_science)

8
 http://en.wikipedia.org/wiki/Anonymous_function

9
 http://en.wikipedia.org/wiki/Pattern_matching

10
 http://en.wikipedia.org/wiki/Algebraic_data_type

9

expose their constructor parameters for outside view. case class keyword automatically

adds a factory method in the companion object
11

 of the class and also an extractor method to

support pattern matching.

Collections

scala.collections package is the set of all the pre-defined data structures in the

Scala standard library. They consist of sequences, sets, maps and other data structures express

the vast variety collections of data elements. They are easy to use, concise, safe, and fast and

are powerful building blocks rather than a bunch of ill-organized utilities. Scala collections

are distinguished into mutable and immutable
12

 data types which are respectively familiar

with imperative and functional programming styles.

Support for XML
13

Scala has built-in support for XML. In Scala, there exist the XML literals and

mechanisms for constructing them. XML can be processed with pattern matching or can be

taken part by the methods that have already been defined as members of XML elements.

Finally, Scala has the library routines that support all the conversions back and forth between

XML and byte stream or String literals to make it easy for loading – saving and data

serialization – deserialization.

// a XML literal

val xml = <example>text</example>

// pattern matching

xml match {

 case <example>{content}</example> => println(content)

 case _ => throw new Exception

}

// storing to file

scala.xml.XML.saveFull("file.xml", xml, "UTF-8", true, null)

// loading from file

val loaded = scala.xml.XML.loadFile("file.xml")

Listing 2.6 – Scala example: XML

Listing 2.6 illustrates Scala’s ability of handling XML. A XML value name xml can be

declared just like an Int or Double. Its elements can be easily extracted by pattern

11

 http://daily-scala.blogspot.com/2009/09/companion-object.html
12

 http://en.wikipedia.org/wiki/Immutable_object
13

 http://en.wikipedia.org/wiki/XML

10

matching. Also, the processes of storing and loading xml have been already implemented in

Scala standard library.

Actors and concurrency

When it becomes necessary to design a program to express things happened

independently in parallel, Scala provides the mechanism for that concurrency, which is actors.

Actors and message passing model the interactions between two or more entities in the

system. Unlike Java’s support for concurrency (threading and synchronization which uses the

shared fragments of memory) Scala’s actors library avoids bugs on asynchronous situations

and deadlocks with the share nothing approach.

In Listing 2.7, Starter and Replier represent two of the most simple Scala actors.

The three objects Forth, Back and Stop are the messages passed between Starter and

Replier, they are defined as case objects for it to be able to apply pattern matching on

them. A Starter sends four messages Forth to a Replier and expects to receive four

Back messages, one after each. In the final step, it sends Replier a Stop message to stop

interacting.

import scala.actors.Actor

import scala.actors.Actor._

case object Forth

case object Back

case object Stop

class Starter(replier: Actor) extends Actor {

 def act() {

 replier ! Forth

 (0 util 3) foreach {

 _ => receive {

 case Back => {

 println(“Back”)

 replier ! Forth

 }

 }

 }

 replier ! Stop

 }

}

class Replier extends Actor {

 def act() {

11

 while (true) {

 receive {

 case Forth => {

 println(“Back”)

 replier ! Forth

 }

 case Stop => {

 println(“Stop”)

 exit()

 }

 }

 }

 }

}

Listing 2.7 – Scala example: Actor

Combining with Java

The interaction between Scala and Java is seamless, due to the fact that Scala is most

compiled to Java bytecodes and run on JVM. In a more technical aspect, a Scala program is

just like any other normal Java programs. The difference is Scala runtime environment is a

JVM environment added by a hierarchy of the classes from Scala standard library.

In Scala, one can easily call Java APIs without worrying about the incompatibility.

There is actually a little notice about difference in syntax that makes Java in Scala looks just

like the “original” Scala. For example, a call to Java’s Thread.sleep() method is as

simple as shown in Listing 2.8.

object A {

 def run = java.lang.Thread.sleep(5000)

}

Listing 2.8 – Scala example: Using a Java’s class

In Java, use of Scala classes may encounter some difficulty. The reason is the way Scala

compiler compiles Scala source codes into bytecodes. Additionally, there are things in Scala

that Java does not have. Those require some deep knowledge to be overcome (a few of them

will be described in section 4.4).

12

2.2. Benchmarking on Java virtual machine

See articles [4, 5] for further details.

2.2.1. Dynamic compilation

The compilation process for a dynamically compiled language like Java or Scala is

different from that of statically compiled languages like C. Compilers for statically compiled

languages convert source code directly to machine code that can be immediately executed on

the target platform. But the cost to pay is that different hardware platforms require different

compilers. Meanwhile, dynamically compiled languages require a specific runtime

environment (typically a virtual machine) for each different hardware platform but they gain a

vast benefit: all the effort to recompile the whole user project when new platforms come into

place is gone – compile once run everywhere. Compilers for dynamically compiled languages

convert the source code into portable runtime code, which consists of virtual machine

instructions for the runtime environment. Unlike those compilers for statically compiled

languages, compilers for statically compiled languages do very little optimization - the

optimizations are performed instead in the runtime when the program is executed. Runtime

environments using dynamic compilation typically have programs run slowly for the first few

time intervals, and then after that, most of the compilation and recompilation is done and it

runs more quickly.

Just-in-time compilation

The first generation of JVMs was entirely an interpreter. That JVM interpreted the

bytecodes rather than compiling them to machine code and executing the machine code

directly. But interpretation simply is slow. Nowadays, JVMs used just-in-time (JIT) compilers

to speed up execution. It converts all bytecodes into machine code before execution, but does

so in a lazy fashion: The JIT only compiles a code path when it knows that code path is about

to be executed. This approach allows the program to start up more quickly, as a lengthy

compilation phase is not needed before any execution can begin. JIT removed the overhead of

interpretation but to avoid a significant startup penalty for Java applications. The JIT compiler

has to be fast to prevent influencing the actual performance of the user program too much,

which means that it could not spend as much time doing optimization.

HotSpot dynamic compilation

The Java HotSpot Virtual Machine is a JVM for desktops and servers. It is a core

component of the Java SE platform. It implements the Java Virtual Machine Specification and

13

includes dynamic compilers that adaptively compile Java bytecodes into optimized machine

instructions and efficiently manages the Java heap using garbage collectors. Based upon the

platform configuration, it will select a suitable compiler, Java heap configuration, and garbage

collector.

The HotSpot execution process combines interpretation, profiling, and dynamic

compilation. Rather than convert all bytecodes into machine code before they are executed,

HotSpot first runs as an interpreter and only compiles the "hot" code - the code executed most

frequently. As it executes, it gathers profiling data, used to decide which code sections are

being executed frequently enough to merit compilation. No time is wasted compiling code

that will execute infrequently, and the compiler can spend more time on optimization of hot

code. Furthermore, by deferring compilation, the compiler has access to profiling data, which

can be used to improve optimization decisions, such as whether to inline a particular method

call.

HotSpot has two compilers: the client compiler and the server compiler:

 The client compiler has been optimized to reduce application startup time and memory

footprint, employing fewer complex optimizations than the server compiler, and

accordingly requiring less time for compilation.

 The server compiler has been optimized to maximize peak operating speed, and is

intended for long running server applications. It can perform many of the standard

optimizations found in static compilers, such as code hoisting, common sub-

expression elimination, loop unrolling, range check elimination, dead-code

elimination, and data-flow analysis, as well as a variety of optimizations that are not

practical in statically compiled languages, such as aggressive inlining of virtual

method invocations.

Continuous recompilation

After a code path is interpreted a certain number of times, it is compiled into machine

code. But the JVM continues profiling, and may recompile the code again later with a higher

level of optimization if it decides that code path is particularly hot or future profiling data

suggests opportunities for additional optimization. The JVM may recompile the same

bytecodes many times in a single application execution.

14

Dynamic deoptimization

Many standard optimizations can only be performed within a “basic block” and so

inlining method calls is often important to achieve good optimization. By inlining method

calls, not only is the method call overhead eliminated, but it gives the optimizer a larger basic

block to optimize, with substantial opportunity for dead-code optimizations.

On-stack replacement

The initial version of HotSpot performed compilation one method at a time. A method

was deemed to be hot if it cumulatively executed more than a certain number of loops, which

it determined by associating a counter with each method and incrementing that counter every

time a backward branch was taken. However, after the method was compiled, it did not switch

to the compiled version until the method exited and was re-entered -- the compiled version

would only be used for subsequent invocations. The result, in some cases, was that the

compiled version was never used, such as the case of a compute-intensive program, where all

the computation is done in a single invocation of a method. In such a situation, the

heavyweight method may have gotten compiled, but the compiled code would never be used.

More recent versions of HotSpot use a technique called on-stack replacement (OSR) to

allow a switch from interpretation to compiled code (or swapping one version of compiled

code for another) in the middle of a loop.

2.2.2. Memory management

Java HotSpot Virtual Machine performs automatic memory management therefore helps

Java developers avoid the complexity and inconvenience of memory allocation as well as

deallocation. To achieve this target, the memory available for user’s programs in runtime is

well-organized and automatic managed by a program called garbage collector. With garbage

collection run along at runtime, developers no longer worry about errors such as memory

leaks and dangling references.

The memory (heap space) is organized by HotSpot JVM into generations, that is,

separate pools holding objects of different ages. The purpose is for a garbage collection

algorithm named generation garbage collection to be used. The algorithm exploits

observations regarding software applications written in object-oriented languages, known as

weak generation hypothesis, which says that:

15

 Almost all objects do not live long, which means they will soon no longer be

referenced

 There are few references from older to younger objects exist

The most widely-used generation organization configuration consists of:

 Young generation – usually small and likely stores many of short-lived objects. When

a new object is created, it is placed in this memory fragment.

 Old or tenured generation – stores objects that meet some promotion criteria, such as

having survived a certain number of garbage collections.

 PermGen or permanent generation – holds data needed by the virtual machine to

describe objects that do not have equivalence at the Java language level (such as

objects describing classes and methods as well as the classes and methods

themselves). This generation is never garbage collected.

Garbage collection occurs in each generation (except the PermGen) when the generation

fills up. For the young generation, the garbage collection strategy is the minor collection. The

strategy is fast since collections on young generation occur frequently and for the pause of

user’s program running to be short. The garbage collection used when tenured generation is

full is called the major collection or full collection. It is not only attempt to collect the objects

allocated in tenured generation. When it runs, all generations are collected.

Garbage collection is quite a complex task taking time and resources of its own,

therefore, may heavily influence the overall performance of the user’s programs.

2.2.3. Microbenchmark

The traditional way to determine if an approach is faster than another one is to write a

small benchmark program, often called a microbenchmark. Writing - and interpreting -

benchmarks is far more difficult and complicated for dynamically compiled languages than

for statically compiled ones. In many cases, microbenchmarks written in dynamic compilation

language don’t give the expected results.

HotSpot JIT will continuously recompile Java bytecodes into machine code as the

program runs, and recompilation can be triggered at unexpected times by the accumulation of

a certain amount of profiling data, the loading of new classes, or the execution of code paths

that have not yet been traversed in already-loaded classes. Timing measurements in the face

16

of continuous recompilation can be very noisy and misleading, and it is often necessary to run

the source code for very a long time before obtaining useful performance data.

JVM warming up

Measuring the performance of on approach generally means measuring its optimized

compiled implementation performance, not interpreted one. That requires "warming up" the

JVM - executing the target operation enough times that the compiler will have had time to run

and replace the interpreted code with compiled code before starting to measure the desired

execution performance.

With today's dynamic compilers, it is a lot more difficult. The compiler runs at an

unpredictable time, the JVM switches from interpreted to compiled code at will, and the same

code path may be compiled and recompiled more than once during a run.

Garbage collection

Garbage Collection is another element that can badly distort timing results - a small

change in the number of iterations could mean the difference between no GC and one GC,

skewing the "time per iteration" measurement. If the benchmarks run with -verbose:gc JVM

option, timing data can be adjusted accordingly to the quantity of time spent in garbage

collection. Even better, ensuring that many garbage collections are triggered, more accurately

amortizing the allocation and garbage collection cost.

Dead-code elimination

One of the challenges of writing good benchmarks is that optimizing compilers are

adept at spotting dead code - code that has no effect on the outcome of the program execution.

But benchmark programs often don't produce any output, which means some, or all, of the

source code can be optimized away, at which point the result measurement is less execution

than what it should be. That dead-code optimization that makes such short work of the

benchmark (possibly optimizing it all away) is not going to do quite as well with code that

actually does something.

Because runtime compilation uses profiling data to guide its optimization, the JIT may

well optimize the test code differently than it would do to real code. As with all benchmarks,

there is a significant risk that the compiler will be able to optimize away the whole thing,

because it will realize that the benchmark code neither actually do anything nor produce any

result that is used for anything. Writing effective benchmarks requires fooling the compiler

into not pruning away code as dead, even though it really is.

17

For example, supposed that we want to measure the performance of the function

scala.Math.sqrt(), we intend to do so by repeating the operation for 500.000 times.

Unfortunately, with our first implementation in object Wrong in Listing 2.9, the JIT will

recognize that all the calls to sqrt() are good for nothing and optimize it away. Therefore,

the running time result is too small to be mentioned. We will fix that in object Right by

fooling the JIT that the values computed using sqrt() are used to update the public var

str which may be read by another object in the future. That makes the 500.000 calls to sqrt()

remain at runtime so that we can measure their performance.

// this does not work

object Wrong {

 def main(args: Array[String]): Unit = {

 // these 500.000 calls to Math.sqrt()

 // will be optimized away

 (0 until 500 * 1000) foreach (Math sqrt _)

 }

}

// this will work

object Right {

 var str = ""

 def main(args: Array[String]): Unit = {

 (0 until 500 * 1000) foreach (i =>

 str = "" + (Math sqrt i))

 }

}

Listing 2.9 – Exmample: Dead code elimination

In addition, the problem is not strictly that the optimizer is optimizing away the

benchmark, but that it is able to apply a different degree of optimization to one alternative

than to another, and that the types of optimizations that it can apply to each alternative would

not likely be applicable in real-world code.

The Heisenberg principle

The performance of operation X is being measured, so there should be nothing to run

besides X. But often, the result is a do-nothing benchmark, which the compiler can optimize

away partially or completely, making the test run faster than expected. If extraneous code Y is

18

put into the benchmark, the performance of X + Y is to being measured, introducing noise

into the measurement of X, and worse, the presence of Y changes how the JIT will optimize

X. Writing a good microbenchmark means finding that elusive balance between not enough

filler and dataflow dependency to prevent the compiler from optimizing away the entire

program, and so much filler that truthfully performance gets lost in the noise.

2.3. Statistically rigorous performance regression detection

Performance of a program runs on JVM platform is not trivial to benchmark because it

is affected by various factors (some of the most commons are described in section 2.2). JVM

uses timer-based sampling to drive the JIT compilation and optimizations. That methodology

may lead to non-determinism and execution time variance: different executions of the same

program may result in different samples being taken and, by consequence, different methods

being compiled and optimized to different levels of optimization. There exist many other

sources of non-determinism such as thread scheduling in timeshared and multiprocessor

systems, garbage collections, and various system effects like system interrupts etc.

Another issue on performance benchmarking is that, researchers and/or software

developers use a wide variety of Java performance evaluation methodologies. These

methodologies differ from each other in a number of ways. Some report average performance

over a number of runs of the same experiment; others report the best performance observed;

yet others report the worst. Some iterate the benchmark multiple times within a single JVM

invocation; others consider multiple JVM invocations and iterate a single benchmark

execution; yet others consider multiple JVM invocations and iterate the benchmark multiple

times. All these prevalent methodologies can be misleading, and can even lead to incorrect

conclusions. The reason is that the data analysis is not statistically rigorous.

This section briefly describes how to use statistics theory as a rigorous data analysis

approach for dealing with the non-determinism in managed runtime systems as well as the

experiment designs to evaluate the benchmarks’ performances advocated in [2]:

 Adding statistical rigor to performance evaluation studies of managed Java runtime

systems. The motivation for statistically rigorous data analysis is that statistics, and in

particular confidence intervals, enable one to determine whether differences observed

19

in measurements are due to random fluctuations in the measurements or due to actual

differences in the alternatives compared against each other.

 Performance evaluation methodologies for start-up and steady-state performance, and

the following methods to detect statistically significant difference in the achieved

performances of different alternatives which can be used to detect performance

regressions of Scala programs.

2.3.1. Confidence interval for the means

In each experiment, a number of samples is taken from an underlying population. A

confidence interval for the mean derived from these samples then quantifies the range of

values that have a given probability of including the actual population mean. The confidence

interval [c1, c2] is defined such that the probability of µ being between c1 and c2 (i.e c1 ≤ μ ≤

c2) equals the confidence level of 1 − α; α is called the significance level. Let:

 μ is the population mean
14

, that is the expected accuracy value we want to measure

 σ2 is the population variance
15

 that is a measure of how far a set of sample values is

spread out from the mean. σ is called the standard deviation
16

, the “average” of the all

the differences of every value from the mean

 n is the number of samples taken

The sample mean is the average value of all the collected samples, computed as

 ̅
∑

The sample standard deviation
17

 s is the most common estimator for σ, calculated as the

squared root of the sum-of-squares of all the subtractions of each sample by the sample mean,

divided by the number of samples subtracted by 1:

 √
∑ ̅

The following mathematical formulas are used to calculate the confidence interval for

the respective case of:

14

 http://en.wikipedia.org/wiki/Mean#Population_and_sample_means
15

 http://en.wikipedia.org/wiki/Variance#Population_variance_and_sample_variance
16

 http://en.wikipedia.org/wiki/Standard_deviation
17

 http://en.wikipedia.org/wiki/Standard_deviation#With_sample_standard_deviation

20

When the number of measurements is large (n ≥ 30)

 ̅

√

 ̅

√

The value z α 2 is defined such that a random variable Z that is Gaussian distributed

with mean µ = 0 and variance σ2 = 1 (normal distribution), obeys the following property: the

probability of a variable Z is less than or equals z1 – α 2 equals to 1 – α / 2. It is usually pre-

computed.

When the number of measurements is small (n < 30)

 ̅

√

 ̅

√

The value t α 2; n - 1 is defined such that a random variable T that follows Student’s t

distribution with n – 1 degrees of freedom, obeys the following property: the probability of a

variable T is less than or equals t1 – α 2; n - 1 equals to 1 – α / 2. It is also usually pre-computed.

2.3.2. Startup performance measuring

The goal of measuring start-up performance is to measure how quickly a Java Virtual

Machine can execute a relatively short-running Java program. There are two key differences

between startup and steady-state performance. First, startup performance includes class

loading whereas steady-state performance does not, and, second, startup performance is

affected by JIT compilation, substantially more than steady-state performance.

For measuring startup performance, use a two-step methodology:

 First, measure the execution time of multiple JVM invocations, each VM invocation

running only one single benchmark iteration. This results in p measurements xij with 1

≤ i ≤ p and j = 1

 Then, compute the confidence interval for a given confidence level as described in

Section 3.2. If there are more than 30 measurements, use the standard normal z -

statistic; otherwise use the Student t -statistic

21

In practice, the first JVM invocation in a series of measurements may change system

state that persists past this first JVM invocation. To reach independence, the first JVM

invocation is discarded and only the subsequent measurements are retained.

2.3.3. Steady-state performance measuring

Steady-state performance concerns long-running applications for which start-up

performance is less interested. Since most of the JIT compilation is performed during start-up,

steady-state performance suffers less from variability due to JIT compilation. However, the

other sources of non-determinism, such as thread scheduling and system effects, still remain

under steady-state, and thus need to be considered.

There are two issues with quantifying steady-state performance. The first issue is to

determine when steady-state performance is reached. The second issue with steady-state

performance is that different JVM invocations running multiple benchmark iterations may

result in different steady-state performances. Different methods may be optimized at different

levels of optimization across different JVM invocations, changing steady-state performance.

To address these two issues, the following methodology is used for quantifying steady-

state performance. Consider p JVM invocations (each for one alternative), each running at

most q benchmark iterations:

 For each JVM invocation i of the p invocations, determine the iteration si (si ≤ q)

where steady-state performance is reached, i.e., once the coefficient of variation (CoV)

of the k iterations (si – k to si) falls below a preset threshold, say 1% or 2%.

 For each invocation, compute the mean xi of the k benchmark iterations under Steady-

state:

 ̅ ∑

 Compute the confidence interval for a given confidence level across the computed

means from the different JVM invocations. The overall mean equals

 ̅ ∑ ̅

22

Where k is the number of measurements we want to retain per invocation

Figure 2.1 – Steady-state measurement process

In practice, the actual measurement process is illustrated in Figure 2.1. The running time

of the benchmark is high in the beginning, and then the benchmark runs faster through all of

the JIT optimizations. The measurements inside the dash line window are the measurements

from iterations si – k to si. They are used for determining that the benchmark running has

reached its steady-state. That target is achieved by calculating its coefficient of variations

(CoV) which should fall below the preset threshold. The measurements intended to be the

result is the series of measurements in the next k iterations, i.e the measurements inside the

continuous line window. The purpose of continuing collecting the next k iterations is to avoid

the first few measurement results that maybe have not reached steady-state yet.

After achieving a number of series of running time, one of the two following statistics

tests is applied to detect statistically significant differences among those alternatives.

2.3.4. Compare two alternatives

The simplest approach to comparing two alternatives is to determine whether the

confidence intervals for the two sets of measurements overlap. If they do overlap, the

difference seen in the mean values is possibly due to random effects. If the confidence

intervals do not overlap, however, we conclude that there is a statistically significant

difference with the probability of 1 – α (this also means that there is a probability of α

R
u
n
n
in

g
 t
im

e

Number of iterations

Running time

23

suggests that the difference between the two alternatives is caused by random effects). The

statistics necessary to be computed described as follows. Let:

 n1, ̅ , s1 are respectively the number of measurements, sample mean and sample

standard deviation of the first alternative

 n2, ̅ , s2 are respectively the number of measurements, sample mean and sample

standard deviation of the second alternative

The difference of the means is

 ̅ ̅ ̅

The standard deviation of the difference of the means is

 √

The following mathematical formulas are used to calculate the confidence interval for

the respective case of:

When n1 ≥ 30 and n2 ≥ 30

When n1 < 30 or n2 < 30

With ndf is called the degrees of freedom, computed as

 ⁄

 ⁄

If [c1; c2] includes zero, we can conclude, at the confidence level chosen, that there is no

statistically significant difference between the two alternatives.

24

2.3.5. Compare many alternatives

In the case the number of alternatives is larger than 2, a more general and more robust

technique is applied. The technique is called Analysis of Variance (ANOVA) test. It separates

the total variation observed in (i) the variation observed within each alternative, which is

assumed to be a result of random effects in the measurements, and (ii) the variation between

the alternatives. If the variation between the alternatives is larger than the variation within

each alternative, then it can be concluded that there is a statistically significant difference

between the alternatives.

To explain the ANOVA test, let:

 k is the number of alternatives to be compared

 n is the number of measurements for each alternative

 yij is the jth
 performance value measured for alternative i i ≤ k, j ≤ n

The mean of each alternative is computed as

 ̅
∑

The overall mean is computed as

 ̅
∑ ∑

The variation due to the effects of the alternatives, sum-of-squares due to the

alternatives (SSA) is computed as

 ∑ ̅ ̅

The variation due to random effects within an alternative is computed as the sum-of-

squares of the errors (SSE) between the individual measurements and their respective

alternative mean

 ∑ ∑ ̅

25

When the above components are computed, a statistical test named F-test is performed

to detect the statistically significant difference. F-test assess whether the expected values of a

quantitative variable within several pre-defined groups differ from each other. The formula to

compute the statistic F value is

with k is the number of alternatives. This F value follows the Fisher’s F distribution with k –

1, n·k – k degrees of freedom. If this F value is larger than the pre-computed Fk – 1; n·k – k, we

can conclude that there is actually statistically significant difference and vice versa.

26

Chapter 3

Scala Benchmarking Suite

Scala Benchmarking Suite – SBS (scala.tools.sbs) is a tool developed to do

benchmarking on the Scala programming language. It is designed mainly being intended to

detect various kinds of regressions on Scala standard library and Scala compiler, which are

caused by changes to the source code, on the nightly build of each revision. Also, it can be

used by Scala developers for their own purposes of improving Scala program quality by the

mean of performance and optimization.

3.1. Features

This is the comprehensive list of features currently supported:

 Enable users to write their own benchmarks in the same way they write tests now -

a file or a directory of files which corresponds to a Scala program. Users no longer

need to worry about the implementation of benchmark iteration, warming up phase

or statistical rigor, etc., which are all controlled by the built-in mechanisms of SBS

 Compile benchmarks using the compiler distribution comes along with the Scala

standard library which is used to run the suite. Users can specify whether to (re)

compile the benchmarks. The effect of the changes made to the compiler is

reflected through the performance of the bytecodes compiled with it

 Run benchmarks selectively to obtain benchmarking results, such as performance

numbers, number of times a method has been called, amount of memory

consumed, etc. The metrics which regard performance are measured separately

with the others to prevent them from being influenced. Users have the ability to

specify more than one metrics at a time during a run. A specific metric can be

recorded independently or together with the others

27

 Have benchmarks divided into groups and being able to run groups selectively and

automatically, e.g. in nightly builds.

 Obtain benchmark results and keep benchmark results histories for comparison in

the future. This is the main feature to keep track of the performance along the

growth of the Scala standard library and compiler

 Using histories, automatically detect a failing benchmark, using statistical analysis.

Performance histories are kept from previous SBS run on the accepted revisions of

Scala.

 Be able to specify the used JVM when running a benchmark/benchmark group to

detect the different performance of the same benchmark on various environment

 Benchmarks have default arguments, but when running them selectively, they can

be passed in additional args (for instance, an array buffer is benchmarked with

10000 elements, but the user could run this specific benchmark with -Dsize=5000

if he so desires) - these arguments are defined on a per benchmark basis

 Comparative benchmarking - compare 2 approaches lively to point out the better

one.

 Produce reports about the benchmark results, to send this through e-mail or be

available through a web interface - report percentage losses and improvements in

performance

 Various kinds of reports - first implement just text-only, but it is left extensible for

various graphical representations

 Have verbose and debug output options

 Allow interfacing the suite through command line, ant and sbt
18

. Make it easy to

continue developing with sbt project manager, integrate to Scala nightly build with

ant and for the normal users to use as a jar package through command line

Usage: sbs [<options>] [<benchmark> <benchmark> ...]

<benchmark>: a path to a benchmark, typically a .scala file or a directory. All the per-

benchmark <options> will be overridden by corresponding ones in .arg file with the same

name with the snippet benchmark or values overridden from templates in the case of

initializable benchmark. Following is the comprehensive list of all the possible arguments:

Benchmarking modes:

18

 https://github.com/harrah/xsbt/wiki

28

--steady-performance SBS runs in steady state benchmarking mode

--startup-performance SBS runs in start-up state benchmarking mode

--memory-usage SBS measures benchmarks’ memory usage in

steady state

--profile SBS profiles activities of benchmarks’ runs (class

loading, method invocations, etc)

--pinpoint SBS runs pinpointing regression detection mode

--all SBS runs all current supported benchmarking

modes

Statistics metrics:

--least-confidence-level <value> smallest acceptable confidence level (default: 90)

--precision-threshold <value> % (default: 2%)

--timeout <value> maximum time for each measurement (ms)

--noncompile if set, SBS will not re-compile the benchmarks

Arguments necessary for performance benchmarking (see section 2.3.3 for the meaning

of these arguments):

--measurement <value> number of measurements (sample size) - default:

11

--multiplier <value> number of benchmark run repetitions per

measurement - default: 1

--sample <value> number of pre-created samples used for

statistically rigorous regression detection -

default: 0

--re-measurement <value> maximal number for re-measurements a metric in

case the measurement result is not acceptable (too

much noise for example) - default: 1

29

--warm-repeat <value> maximal multiplier number of measuring

repetitions for warming up. For example, if user

specified --measurement 10 --warm-repeat 10,

SBS at most repeat the benchmark running for

100 times at warming up phase. Default: 5

Arguments necessary for profiling:

--profile-classes <classes> classes to be profiled - split by ; - default:

<empty>

--profile-exclude <classes> classes to be ignored - split by ; - default:

<empty>

--profile-method <method> the method to be profiled - default: <empty>

--profile-field <field> the field to be profiled - default: <empty>

--profile-gc if set, SBS will profile the running of the garbage

collectors

--profile-boxing if set, SBS will profile the number of boxing -

unboxing

--profile-step if set, SBS will profile the number of steps

performed

Arguments necessary for pinpointing regression detection:

--pinpoint-class name of the class contains the method to be

regression detected - default: <empty>

--pinpoint-method name of the method - default: <empty>

--pinpoint-bottleneck if set, SBS will detect the bottleneck using

performance regression pinpointing methodology

(see section 4)

--pinpoint-previous <location> the location of the previous build, should not be

included in classpath - default: <empty>

30

--pinpoint-exclude classes to be ignored - split by ; - default:

<empty>

Specifying paths and additional values, ~ means SBS root:

--benchmarkdir path from ~ to the working directory contains

mostly log files and report files - default: .

--bindir path from ~ to the directory contains binary files

of the benchmarks - default: <empty>

--history path to measurement result histories - default: .

--classpath classpath for benchmarks running - default:

<empty>

--scala-library path to scala-library.jar - default: <empty>

--scala-compiler path to scala-compiler.jar - default: <empty>

--javaopts flags to java on all runs - default: JAVA_OPTS

environment variable - currently unset

--scalacopts flags to scalac on all tests runs - default:

JAVA_OPTS environment variable - currently

unset

--java-home path to java

Options influencing output:

--show-log if set, SBS will show the log message on the

console

--verbose verbose logging output

--debug debugging logging output

--quiet no console output

Other options:

--cleanup delete all stale files and dirs before run

31

--noclean-log do not delete any logfiles

--help print usage message

3.1.1. Benchmark taxonomies

With respect to metric:

 Running time - easy to measure but unreliable, and has to be measured on the

same platform to analyze history - no profiler should be used here

 Profiling a specific value - using a profiler with the JVM invocation

o Classes that loaded

o Number of times specific field(s) accessed/modified

o Number of times specific method(s) invoked

o Number of steps performed

o Memory consumption

o Number of GC cycles

o Number of boxings/unboxings

A benchmark can possibly specify more than a single metric. In this case, the running

time and profiled values are not measured during the same run. We separate runs for different

profiled metrics.

With respect to measurement type

(This mainly concerns running performance benchmarks):

 Startup - perform measurements only once during JVM warm-up time and record

them - what’s measured may include both JIT compiled and interpreted code,

along with the compilation time, class loading etc.

 Steady-state - run the benchmark code multiple times during a single JVM

invocation until steady-state is detected (using the coefficient of variation), then do

K iterations and measure the observed value - compute the mean of these K

measurements

 Comparative - compares 2 programs (snippets, functions) and measures relative

performance

 Performance regression pinpointing – compares 2 versions of the same program to

detect performance regression and to point out the bottleneck (if any)

32

The taxonomies above may dictate how benchmarks are divided into logical groups,

which makes them easier to select all at once. A group of benchmarks all are in a certain

directory corresponding to their benchmarking mode.

With respect to how and when they’re run:

 Individual - for individual use and parameter tweaking, these are not run on a

nightly or regular basis, but on demand - the developer can play around with the

parameters to test the code or changes he made

 Nightly - these are run on a regular basis to detect regressions on various

revisions of Scala, based on statistical analysis the difference in performance

with the performance histories kept from earlier builds

Benchmark directory structure

The working directory consists of the log files, report files and sub-directories:

 bin – holds binary (i.e. .class) files of benchmarks. All the bytecodes

compiled from benchmark sources go here

 Mode directories – a directory exists for each benchmarking mode. Their names

depend on the definition of the corresponding BenchmarkMode. Each mode

directory holds the source files and the argument files of its benchmarks.

Additionally, each benchmark has its own directory for generated histories

(which are typically .xml files)

For example, a typical benchmark directory is shown below

\benchmark

 \steady

 \Benchmark_1

 \history_1.xml

 \history_2.xml

 \Benchmark_1.scala

 \startup

 \pinpoint

33

This design of directory structure is convenient to run selectively benchmarks

depending on their mode of run all at once.

3.1.2. Measurement methodologies

There are several ways to run a benchmark:

 Run-once - such a benchmark is run once and the measured times are reported

(e.g. printed on the screen) - typically the individual benchmarks are run this

way

 Statistically analysis - the benchmark is run N times and the results are analyzed

- a mean value, variance and a confidence interval for the value are computed.

Confidence interval should be specified (perhaps only in strict steps, e.g. 90%,

95%, 99%)

3.1.3. Failure reporting methodologies

Clearly, this involves comparing the result of the benchmark against results from the

previous runs – at least a history of previous performance measurements should be kept.

Ways to discriminate failing benchmarks:

 Confidence interval - if the mean value fell out of the confidence interval of the

last result, report an error

 Difference - compare the difference of the current and the previous result - if the

confidence interval of the difference does not include zero, report an error

 Difference with up to M previous - same as difference, but compare against M

previous results – using analysis of variance

3.1.4. Statistical analysis

In memory consumption, steady-state performance and pinpointing benchmarking

mode, methodologies described in section 2.3 is applied. Typically:

 In memory consumption and steady-state performance mode, when no history

available, no statistical analysis. When there is a single xml history, applied

methodology described in section 2.3.4. Otherwise, methodology described is

section 2.3.5 is used

34

 In pinpointing mode, methodology in section 2.3.4 is used in every comparison

between current and previous performances (see section 4)

3.2. Use case

Here we describe the parameters for running SBS, the typical use case and an example

of a typical benchmarking suite run. All of these considerations will reflect the architecture of

the suite.

A benchmark suite run requires a set of parameters to be specified:

 A set of benchmarks to be run, specified as a list of benchmark groups and/or

individual benchmarks

 The JVM options to use to run the benchmarks

 Optionally a set of JVM parameters, unless the per-benchmark defaults are to be

used

 If a single benchmark was specified, its default arguments may be overridden (if

the benchmark has any arguments specified - e.g. collection size or number of

actors used)

 Measurement type, unless the default per-benchmark type is to be used (e.g.

startup, steady-state)

 Measurement methodology, unless the default per-benchmark defined

methodology is to be used (e.g. run-once, statistical analysis)

 For statistical analysis, various parameters such as confidence intervals or

coefficients of variance, unless per-benchmark defaults are to be used

 Location where to run these - locally or on a remote machine

 Whether to compare results to previous results and the failure discrimination

strategy

 Where is the history for previous runs kept - needed if results are to be compared

against previous results

 Other options (e.g. verbosity level, influencing logging…)

A typical benchmark suite run is as follows:

1. Parse input arguments

2. Compile the sources of the benchmarks if necessary

35

3. Run all the benchmarks with the specified arguments

4. Load the previous results if necessary

5. Run comparisons to previous results if necessary

6. Post-process results if necessary (e.g. preparing reports, storing run results, etc.)

3.3. Design description

For convenience purpose, all the package and type names mentioned in the following

sub-sections are originally prefixed by scala.tools.sbs.

3.3.1. Main architecture

Figure 3.1 depicts the main activities of a SBS run session, which are, with respect to

the order:

 Parsing user arguments using ArgumentParser. An instance of the class

Config is created representing the environment and user’s requirements of the

run. Logging activities also starts at this point, their instances and I/O format

depends on user’s requirements

 Reading information about the benchmarks to be run from user arguments or

from per-benchmark specific argument files. Users are able to specify one or

more benchmark at a time with command line - this ability is convenient for

running selective benchmarks. They also can specify several directories contain

lots of benchmarks inside in the case SBS is used in nightly builds, in grouping

benchmarks or the number of benchmarks is just too large to fit in.

36

ReportRunnerBenchmarkCompilerArgumentParserBenchmarkDriver

Parse arguments

Print help
[invalid argument or help]

Read benchmark info

Compile benchmarks
Prepare

working directory

[valid argument]

Run benchmarks

Report results
[compilation failed]

[compilation OK]

Figure 3.1 – Main activity diagram

 Preparing the working directory structure, including creating places for each

mode to store their histories and logging, cleaning unwanted files, etc.

 Compiling all the benchmarks needed using BenchmarkCompiler. If a

benchmark has already been compiled before and the change (if any) does not

concern it implementation, it is not necessary to re-compile the benchmark (i.e.

changes were made to the standard library, and are reflected through the re-

compilation of the standard library, which has taken its place before the SBS run

session).

 For each selected BenchmarkMode, do benchmarking on all the list of the

benchmarks specified to run in the mode using the corresponding instance of

Runner

 Finally processing (typically is reporting) the generated benchmarking results

37

Object scala.tools.sbs.BenchmarkDriver

BenchmarkDriver is the central back bone of SBS. Its main method is the entry

point and controls the work flow of every SBS run session. BenchmarkDriver receives

user arguments and instantiates the necessary objects.

Class scala.tools.sbs.ArgumentParser

ArgumentParser receives the Array of user’s arguments to create the Config,

the log file and read the information of the to-be-run benchmarks.

A typical benchmark is stored in local disk in the form of a Scala source file or a

directory of Scala source files. It may come along with an argument file – a file with the same

name and the extension .arg. This file contains the additional per-benchmark information

such as the number of iterations, whether to recompile, the time out, etc. All the benchmarks’

information read is represented as a set of benchmark.BenchmarkInfo.

ArgumentParser runs only once for each SBS run session and has no state. So,

ArgumentParser is implemented to be an object with a small number of static methods.

Class scala.tools.sbs.Config

An instance of Config reflects the benchmarking “environment”. It consists of the

user arguments has been parsed and the constant values, such as precision threshold etc., used

by most of all classes in SBS.

Trait scala.tools.sbs.Runner

Runner is one of the most important traits in SBS. Each of its concrete implements

and their supporting types should represent the necessary activities to produce the

benchmarking results. An important part of Runner is shown in Listing 3.1.

With the purpose to have SBS easily extensible, Runner is designed to represent a vast

various ways and metrics of measurement. Depends on the running mode, a suitable Runner

is instantiated. Each implementation of Runner has its own sub-type of

benchmark.Benchmark which it can process (for example, a profiling.Profiler

(see section 3.3.3) can only run a profiling.ProfilingBenchmark). At the first step

of running a benchmark, a Runner checks whether the benchmark is suitable (see Listing

3.1). That can be fulfilled using the method check(), which is inherited by Runner from

the trait common.RuntimeTypeChecker. check() tests whether the type

38

represented by the Runner’s field upperBound is a super-type of the benchmark’s type by

using scala.reflect.Manifest.

trait Runner extends Configured with RuntimeTypeChecker {

 def benchmarkFactory: BenchmarkFactory

 def run(benchmark: Benchmark): BenchmarkResult =

 if (check(benchmark.getClass)) {

 val result = doBenchmarking(benchmark)

 result.toReport foreach log.info

 result

 }

 else {

 throw new

 MismatchBenchmarkImplementationException(

 benchmark,

 this)

 }

 ...

}

Listing 3.1 – Trait scala.tools.sbs.Runner (simplified)

A little thing about Scala – Java Generics
19

 is necessary to be described here to for one

to be able to understand the role of scala.reflect.Manifest. Generics is a facility

of generic programming that allows a type or method to operate on objects of various types

while providing compile-time type safety (in our case these types are the sub-types of

benchmark.Benchmarks). Java’s, therefore Scala’s, approach to implement Generics is

type erasure
20

 that removes the type parameter information at compile time. So that, every

objects at runtime have the type of java.lang.Object. That makes the operation

isinstanceof T (T is a type parameter) always yields true and thereby meaningless.

With Scala, one can work around the type-polymorphism problem using the

scala.reflect.Manifest. Manifests are descriptors for types which can be used in

runtime to test type-relating constraints and are our solution applied in SBS.

In addition, a runner must define its own factory to generate the concrete benchmarks.

The factory is hold in the field benchmarkFactory at SBS runtime. For instance,

performance.Measurer has its fields defined as follow:

19

 http://en.wikipedia.org/wiki/Generics_in_Java
20

 http://en.wikipedia.org/wiki/Type_erasure

http://en.wikipedia.org/wiki/Generic_programming

39

protected val upperBound = manifest[PerformanceBenchmark]

val benchmarkFactory =

 new PerformanceBenchmarkFactory(log, config)

The harnesses

Harness is the common term for every object named suffixed by “Harness” in

SBS.

To satisfy the constraints that require benchmarks run in a clean JVM, a harness is a

controller for running benchmarks in a separated JVM and is a sub-type of the trait

common.ObjectHarness. A harness in general is the main Scala class in its JVM and has

its own main() function as the entry point.

A harness typically does the following steps:

 Recreating the Config and the log

 Loading the benchmark classes and iterating its runs using reflection

 Reporting measurement result to the main JVM

A new JVM is needed for a harness to run to satisfy the constraints of benchmarking

environment. It is launched using common.JVMInvoker (see section 3.3.6). The hierarchy

of harnesses is illustrated in Figure 3.2.

40

+main()
+dispose()

<<trait>>
common.ObjectHarness

<<object>>
common.RunOnlyHarness

<<object>>
performance.SteadyHarness

+measure()

<<trait>>
performance.MeasurementHarness

+check()

-upperBound

<<trait>>
common.RuntimeTypeChecker

<<object>>
performance.MemoryHarness

<<object>>
profiling.GCHarness

+start()
+end()

<<object>
 pinpoint.strategy.PinpointHarness

Figure 3.2 – The harnesses’ class diagram

Adding new benchmarking mode into SBS

SBS is designed to be easily extendable in order to meet all the requirements may

appear in the future. To extend the abilities of SBS to be able to do some additional kind of

benchmarking, follow these steps:

 Create an object which extends the trait BenchmarkMode. It represents

the newly added mode and lets BenchmarkDriver be able to switch onto the

new benchmarking mode in a SBS run session

 Create a command line option for users to be able to select the new mode. The

option must be declared in the trait BenchmarkSpec so that a var named

_modes appends the new mode object whenever the option is specified. All

other options’ definitions and metrics that the new mode needs also go here

 Create a new package in package scala.tools.sbs for all the

implementations of the new benchmarking mode (not necessary, this is just for

convenience and neatly looking code purpose)

41

 Define a new kind of benchmark provides all the necessary information to the

new benchmarking mode and a new result type. The implement of the

benchmark kind has to be a sub-type of benchmark.Benchmark for the

Runner to accept it, the result type is a sub-type of BenchmarkResult

 Create a new factory class for creating instances of the new benchmark type

from user arguments. This factory must be a sub-type of

benchmark.BenchmarkFactory (see section 3.4.5)

 Create a sub-type of Runner which is used to run in the new mode. The field

upperBound must hold the manifest of the new benchmark type and the

field benchmarkFactory holds an instance of the new benchmark factory

When all of the above are complete, the new benchmarking mode is ready to run.

Following is an example. Supposed that we want to add a new benchmarking mode

called NewMode to SBS. The steps to have it ready in SBS are described below:

 Define the mode object

object NewMode extends BenchmarkMode {

 val location = "newmode"

 override val toString = "NewMode"

 val description = "for example purpose"

}

 Insert an option (as the following line of code) to BenchmarkSpec

"newmode" / "run in the new mode" --> (

 _modes ::= NewMode)

 Create the new package scala.tools.sbs.newmode

 Define the new type of benchmarks, which is the following class:

package scala.tools.sbs

package newmode

class NewBenchmark extends Benchmark {

 def name = “NewBenchmark”

 def arguments = List[String]()

 def classpathURLs = List[URL]()

 def sampleNumber = 0

 def createLog(mode: BenchmarkMode): Log = null

 def timeout = 10000

 def init() = ()

 def run() = ()

42

 def reset() = ()

 def context: ClassLoader =

 Thread.currentThread().getContextClassLoader()

 def toXML: scala.xml.Elem = <newbench />

}

 Define class NewBenchmarkFactory which is used to create Benchmark

instances which actually are NewBenchmarks for them to be able to run by the

new runner

package scala.tools.sbs

package newmode

class NewBenchmarkFactory(val log: Log,

 val config: Config)

 extends Configured

 with BenchmarkFactory {

 /* In real life, createFrom() should use method

 * load() inherits from BenchmarkFactory to read

 * .arg files or instantiate an

 * InitializableBenchmark.

 * See the pre-created BenchmarkFactory-s for

 * more details.

 */

 def createFrom(info: BenchmarkInfo): Benchmark =

 new NewBenchmark

}

 Modify method apply() of object BenchmarkFactory to have it create

NewBenchmarkFactory in the case –-newmode is selected

object BenchmarkFactory {

 def apply(log: Log,

 config: Config,

 mode: BenchmarkMode): BenchmarkFactory =

 mode match {

 case DummyMode =>

 new DummyBenchmarkFactory(log, config)

 case Profiling =>

 new ProfilingBenchmarkFactory(log, config)

 case Pinpointing =>

 new PinpointBenchmarkFactory(log, config)

 //insert this

 case NewMode =>

 new NewBenchmarkFactory(log, config)

43

 case _ =>

 new PerformanceBenchmarkFactory(log, config)

 }

}

 Define new runner which has field upperBound holds the manifest of

NewBenchmark and field benchmarkFactory holds an instance of

NewBenchmarkFactory. These fields will be later used to create (load) the

benchmarks

package scala.tools.sbs

package newmode

class NewRunner extends Runner {

 protected val upperBound = manifest[NewBenchmark]

 val benchmarkFactory =

 new NewBenchmarkFactory(log, config)

 protected def doBenchmarking(benchmark: Benchmark):

 BenchmarkResult = {

 // do things here

 }

}

 Modify the factory object for the runners: Insert a case of NewMode to method

apply()

object RunnerFactory {

 def apply(config: Config,

 log: Log,

 mode: BenchmarkMode): Runner =

 mode match {

 case Profiling =>

 ProfilerFactory(config, log)

 case Pinpointing =>

 ScrutinizerFactory(config, log)

 case StartUpState | SteadyState | MemoryUsage =>

 MeasurerFactory(config,

 log,

 mode,

 MeasurementHarnessFactory)

 case Instrumenting =>

 InstrumenterFactory(config, log)

44

 // Insert this line

 case NewMode => new NewRunner

 case _ =>

 throw new NotSupportedBenchmarkMode(mode)

 }

}

The new mode is now completely added to SBS. Users can have SBS run the new

benchmarking mode with the command option –-newmode.

3.3.2. Package scala.tools.sbs.performance

This package implements the most important and heavily-used benchmarking modes:

benchmarking steady-state performance. Besides, it comes along with the ability to do

benchmarking start-up performance and memory consumption in steady-state.

The central unit of package performance is the trait named Measurer which

extends Runner. Measurer has two concrete classes, StartupHarness and

SubJVMMeasurer.

 StartupHarness measures the running time in start-up state of the

benchmark, not necessary for it to run in a new JVM.

 SubJVMMeasurer uses the corresponding harness to measure the steady-state

performance or the memory consumption

45

<<object>>

performance.SteadyHarness

+measure()

<<trait>>

performance.MeasurementHarness

<<object>>

performance.MemoryHarness

+measure()

#doGenerating()

#regress()

<<trait>>

Measurer
SubJVMMeasurer

+reduceConfidenceLevel()

+isConfidenceLevelAcceptable()

+resetConfidenceInterval()

+confidenceInterval()

+min()

+max()

+mean()

+standardDeviation()

+CoV()

+significantLevel()

+confidenceLevel()

+testDifference()

<<trait>>

Statistics

-inverseGaussianDistribution()

-inverseStudentDistribution()

-inverseFDistribution()

-testConfidenceIntervals()

-testANOVA()

SimpleStatistic

«uses»

+add()

+append()

+mode()

+apply()

+foldLeft()

+head()

+last()

+tail()

++:()

+length()

+map()

+foreach()

+forall()

<<trait>>

regression.History

-data

regression.ArrayBufferHistory

«uses»

+generate()

+load()

+store()

<<trait>>

regression.Persistor

+loadFromFile()

+loadSeries()

+location

regression.FileBasedPersistor

«uses»

+apply()

+head()

+tail()

+last()

+length()

+clear()

++=()

+sum()

+foldLeft()

+foldRight()

+foreach()

+forall()

+remove()

+isReliable()

+toXML()

-data

-_confidenceInterval

Series

+achieve()

+cleanUp()

SeriesAchiever

«uses»

«uses»

«uses»

«uses»

StartupHarness

Figure 3.3 – Package performance’s class diagram

Figure 3.3 illustrates the static structure of the most important elements of package

performance, includes:

 Class Series represents a series of performance measurements.

 Class SeriesAchiever is the controller of benchmarking iterations.

SeriesAchiever guarantees that the benchmark has reached steady-state

after warming up phase and redoes the whole measurement if the final series is

not reliable

 Package regression – contains classes support statistically rigorous

performance regression detection:

o Trait Statistics provides the operations concern statistical metrics.

It computes CoV of a series as well as its mean and sample standard

deviation. The most important functionality of Statistic is checking

46

the statistically significant difference among the current series and

histories using statistically rigorous performance detection methodology

o Trait History consists of a list of performance Series from previous

benchmarking runs

o Trait Persistor loads and stores Series into the storage. Currently,

Persistor is implemented to work with measurement histories in the

form of .xml files

A typical run in steady-state benchmarking mode is described in Figure 3.4

Series StatisticSteadyHarnessSubJVMMeasurer

Launch JVM Measure

Check reliability

Load histories Detect regression

Report measurement resultDispose result

Check warmed up

[still cold]

[warmed up]

[reliable]

[unreliable]

[measurement OK]

[failed]

Save result

Figure 3.4 – Steady-state performance benchmarking activity diagram

3.3.3. Package scala.tools.sbs.profiling

Package scala.tools.sbs.profiling implements a benchmarking mode

under the form of a profiler using the high level API Java Debug Interface (JDI) which is a

47

part of Java Platform Debugger Architecture (JPDA). The profiler is used to record the

activities of a benchmark running session and profile typical metrics specified by user,

includes:

 Classes that are loaded together with its methods that ran and/or fields accessing

and modifying

 Number of boxings/unboxings

 Number of steps performed

 Memory activities that consists of types of garbage collectors have been run,

their number of cycles and time spend. Also, memory usage on heap and non-

heap memory, their init, used, committed and maximal memory

fragments

Interaction to this package i.e. the profiler is done through a trait, sub-type of

trait Runner, named Profiler, which has its implementation to be JDIProfiler.

Figure 3.5 depicts the relations among the types in package profiling.

The architecture of the profiling process follows the guide from Sun to write a debugger

based on the JDI API. When starting running, a JDIProfiler launches a new JVM

running the user program and creates a mirror of that JVM for management representing as an

instance of class com.sun.jdi.VirtualMachine. The mirror of the JVM is then

passed to be processed by a JDIEventHandler. All the requests for event generating are

registered. Finally, a JDIThreadTrace is created for each of the JVM’s threads recording

the events generated.

The result created using JDIProfiler is contained in an instance of class Profile.

It is then passed to MemoryProfiler to continue recording the activities of memory usage.

The ProfilingBenchmark is run in a new JVM under the control of GCHarness to

make sure the values recorded are achieved satisfied all the constraints of benchmarking

environment.

48

#profile()

<<trait>>

Profiler

-connectorArgument()

-launchTarget()

JDIProfiler

+process()

-handleDisconnectedException()

-handleEvent()

-setEventRequest()

-vmDisconnectedEvent()

-benchmark

-connected

-traceMap

JDIEventHandler

+fieldAccessEvent()

+filedModifyEvent()

+methodEntryEvent()

+methodExitEvent()

+stepEvent()

+threadDeathEvent()

-benchmark

-jvm

-profile

-steps

-thread

JDIThreadTrace

+profile()

MemoryProfiler

+measure()

-mode

-upperBound

GCHarness

+box()

+boxing()

+classes()

+loadClass()

+loadClass()

+memoryActivity()

+performStep()

+steps()

+toXML()

+unbox()

+unboxing()

+useMemory()

-_boxing

-_unboxing

-_classes

-_memoryActivity

-_steps

Profile

1

1

«refines»

«uses»

«uses»

1 *

«uses»

«uses»

Figure 3.5 – Package profiling’s class diagram

3.3.4. Package scala.tools.sbs.pinpoint

This package implements the bottleneck finding methodology named performance

regression pinpointing. Package scala.tools.sbs.pinpoint heavily depends on the

package scala.tools.sbs.performance since it also uses the same process of

measurement and regression detection. Many of its important classes extend classes from

package scala.tools.sbs.performance including the harnesses and benchmarks.

Package scala.tools.sbs.pinpoint will be described in details in section 4.8.

49

3.3.5. Package scala.tools.sbs.benchmark

This package contains all of the class definitions to represent the information about user

benchmarks.

BenchmarkInfo stores the basic information about a benchmark: its name, where to

find the source code, whether to compile…In addition, it composes the corresponding

concrete benchmark object using a concrete factory.

The snippet benchmarks and initializable benchmarks are the two supported kind of a

benchmark implementation. That may be

 A snippet benchmark – is a standalone Scala program that can run on Scala

independently from SBS. User defined it with a main method in an object

 An initializable benchmark – is mainly a class which implements a special trait

from SBS – a sub-type of BenchmarkTemplate which is provided to the

user and has the interface depends of the benchmarking mode. The initializable

benchmark is used when a lot of data has to be generated before starting the

benchmark. In practice, to be precise in performance measurements, we do not

want the cost of data preparation to influence the overall running time. In that

case, a initializable benchmark is used and its method named init() runs all

the initializations (things like loading data from files, creating large arrays or

instantiating data-heavy classes, etc.)

The benchmark templates are the interfaces provided to the user to implement their

initializable benchmarks. Those are sub-type of BenchmarkTemplate and are defined

depends on the benchmarking mode they are intended to run in.

A BenchmarkFactory using reflection to load the classes corresponds to the benchmark.

It defined the loading process from classpath but leaves the creating of benchmark

instances to the concrete sub-type.

The current benchmark hierarchy of package benchmark is depicted in Figure 3.6:

50

+name()

+argument()

+classpathURLs()

+sampleNumber()

+createLog()

+timeout()

+init()

+run()

+reset()

+context()

+toXML()

<<trait>>

Benchmark

-name

-classpathURLs

-src

-benchmarkObject

-context

-config

InitializableBenchmark

-_name

-_argument

-_classpathURLs

-_src

-_sampleNumber

-_timeout

-method

-_context

-config

SnippetBenchmark

+isCompiledOK()

+expand()

+readInfo()

-name

-src

-arguments

-classpathURLs

-sampleNumber

-timeout

-shouldCompile

BenchmarkInfo

+createFrom()

+createFrom()

#load()

<<trait>>

BenchmarkFactory

+init()

+run()

+reset()

-sampleNumber

-timeout

<<trait>>

BenchmarkTemplate

1 *

«uses»

1

*

«uses»

1

1

Figure 3.6 – Package benchmark’s class diagram

3.3.6. Other supporting packages

Package scala.tools.sbs.common

Consists of several very important traits, some of them define a number of the core

operations in SBS

 Reflector – has a simple implement to be SimpleReflector. A

Reflector provides the ability to dynamically load the definition of classes,

create class instances and find the location where the given class locates in

classpath using reflection
21

. Reflector is used in order to create

21

 http://en.wikipedia.org/wiki/Reflection_(computer_programming)

51

benchmark.Benchmark instances or support instrumentation phase of

performance regression pinpointing (see section 4.5)

 ObjectHarness – trait ObjectHarness is the super-type of all the

harnesses in SBS (see section 3.3.1 – small topic The Harnesses). An object

sub-type of ObjectHarness reports the result from a measurement by

printing the xml element representing the result to its standard output, which is

transferred back to the main JVM as a data stream
22

 RuntimeTypeChecker – uses scala.reflect.Manifest to test for

type-related constraints at runtime. It is mixed-in the implements of Runner

and the harnesses

 Backuper – backups and restores the unwanted files form their original

locations. Backuper is mostly used in the instrumentation phase of

performance regression pinpointing (see section 4.5)

 BenchmarkCompiler – compiles the benchmark source files into Java byte

codes. Its single implement, BenchmarkGlobal, uses the standard built-int

Scala compiler which is scala.tools.nsc.Global to do the compilation

and reporting on benchmarks that cannot compile

 JVMInvoker – has an implement to run Scala in new JVM, named

ScalaInvoker. The most important operation of JVMInvoker is invoking a

new JVM for some purpose and then using the two argument functions String

=> E, String => R (E and R are type parameters) to process each line of the

standard output and standard error, producing the two ArrayBuffer[R] and

ArrayBuffer[E] as the return values

Package scala.tools.sbs.io

io package defines the traits Log and Report which currently simply write plain

texts to .txt files. A special sub-type of Log is the object UI. It prints messages directly

to the console to interact with users.

Package scala.tools.sbs.util

Package util consists of a few utilities

 object Constant holds the platform-specific pre-computed values such as

path.separator, file.separator, etc.

22

 http://www.scala-lang.org/api/current/scala/sys/process/ProcessIO.html

52

 object FileUtil implements all the file-system-related operations

including file reading and writing, preparing working directory structure etc.

3.4. Experiment

In the next sub-sections, we will evaluate the performance and try detecting regression

on the benchmark named ArrayCopy (described in section 3.4.1) using statistically rigorous

data analysis. For doing so, we consider an experiment in which we compare the statistically

significant difference in the performances measured from different iterations of the

benchmark. Section 3.4.1 discusses the experimental setup: the benchmark, the configurations

of the virtual machine and the hardware platform. In section 3.4.2, we illustrate the process

evaluating the performance of the benchmark which includes the warming up phase. Finally,

sub-section 3.4.3 uses the figures included to depict the comparing results.

3.4.1. Experimental setup

This section describes the implementation and running environment for the benchmark

ArrayCopy.

The benchmark ArrayCopy

The benchmark used in this experiment is called ArrayCopy. The main activity of the

benchmark is to clone a set of arrays. The arrays to be cloned consist of arrays of types:

Object, Boolean, Byte, Char, Double, Float, Int, Long and Short, each has size

of 48000.

val size = 48000

val objectArray = new Array[Object](size)

val booleanArray = new Array[Boolean](size)

val byteArray = new Array[Byte](size)

val charArray = new Array[Char](size)

val doubleArray = new Array[Double](size)

val floatArray = new Array[Float](size)

val intArray = new Array[Int](size)

val longArray = new Array[Long](size)

val shortArray = new Array[Short](size)

val lst = List(

 objectArray,

 booleanArray,

 byteArray,

53

 charArray,

 doubleArray,

 floatArray,

 intArray,

 longArray,

 shortArray

)

Listing 3.2 – Benchmark ArrayCopy – arrays to be cloned

When run, as shown in Listing 3.2, benchmark ArrayCopy clones every element of the

scala.List of scala.Array named lst. It generates the new scala.List by using

the higher-order function map. map maps each element of lst, which is an array, into the

new element of newLst by applying the first-order function passed to it, in this case, the

function clone of the scala.Array elements.

val newLst = lst map (_.clone)

Listing 3.3 – Benchmark ArrayCopy – operations when run

The precision threshold is set to 2% by default (user can also modify the threshold with

SBS option --precision-threshold, see section 3.1 for the comprehensive list of user

arguments).

The number of measurements (the number of sample to apply statistical analysis)

retained to be kept is set to 13. This means that, for a performance measuring to be considered

success, it achieves a series of running time which has the length of 13 and its confidence

interval is less than 2% of its mean (we have described confidence interval statistics in section

2.3.1).

The iteration of the benchmark is initially set to 41. This means that a running time

achieved is the time needed for ArrayCopy to run 41 times. This makes sure the running time

measured is large enough (in general cases, up to several hundreds of milliseconds) thereby

meaningful.

Java Virtual Machine

We use the JVM distributed by Sun, Java SE 6 build 29: Java version 1.6.0_29, Java SE

Runtime Environment (build 1.6.0_29-b11), Java HotSpot Server VM (build 20.4-b02, mixed

mode). We consider running the Server VM of Java HotSpot Virtual Machine with the default

garbage collection strategy: Copy and MarkSweepCompact.

54

Hardware platform

We considered a single hardware platform in our performance evaluation experiment:

Intel Core 2 Duo CPU T5800 2.00GHz (2 CPUs) has 2048MB of main memory. The machine

runs the Windows 7 ThinPC operating system. In all the performance evaluations, we

consider the machine either unloaded or idle.

3.4.2. Warming up

As explained in section 2.2.1 and 2.3.3, for a measurement to be complete in steady-

state, the benchmark will have to run through its warming up phase which makes the

bytecodes fully optimized and perform the highest performance for the measurement.

Figure 3.7 illustrates the first measuring process of benchmark ArrayCopy to achieve a

series of running time performance and store it as a history for detecting regression in the

future.

Figure 3.7 – All measurements, including warming up phase,

of a measuring process on the benchmark ArrayCopy

The graph shows that SBS run through 30 measurements in total to retain the final

series of 13 running time samples. And therefore, SBS used the first 17 measurements to

warm up the benchmark. To be more precise in material data, we can explain the detection of

reaching steady-state as follows:

 First, measure the running time to get a series of 13 samples. The series has its

length exactly is equal to the length we want to retain. At the time, the mean and

sample standard deviation of the current series is computed, which are

0

100

200

300

400

500

600

R
u

n
 1

R
u

n
 3

R
u

n
 5

R
u

n
 7

R
u

n
 9

R
u

n
 1

1

R
u

n
 1

3

R
u

n
 1

5

R
u

n
 1

7

R
u

n
 1

9

R
u

n
 2

1

R
u

n
 2

3

R
u

n
 2

5

R
u

n
 2

7

R
u

n
 2

9

R
u

n
n

in
g

ti
m

e
(m

s)

Running time

Mean over 13
measurements

Standard
deviation

55

respectively 581.46 and 69.92. That makes the coefficient of variation 12%,

much larger than we expect. The conclusion here is that the benchmark has not

reached its steady-state

 The measuring is continued. For each new measurement, the oldest sample in

the series is removed and the new one is appended. The measuring and

computing are repeated until the CoV of the current series becomes less than

2%. The computed metrics for the next runs, respectively are the mean, the

sample standard deviation and the CoV, are listed below:

run mean standard deviation CoV

14 563.3846154 24.82451229 4.4%

15 557.5384615 21.08955265 3.7%

16 551.8461538 15.9991987 2.9%

17 548.0769231 9.393805924 1.7%

 At run 17, the CoV has become less the 2%, the steady-state is detected. The

final series retained is composed by the next 13 samples measured from run 18

to run 30

These measurement results are kept and used as the history to detect performance

regression in the future.

3.4.3. Statistically significant difference detection

The steps performed in the experiment as follow:

 A series was initially stored as the first history. That was the series we had

achieved by the measuring described in section 3.4.2

 The benchmark iteration was changed from 41 to 45 for the benchmark to have a

worse performance. That caused the performance regression that we intend to

detect using confidence interval test. This is considered as a failing benchmark

and the measurement results were not stored as history. Illustrated by Figure 3.8

 The benchmark iteration was changed from 45 back to 41. That caused the

benchmark to perform its original performance so that no regression can be

detected by confidence interval test. The measurement results are stored as

another history. Illustrated by Figure 3.9

 The benchmark iteration was changed to 45 once again. The benchmark then

had a worse performance. Since we already had 2 series as persisting histories,

56

the ANOVA test was performed instead of the confidence interval test.

Illustrated by Figure 3.10

 The benchmark iteration was changed back to 41 to illustrate the case ANOVA

test detects no performance regression. Illustrated by Figure 3.11

All the series are achieved in steady-state (all the measurements taken in steady-state,

the benchmark had run through warming up phase like ones in section 3.4.2).

Performance regression detected using confidence interval

After changing the benchmark iteration to 45, the performance measuring was

performed and the result series is depicted in Figure 3.8 in its comparison with the history.

Figure 3.8 – Performance regression detection using confidence interval –

regression detected

It can be seen with naked eye that the new performance is almost 600 milliseconds and

significantly worse than the original one which even cannot reach 550 milliseconds. The

confidence interval computed is [-58.21; -47.95] at the confidence level reduced to 90%.

Since the confidence interval did not contain zero, there is performance regression detected.

No performance regression detected using confidence interval

The benchmark iteration was changed back to 41, causing the benchmark performs its

original performance as depicted in Figure 3.9.

0

100

200

300

400

500

600

Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Run
10

Run
11

Run
12

Run
13

R
u

n
n

in
g

ti
m

e
(m

s)

History

Current measurements

57

Figure 3.9 – Performance regression detection using confidence interval –

no regression detected

The new performance is now about 550 milliseconds just like the samples stored in

history. The confidence interval computed is [13.64; 1.79] at the confidence level 99%. The

confidence interval did contain zero, so there is no performance regression detected and the

measurement results are stored as another history.

Performance regression detected using ANOVA

After once again changing the benchmark iteration to 45, the performance results are

measured and shown in Figure 3.10 in its comparison with the histories.

Figure 3.10 – Performance regression detection using ANOVA –

regression detected

0

100

200

300

400

500

600

Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Run
10

Run
11

Run
12

Run
13

R
u

n
n

in
g

ti
m

e
(m

s)

History

Current measurements

0

100

200

300

400

500

600

Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Run
10

Run
11

Run
12

Run
13

R
u

n
n

in
g

ti
m

e
(m

s)

History 1

History 2

Current measurements

58

The running time of the benchmark is now high again. The statistics computed as

follow:

 F-value computed 137.36

 F12; 36 according to F-distribution 5.25

Since F-value is much larger than F12; 36 from the distribution, there is performance

regression detected.

No performance regression detected using ANOVA

Finally, Figure 3.11 depicts the series achieved after changing benchmark iteration back

to 41 along with the series from histories.

Figure 3.11 – Performance regression detection using ANOVA –

no regression detected

The benchmark performance changed back to its original value which is about 550

milliseconds. The statistics computed at this point:

 F-value computed 3.99

 F12; 36 according to F-distribution 5.25

In this case, F-value is smaller than F12; 36 from the distribution, and so, no performance

regression detected.

0

100

200

300

400

500

600

Run
1

Run
2

Run
3

Run
4

Run
5

Run
6

Run
7

Run
8

Run
9

Run
10

Run
11

Run
12

Run
13

R
u

n
n

in
g

ti
m

e
(m

s)

History 1

History 2

Current measurements

59

Chapter 4

Performance Regression Pinpointing

Despite the fact is that statistically rigorous performance regression detection

methodology is trustworthy and reliable, by using the benchmarking tools provided by SBS

introduced so far, we can only detect whether there is performance regression exists inside our

program. In particular, when having a large codebases and a big number of committers to a

project (like, for example, an OS, language or some framework) it is sometimes hard to find

out where is the change that causes the performance regression. In fact, just one very little

false change in deep down to the standard library implementation may result in a largely

significant lost in overall performance. Such cases actually exist in reality and many of them

have been found so far.

Those changes are called performance regression and should be considered as

implementation errors, not causing the system to crash but heavily influencing speed and load

when they are left unchecked. Scala (or any other language and/or framework) developers and

library designers may need a tool to debug those errors to help them get the regression

point(s) fixed before delivering the product to their clients.

In this section, we would like to introduce a regression detecting method, called

performance regression pinpointing, which is already implemented as a benchmarking mode

run in SBS. This methodology should be used to point out the as-small-as-possible piece of

code that causes the performance regression. The main idea is using bytecode instrumentation

to measure the performance of a piece of code and statistically detect its difference from the

performance of a previous version implementation kept from earlier builds.

Starting from here, we will call a performance regression point a bottleneck.

60

4.1. Prevalent bottleneck finding methodologies

4.1.1. Profiler

When it comes into bottleneck finding inside a code snippet, the most preferred solution

is to use a profiler. With an enough-powered profiler, one can measure the performance of a

single method during a running pass to use for comparing in the future. This solution is not

statistically rigorous thereby may lead to miss-judging and wrong conclusions as described in

section 2.3.

Another drawback of this approach is the way a profiler is implemented. In Java world,

a profiler is written based on a native API called Java VM Tool Interface (JVMTI) and

packed as a program called an agent. At the profiling time, the agent is required to run along

in the same JVM with the code snippet. It influences the run of the snippet to produce useful

data and reports them in some I/O heavy way. That significantly violates the constraints that

require the benchmarks to run on a clean runtime environment.

4.1.2. Further benchmarking

Another approach is writing more benchmarks for typically suspicious part of the

benchmark that caused the performance regression. This may lead to miss-conclusions if done

in “native” ways – methodologies that are not statistically rigor (see section 2.3). In

statistically rigorous methodology, this requires addition manual effort to generating sample

histories to compare with the performance of those parts mentioned above. With this

approach, benchmarkers/developers have to repeat the process: writing more and more

benchmarks, generating more and more sample histories and hoping the bottleneck will soon

be found.

4.2. Main work flow

Rather than using approaches mentioned in section 4.1, we intend to dynamically

programmatically point out the bottleneck lies inside the interested code snippet. Our

approach is to find the bottleneck by detecting the difference in performance between two

versions of Scala .class files:

 The current version – the newest built classes which cause performance drop

61

 The previous version – the classes from one of the earlier builds, which are well-

tested and have an accepted performance

In compare to the prevalent methodologies described in section 4.2, our approach has

several fundamental differences and advantages:

 Programmatic – not only measures the performance of a piece of code, also finds

the bottleneck inside it if exists. Without any manual effort required from user,

uses a binary-search like algorithm to narrow the piece of code that causes the

performance drop. In the best case that the narrowed piece is a single function

call expression, the whole process is recursively applied to the just-collected

function.

 Clean JVM – the inspected code snippet is run in a clean new JVM without any

agent and event processing comes along. More precise performance

measurement, no halting in method invocations to generate events or process

requests.

 Automatically performance drop detection – runs once and compares the

performance difference from an earlier accepted version of .class files.

 Statistically rigorous difference detection – difference in performances is

detected using statistically rigorous performance regression detection

methodology rather than comparing derived metrics such as average, maximal,

minimal running time...

The algorithms shown in following sub-sections illustrate the main flow of our

technique. For convenience, we represent the inspected source code (typically a method) by

“slicing” it into lists of function call expressions, called layers. A layer consists of all the

function call expressions which have a same property: when any of them is called, the call

stack will have the same height. The layers are numbered by their relative depth to the

inspected method, which means that the layer 0 consists of only one method: the inspected

method itself. For example:

def foo {

 bar

 baz

}

def bar {

 one

 two

62

}

def baz = zero

 layer 0: foo

 layer 1: bar, baz

 layer 2: one, two, zero

In the following sub-sections, we introduce three algorithms. One of those is called

Digging Finding. It is a recursive algorithm used to navigate the overall finding process into

one-level-deeper layer when the bottleneck found at the current layer is a single function call.

The other two are the finding algorithms applied on the function call list of the inspected

method at each layer DiggingFind (see section 4.2.2) visits.

4.2.1. Method body as listing function call expressions

A fact should be noticed is that mere computations (such as arithmetic operations +, -,

*, / etc.) are not likely causing the performance drop because they are compiled directly into

simple Java bytecodes. If we put them aside, all left in a method body is only method or

function call expressions. A method body might also contain loops which cause a

performance regression, but in this case the enclosing method is detected as the bottleneck. A

function call expression becomes a basis unit that may produce the bottleneck.

With the instrumentation approach (see section 4.4) the body of a method is read from a

.class file that contains the compiled bytecodes. Therefore, the method body is represented

as a flat list of function call expressions with no respect to other bytecode instructions

corresponding to basic operations such as adding, loading, jumping etc. For example, a def

foo = bar(baz) is translated as List(baz, bar) just like a def foo = baz +

bar.

In the next sections, we use the term function call expression list to address all of the

lists of function call expression described above.

4.2.2. Digging finding

In the first step, the inspected method, which is the method we intend to locate the

bottleneck inside, is checked whether to have the same list of function call expressions for

both the current and the previous version of implementation. One big note is that, the

inspected method body is not expected to be changed between the two versions; otherwise, an

63

exception is raised. The changes, if any, should occur in the implementation of layers deeper

than layer 0. If any change happens at layer 0, probably it is the cause of regression, the

process is decided to stop and return the inspected method as the bottleneck.

Algorithm: DiggingFind

Input: the method to inspect

Output: the bottleneck if exists

if (method.currentCallList matches method.previousCallList) {

 val found = binaryFind(method.callList)

 found match {

 case bn: Bottleneck => if (bn.length == 1) {

 val newFound = diggingFind(bottleneck.method)

 newFound match {

 case NoBottleneck => found

 case something => newFound

 }

 else found

 case _ => NoBottleneck

}

else throw Error

Algorithm 4.1 -Algorithm bottleneck digging finding

After the function call expressions list have been checked, a narrowing algorithm, that

may be Linear Finding or Binary Finding in the following sections, is applied to find the

bottleneck. If the bottleneck exists, and happens to be a single function call, it will be

recursively inspected by diggingFind() to find the inner bottleneck.

4.2.3. Linear finding

This algorithm together with BinaryFind (described in section 4.3.3) is used to

narrow the length of the function call list which causes the performance regression.

Algorithm: LinearFind

Input: a list of function call expressions

Output: the bottleneck if exists

if (list.length == 0)

 NoBottleneck
else if (list.head.currentPerf == list.head.previousPerf)

 Bottleneck(callList.head)
else

 linearFind(callList.tail)

Algorithm 4.2 -Algorithm bottleneck linear finding

64

In algorithm 4.2 and algorithm 4.3, currentPerf and previousPerf respectively

are the performances performed by the two, current and previous, versions of implementation.

They are obtained using statistically rigorous performance regression methodology (see

section 2.3); each running time value of the piece of code is measured by instrumenting the

bytecodes complied from the program (see section 4.4 for more detail). Algorithm

BinaryFind is a simple recursive algorithm which does comparing the performances

performed by the two, current and previous, versions of implementation. It returns the first

bottleneck found when the corresponding function call is detected that currently performed

statistically worse than the previous version. In the case there is no bottleneck lies inside the

inspected method, the algorithm returns NoBottleneck when it receives an empty list as

the argument callList.

4.2.4. Binary finding

The function BinaryFind defined by the pseudo code in Listing 4.2 briefly describes

how we can “precisely” find out the performance bottleneck inside a piece of code which is

simply represented as a list of method call expressions.

Algorithm: BinaryFind

Input: a list of function call expressions

Output: the bottleneck if exists

if (callList.currentPerformance ==

 callList.previousPerformance)

 NoBottleneck
else if (callList.length == 1)

 Bottleneck(callList)
else {
 val (first, second) = binaryDivide(callList)
 try {
 val firstFound = binaryFind(first)

 firstFound match {
 case _: Bottleneck => fisrtFound
 case _ => binaryFind(second)

 }

 }
 catch { case Error => Bottleneck(callList) }

}

Algorithm 4.3 - Algorithm bottleneck binary finding

The algorithm input is initially a list of all of the method call expressions in the whole

method body. Actually it is not as simple as a relation operation == (equivalent to equals)

65

like the one in the pseudo code, at the first step of the algorithm, we use statistically rigorous

performance regression detection methodology to achieve the runtime performance and

detect whether the difference exists between the performances of the current version and the

previous one. We will describe the process in more details in section 4.5 and 4.6.

When there is no statistically significant difference detected, we return the result

indicates there is no bottleneck found inside the inspected piece of code. (Note that type

NoBottleneck and type Bottleneck are both subtypes of type Found in the pseudo

code).

Otherwise, the inspected piece of code is a bottleneck itself, and it alone causes a

significant drop in the overall performance so that it can be detected using statistically

rigorous performance regression detection methodology. One may satisfy with this result and

happily return the snippet itself to the user. But with our methodology, we intend to be more

precise and specific. We try to narrow the range of the bottleneck as small as possible, and in

the best case, to a single method call expression.

Pseudo function call binaryDivide() is used for splitting the original list into two

function call expression lists, both have their length which are equivalent to each other. The

narrowing operation is recursively applied again and again until no statistically significant

difference found, or, the function call expression list becomes a single function call

expression.

4.3. Bounds on running time

The whole bottleneck finding process will terminate normally on the cases specified

below:

• when reaches the depth user specifies

• when reaches a method specified to be ignored

• when reaches a native method

• when reaches a method has been inspected before

In the case there is some error occurs when running performance measurement process

or there is no statistically significant difference detected inside the inspected method, the

66

whole finding process will stop also. And finally, the current bottleneck collected is reported

to user.

Given the instrumentation, backup-ing and difference detecting processes run in

constant time. Let:

 t is the time needed to run the inspected piece of code for both the current and

previous versions

 D is the maximal depth of the digging process, specified by user

 d is the actual depth of the digging process, d ≤ D

 si is the length of the list of function call expressions of the inspected method at layer i

(i ≤ d)

Suppose the length of the function call expression list at layer i is 2 , the binary

finding algorithm runs at most ki times to narrow the list to a single function call expression.

Therefore, maximal running time at layer i is

 2

The maximal total running time (which also is the normal one) for all d layers is

 ∑

 ∑

2
 ∏

In the function call expression list at layer i, the probability of a function call is the

bottleneck is the first bottleneck is

. With linear finding algorithm, the average running time

at layer i is

 ∑

2

2

The average total running time for all d layers with linear finding algorithm is

 ∑

2
 ∑

2
 ∑

67

The maximal running time at layer i, which will be taken when the bottleneck is the last

function call in the function call list at layer i, is

The maximal total running time for all d layers with linear finding algorithm is

 ∑

 ∑

Figure 4.1 – Running time at one layer with increasing length of code

Figure 4.1 visually illustrates the comparison of the complexity – running time of

Binary Finding and Linear Finding in its average case and worst case. The time consumed by

Binary Finding becomes significantly small in compare to Linear Finding when the length of

the function call list increases. This can be explained by the o-notation of Binary Finding is

O(log2(n)) while Linear Finding is O(n) with n is the length of the function call list of the

inspected method at some of the layers.

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25

R
u

n
n

in
g

ti
m

e
(t

)

Number of method calls

Binary find

Linear find average

Linear find maximal

68

4.4. Scala class instrumentation

The most important step of performance regression pinpointing is to achieve the series

of running time of a small piece of code snippet. Each performance measurement (which is

one element of the series) needs to be as accurate as possible, so we do not allow any

influence to the measurement process. Those activities such as: generating event/request, I/O,

interacting with other OS processes… should be prevented.

In prevalent methodologies, one may create samples by interrupting the execution at

some instruction, using the old Java Virtual Machine Profiler Interface (JVMPI) introduced in

Java 1.4.2. JVMPI has been removed since JDK 6 and replaced by Java Virtual Machine Tool

Interface, which is a part of Java Platform Debug Architecture (JPDA). JPDA defines an

event/request based interacting protocol between the host and client JVMs. Probably these are

not the best choices to be applied in our approach.

Instead, we directly instrument the Scala .class file in which the inspected method is

declared. The most basic implementation to do instrumentation to get the running time is to

inject two instructions, say, start() and stop() at the beginning and the end of the

inspected code:

start() // injected using instrumentation

// do something really costs much time here

stop() // injected using instrumentation

Listing 4.1 – Basic instrumentation to measure running time

What start() and stop() do are essentially get the two values of current system

time with System.currentTimeMillis() (written with Java) and calculate their

subtraction to achieve the running time. But the problem is that, start() and stop() are

not available in the constant pool of the inspected class. That leads to the necessary of re-

compiling and loading the class again, what is, by specification, not allowed by Sun’s JVM.

In fact, class reloading is allowed by Sun’s implementation of JVM, but the JVM has to be

invoked with the option --debug, which enables JPDA in the JVM working session with

other agents run along. That certainly violates our requirements about a clean JVM for

measuring performance.

69

Fortunately, we have solved those problems completely with our combination of

measurement methodology and a Java bytecode instrumentation library call Javassist
23

.

Javassist is a class library for editing bytecodes in Java. It provides an API level of Java

source code, which means, user can simply manipulate a Java class with its high level objects

such as class, constructor, field, method… without the need of knowledge of the specification

of the Java bytecode. It comes along with a Java compiler of itself to recompile the class after

being modified.

After instrumentation phase, the inspected class is loaded and run in a clean brand new

JVM invocation to be measured the performance. It is run under the control of a harness

(which is described in section 3.3). The harness class should implement the two method

start() and stop(), and the path to it had been provided to Javassist Java compiler to

have start() and stop() available.

Another difficulty is to find the implementation of the interested piece of code in the

classpath. Scala has lots of automatically generated .class files for traits, objects,

anonymous functions… and their actual body probably is not located in the class file which

has the name of the class they were declared in. Even though one might have written the

entire Scala program himself, at the first glance he may not know which .class file

contains the body of the method he is interested in at all.

Finally, to make things even more complicated, currently there is no tool or library

supports Scala class instrumentation. Javassist has no specific component to be used on Scala

class files. Essentially, at bytecode level, Scala class is just an ordinary Java class. But there

some important transitions from Scala to Java happen at compile time: Scala class hierarchy,

val and var implementation, function value, trait and object…

To overcome those problems above, the knowledge of how Scala codes compile into

Java bytecodes is necessary. We explain some of those along with the process to get the

implementation of the inspected method can be instrumented using Javassist as follows:

 val is translated into two components: a private final field together with

an accessor method which has the same name, same access level with the val

and an empty parameter list. val accessing through Java is done by using the

accessor method. For example:

23

 http://www.csg.is.titech.ac.jp/~chiba/javassist/

70

// defined in Scala

class A { val a = 1 }

// translated in Java

class A {

 private final int a = 1;

 public int a() {

 return this.a;

 }

}

// access in Scala

val x = (new A) a

// access in Java

int x = (new A).a();

Listing 4.2 – Scala to Java example – val

 var is translated with the same name convention as val, but the generated

private field is not final. In addition, var has a modifier method which has the

name composed using the name of the var prefixed by _$eq. This modifier

method in general has one parameter named x$1 which has the same type with

the var. For example:

// defined in Scala

class A { var a = 1 }

// translated in Java

class A {

 private int a = 1;

 public int a() {

 return this.a;

 }

 public void a_$eq(int x$1) {

 this.a = x$1;

 }

}

// modify in Scala

(new A).a = 0

// modify in Java

(new A).a_$eq(0);

Listing 4.3 – Scala to Java example – var

 class and abstract class is compiled just like Java classes

71

 trait is a special mechanism in Scala, used for multiple inheritance (mix-in

composition) and implementing rich interfaces (described in more details in

section 2.1). For more than one trait to be able to be mixed-in together, the only

way in Java is to be represented as interfaces. In fact, a trait is compiled into two

class files:

o one has the original name and is an interface with all the method

prototypes included.

o one has the original name suffixed by $class and is an abstract

class. All the methods that have already been implemented in the trait

definition are re-defined in this abstract class as static methods.

These static methods’ respective parameter lists are prepended by a

parameter name $this which has the type which is the generated

interface. Also, all the references to this in the methods’ bodies are

changed into $this. Classes that have the trait mixed-in are compiled

implementing the generated interface and forward all the calls to

methods in the trait to the corresponding static method in the generated

abstract class with the first arguments always are this.

// defined in Scala

trait T { def foo = 1 }

class C extends T

// translated in Java

interface T {

 int foo();

}

abstract class T$class {

 public int foo(T $this) {

 return 1;

 }

}

class C implements T {

 public int foo() {

 return T$class.foo(this);

 }

}

Listing 4.4 – Scala to Java example – trait

72

 object is another special type definition in Scala, it supposed to be the

singleton class – a class that always have a single instance at runtime. An

object is compiled into two .class files:

o one has the original name and is a final class with all the methods

from the object definition implemented as static final. Everything

that they do is to, from the other generated class, first get the value of a

special static field named MODULE$ (described below) and then invoke

the corresponding method on it.

o one has the original name appended by $ and is also an final class. All

the methods that were in the object definition are re-defined in this final

class. It has no constructor and has a special additional field named

MODULE$ which has its type this class itself. This field is the only

instance of the “object class”. For example:

// defined in Scala

object O { def foo = 1 }

// translated in Java

final class O {

 public static final int foo() {

 return O$.MODULE$.foo();

 }

}

final class O$ {

 public static final O$ MODULE$ = new O$;

 public int foo() {

 return 1;

 }

}

Listing 4.5 – Scala to Java example – object

We do not expect that it is necessary for users to have the knowledge about the back-

end design of Scala programming language and the instrumentation approach. Therefore,

method bodies inside class definitions is looked for based on our inference and assumption.

Typically, the class looking process first looks for the desired method in class that one’s name

is prefixed by $class and $. If nothing found in there, it then will look for method body in

the class that has the name exactly matches what users specified. The reason of doing that is,

the fact that the true definition of a method is not lies inside the class users expected it to do is

73

inferred. What is defined in user specified class is typically an interface or a bridge method,

which we do not want (nor are able to) do instrumentation on.

So, following is the four-step process we advocate to do instrumentation on a method –

specified by user that – named foo and defined in the class (or trait or object) named Clazz:

 Look in classpath for the class named Clazz$class. If it can be found, it is

the class we want. Otherwise, look for the class named Clazz$ with the same

expectation. If Clazz$ can neither be found, the target class is Clazz. Clazz

surely exists for user program to be able to run

 Backup a copy of .class file contains the class has just been found, away

from classpath because we do not want a ClassLoader to load it instead

of the instrumented one

 In the class found, look for the method named foo. Do instrumentation on foo

using Java bytecode instrumentation library

 After running, remove the instrumented class from classpath and restore the

original version from backup place for future use

This process has been successfully applied in practice within the implementation of

Scala Benchmarking Suite and worth to try until an instrumentation library specific for Scala

programming language comes into place.

4.5. Backup .class files

As mentioned in the end of the previous section, some activities of moving .class

files around are necessary for the measurement phase to be correct. This section gives a brief

introduction to Java class loading and describes the need of backup-ing .class files in or

out the classpath as well as our approach to provide the right version of a .class file to

the JVM.

With our approach to do comparing over two versions of .class files to detect the

bottleneck, it is necessary to point out that, at a typical point in time during the bottleneck

finding process, there are maybe up to three versions of the same .class files:

 The current version – a set of .class files contain the definitions of current

build

74

 The previous version – a set of .class files contain the definitions of previous

build

 The instrumented version – a set of .class files which can originally be the

current or the previous classes. These .class files contain the class we have

instrumented to achieve its measurements

It is very important to be able to load the right version during measurement phase. Or

we will end up, without any idea that we do, measure the wrong performance or even be able

to measure nothing at all. To explain the solution to this problem, a general knowledge of

Java class loading may be necessary.

Essentially, a Scala runtime session is just a Java runtime session with the main class

which is scala.tools.nsc.MainGenericRunner (if Scala is about to run on JVM

and compiled to Java bytecodes instead of CLR). This main class loads and runs users’ Scala

programs using reflection. Scala has its own class loader, but the class loaders are

implemented by inheriting from Java class loaders, thereby leaves all the native activities to

Java.

A class is known by Java runtime environment when it is referenced by its name by a

class that has been already loaded. As referenced in Oracle’s documentations, the order of

searching locations for a class loader is as follows:

 Bootstrap classes: the runtime classes in rt.jar, internationalization classes

in i18n.jar, etc.

 Installed extensions: classes in JAR files in the lib/ext directory of the JRE,

and in the system-wide, platform-specific extension directory.

 The user class path: classes, including classes in JAR files, on paths specified by

the system property java.class.path. If a JAR file on the class path has a

manifest with the classpath attribute, JAR files specified by

the classpath attribute will be searched also. By default,

the java.class.path property's value is the current directory. It can be

changed by using the -classpath or -cp command-line options, or setting

the CLASSPATH environment variable.

Accordingly, given a class name at runtime, the class locates in rt.jar is loaded no

matter whether another one with the same name exists in user classpath. But we could not

75

find the search order rules for the user-defined classpath. In many tests and tries on Sun’s

JVM, we can see that classes are searched following the first-come-first-serve order. That

means the class locates in the first location specified in classpath will be loaded. But there is

no evidence that we know of, and it may depend on the implementation of the JVM. So, no

conclusion at all.

Instead of relying of luck, we decided to move the undesired classes out of the

classpath. This is done by (i) loading the class (ii) tracing back to its location and (iii)

moving it into the backup location with the respect to platform-specific directory structure for

packages. It requires that the locations of the previous version and the instrumented version

are not included in the original classpath. Finally, to make it sure, the path to the previous

version is prepended to classpath during its measuring performance while the path to the

instrumented version is placed at the first location in both of the measurement phases.

There exists another solution, which seems better, which is defining a custom class

loader. This class loader is supposed to find, instrument and transform the original classes at

measurement phase. The reason why that is not preferred in this case is that the SBS is

supposed to work with problems in the Scala standard library. It suggests that the class is

going to be transformed likely has been loaded. The approach to load and redefine a class at

runtime is not interesting with the constraints about the clean JVM environment for

benchmarking.

4.6. Package scala.tools.sbs.pinpoint

Performance regression pinpointing has been implemented as a benchmarking mode

run in the Scala Benchmarking Suite, which will soon be integrated into Scala’s trunk. This

section describes the structure and working flow of that implement – package

scala.tool.sbs.pinpoint.

The important components consists of

 Trait Scrutinizer – the central trait of the package. Trait Scrutinizer

extends trait Runner and is implemented by class MethodScrutinizer

 Trait ScrutinyRegressionDetector detects the statistically significant

running time difference between the two versions of the benchmark classes. It is

implemented by the class MethodRegressionDetector

76

 Package strategy holds the traits which define all the higher-order function

which are factored out to do their specific work:

o Trait TwinningDetector – serially runs the benchmark on its two

versions of classes. After the performances is achieved, detects the

difference between those

o Trait PreviousVersionExploiter – backups the .class files

corresponding to the current version and run the benchmark on its

previous version

o Trait InstrumentationRunner – does some kind of

instrumentation and run the benchmark to achieve the desired metrics

 Package instrumentation consists of the trait CodeInstrumentor and

its Javassist-based implement, class JavassistCodeInstrumentor.

Package instrumentation defines all the necessary operations to

accomplish our goal measuring the performance of a specific piece of code

 Package bottleneck holds the trait BottleneckFinder and its sub-

classes BottleneckDiggingFinder – BottleneckBinaryFinder

which implement the algorithm DiggingFind and BinaryFind described

in the sections 4.2.2 and 4.2.4 (we did not implement algorithm LinearFind

in SBS)

 Besides, there are several supporting traits and classes which define benchmarks,

exceptions, results, etc.

In Figure 4.2, we visually illustrate the simplified static structure of the package

pinpoint. Components included are only traits and classes which define operations controlling

the finding process

77

+find()

<<trait>>
BottleneckFinder

#scrutinize()

<<trait>>
Scrutinizer

-instrumentedOut
-backup

MethodScrutinizer

+detect()

ScrutinyRegressionDetector

«uses»

-measureCurrent()
-measurePrevious()
-measureCommon()

-benchmark

MethodRegressionDetector

+instrumentAndRun()

<<trait>>
InstrumentationRunner

+backupPlace()

<<trait>>
Backupable

+instrumentedOut()

<<trait>>
Instrumentable

+twinningDetect()
#regress()

<<trait>>
TwinningDectector

+exploit()

<<trait>>
PreviousVersionExploiter

«uses»

-binaryFind()
-measureCurrent()
-measurePrevious()
-measureCommon()

-benchmark
-declaringClass
-bottleneckMethod

BottleneckBinaryFinder

+diggingFind()
+shouldProceed()

-benchmark
-entryClass
-entryMethod

BottleneckDiggingFinder

«uses»

Figure 4.2 – Package pinpoint’s simplified class diagram

The work flow in a pinpoint benchmarking mode run is already described in section 4.2

except the first step to compare the two, current and previous, performances of the inspected

method. Following is the illustration for a run process finding the bottleneck

78

MethodScrutinizer BottleneckBinaryFinderBottleneckDigging
Finder

MethodRegression
Detector

Detect regression
in the method

Match
 function call list

Split function
cal list

[not stop]

Find in
first half

Find in
second half

[found][single call][stop]

[match][not match]

[not found]

[failed]

[OK]

[multi-call]

Figure 4.3 – Bottleneck finding activity diagram

4.7. Case study

This section explains the benchmark design and implementation to illustrate the process

of finding the bottleneck by performance regression pinpointing. Firstly, we introduce a real

life performance problem found in the Scala bug tracking system which is easy to reproduce

and understand. Next is the implementation of a benchmark that has the problem intended to

appear in. Finally, we briefly explain and illustrate the process of finding the bottleneck inside

the benchmark.

79

4.7.1. Problem with scala.collection.mutable.ListBuffer.size

The problem raised by the ticket number SI-4933 in the Scala bug tracking system. It

stated that the operation of method size from class

scala.collection.mutable.ListBuffer took the complexity of O(n) instead of

O(1) like method length although they two had the same meaning in the case of sequences.

The reason why that happened was that length returned the value of a private variable

which was updated every time elements were added or removed but in the meantime, size

was inherited from scala.collection.TraversableOnce counting all the elements

currently in the list (more details about scala.collection in Chapter 27 – [1]).

The problem fixed in Scala revision r25684 by overriding size to return the result of

length. In the next section, we use the latest Scala revision as the previous version which

has ListBuffer.size run in O(1). To produce the current version that drops in

performance, we comment out the overriding of size to have it run in O(n). The benchmark

is composed in the way which does lots of call to ListBuffer.size on large length lists

so that the difference in performance of O(1) and O(n) can be detected.

4.7.2. The pinpointing benchmark

The benchmark used in this case study is called PinpointDemo. It runs lots of

invocations of ListBuffer.size to reflect the problem described in the previous section

along with some other costing time activities. The important parts of the benchmark

implement is shown in Listing 4.6

class PinpointDemo {

 val failure = ListBuffer_size

 val ok = Iterator_flatten

 def run() = {

 bridge

 ok.main

 }

 def bridge = {

 foo

 failure.run

 }

 def foo = Thread sleep 50

80

}

object ListBuffer_size {

 val lb =

 for (_ <- 1 to 100000) yield ListBuffer((0 to 50): _*)

 def run() {

 val ls = (1 to 15000) map (lb map (_ size))

 ls foreach (_ => ())

 }

}

object Iterator_flatten {

 def main /* does something costing time here */

}

Listing 4.6 – Pinpointing benchmark PinpointDemo – simplified

Class PinpointDemo defines 3 methods run, bridge and foo together with 2

fields ok and failure. Their roles and operation as follow:

 run calls bridge before calling the method main of the object stored in field

ok

 bridge calls foo, then calls the method run of the object stored in field

failure

 foo makes the whole benchmark sleep for 50 milliseconds

 ok holds the object Iterator_flatten

 failure holds the object ListBuffer_size

 The two objects ListBuffer_size and Iterator_flatten are put in fields to

force their data initialized before running to avoid the data initialization influencing the

performance.

Object ListBuffer_size makes sure that the performance regression exists. It

consists of a very large number of scala.collection.mutable.ListBuffer

objects and performs operations based on lots of invoking the method size. The object is

defined in this way so that when the overriding of size forwarding to length is

commented out, PinpointDemo.run will introduce a significant lost in performance. The

last line of ListBuffer_size.run is used to fool the JIT compiler of the JVM not to

81

optimize away the cloning process. The method foreach applies the anonymous function _

=> () to each element of ls.

The inspected method – entry of the finding process – is set to be the method run of

class PinpointDemo.

The depth of the finding process is set to 2.

The number of measurements to be kept for each series is set to 13.

4.7.3. Bottleneck finding process

This section follows the finding of the bottleneck inside PinpointDemo.run step by

step and explains what happening at the time.

The inspected method is method PinpointDemo.run as specified in the previous

section. The method body is translated into a function call expression list as shown in Listing

// method definition

def run() = {

 bridge()

 ok.main()

}

// function call expression list

PinpointDemo.bridge:()V

PinpointDemo.ok:()LIterator_flatten$;

Iterator_flatten$.main:()V

Listing 4.7 – Function call expression list of method PinpointDemo.run

It consists of 3 function call expressions:

 PinpointDemo.bridge – call to method bridge() of the class

PinpointDemo

 PinpointDemo.ok – the getter of field ok which holds the object

Iterator_flatten

 Iterator_flatten$.main – call to method main() of the object

Iterator_flatten

The first step is to detect performance regression on the piece of code represented by the

function call expression list above. The result is displayed in Figure 4.4:

82

Figure 4.4 – Pinpoint performance comparison – PinpointDemo.bridge to

Iterator_flatten$.main

The confidence interval computed from the two series of running time is [-23.58; -

18.88] at the confidence level reduced to 90%. This means that the overall performance drops

about 20 milliseconds and the performance regression does exist.

In the next step, the function call expression list is split into two shorter lists to perform

the BinaryFind algorithm. The first list consists of only one function call –

PinpointDemo.bridge. Its performance comparison is shown in Figure 4.5.

Figure 4.5 – Pinpoint performance comparison – PinpointDemo.bridge

0

100

200

300

400

500

600

700

R
u

n
 1

R
u

n
 2

R
u

n
 3

R
u

n
 4

R
u

n
 5

R
u

n
 6

R
u

n
 7

R
u

n
 8

R
u

n
 9

R
u

n
 1

0

R
u

n
 1

1

R
u

n
 1

2

R
u

n
 1

3

R
u

n
n

in
g

ti
m

e
(m

s)

Previous

Current

0

50

100

150

200

250

300

350

400

R
u

n
 1

R
u

n
 2

R
u

n
 3

R
u

n
 4

R
u

n
 5

R
u

n
 6

R
u

n
 7

R
u

n
 8

R
u

n
 9

R
u

n
 1

0

R
u

n
 1

1

R
u

n
 1

2

R
u

n
 1

3

R
u

n
n

in
g

ti
m

e
(m

s)

Previous

Current

83

The confidence interval computed is [-34.29; -30.02] at confidence level 90%. It

indicates that PinpointDemo.bridge is actually a bottleneck causing the performance

drop about 30 milliseconds to the method PinpointDemo.run.

The finding process now ignores the second half of the list and digs into method

PinpointDemo.bridge hoping to find the bottleneck inside it. The inspected method is

now PinpointDemo.bridge and its body is translated into a function call expression list

as shown in Listing 4.8

// method definition

def bridge = {

 foo

 failure.run

}

// function call expression list

PinpointDemo.foo:()V

PinpointDemo.failure:()LListBuffer_size$;

ListBuffer_size$.run:()V

Listing 4.8 – Function call expression list of method PinpointDemo.bridge

Figure 4.6 depicts the performance comparison for the whole list.

Figure 4.6 – Pinpoint performance comparison – PinpointDemo.foo to

ListBuffer_size$.run

0

50

100

150

200

250

300

350

400
R

u
n

 1

R
u

n
 2

R
u

n
 3

R
u

n
 4

R
u

n
 5

R
u

n
 6

R
u

n
 7

R
u

n
 8

R
u

n
 9

R
u

n
 1

0

R
u

n
 1

1

R
u

n
 1

2

R
u

n
 1

3

R
u

n
n

in
g

ti
m

e
(m

s)

Previous

Current

84

The confidence interval computed is [-35.72; -32.28] indicating the existence of

performance regression. BinaryFind algorithm now splits the list into 2 halves, the first

half has only one function call to foo and the other consists of the two remaining.

Figure 4.7 – Pinpoint performance comparison – PinpointDemo.foo

Figure 4.7 shows that the performance of foo is just about 50 milliseconds and no

change exists between the two versions. The confidence interval is [-0.70; 0.40] at confidence

level 99%, no performance regression detected. So, the finding process switches to the second

half which is the list consists of the getter PinpointDemo.failure and

ListBuffer_size$.run. Their performance comparison is depicted in Figure 4.8:

0

10

20

30

40

50

R
u

n
 1

R
u

n
 2

R
u

n
 3

R
u

n
 4

R
u

n
 5

R
u

n
 6

R
u

n
 7

R
u

n
 8

R
u

n
 9

R
u

n
 1

0

R
u

n
 1

1

R
u

n
 1

2

R
u

n
 1

3

R
u

n
n

in
g

ti
m

e
(m

s)

Previous

Current

0

50

100

150

200

250

300

R
u

n
 1

R
u

n
 2

R
u

n
 3

R
u

n
 4

R
u

n
 5

R
u

n
 6

R
u

n
 7

R
u

n
 8

R
u

n
 9

R
u

n
 1

0

R
u

n
 1

1

R
u

n
 1

2

R
u

n
 1

3

R
u

n
n

in
g

ti
m

e
(m

s)

Previous

Current

85

Figure 4.8 – Pinpoint performance comparison – PinpointDemo.failure to

ListBuffer_size$.run

The current version shows its significantly lost in performance by over 30 milliseconds.

Therefore, the function call expression list is split again into two. Each of the two consists of

only one function call: PinpointDemo.failure and ListBuffer_size$.run

respectively.

With the function call PinpointDemo.failure, this is the getter of the field

failure. It does not consume much running time, so all measurements result in zeros – no

performance regression detected.

In the contrary, ListBuffer_size$.run costs much running time of the

benchmark and shows the poor performance. In the current version, it runs slower by 30

milliseconds in the comparison to the previous one as illustrated in Figure 4.9:

Figure 4.9 – Pinpoint performance comparison – ListBuffer_size$.run

The confidence interval computed is [-36.76; -30.78] at confidence level 90%. This

indicates that ListBuffer_size.run is the bottleneck. Because the bottleneck locates at

the layer 3, at this point, the finding process has reached the depth of 2 specified by user. The

process stops here and ListBuffer_size.run is returned as the bottleneck which is

found.

0

50

100

150

200

250

300

R
u

n
 1

R
u

n
 2

R
u

n
 3

R
u

n
 4

R
u

n
 5

R
u

n
 6

R
u

n
 7

R
u

n
 8

R
u

n
 9

R
u

n
 1

0

R
u

n
 1

1

R
u

n
 1

2

R
u

n
 1

3

R
u

n
n

in
g

ti
m

e
 (

m
s)

Previous

Current

86

Chapter 5

Conclusions

In the preceding chapters, we have described the backgrounds which are an overview on

the Scala programming language, issues concerning difficulties of benchmarking on dynamic

compilation platform and the statistically rigorous methodology for qualifying Java

performance (Chapter 2). In Chapter 3, we introduced the tool named Scala Benchmarking

Suite – SBS which is designed mainly being intended to detect various kinds of regressions

on Scala standard library and Scala compiler. Finally, in Chapter 4, we described our

approach to find the underlying performance bottleneck by combining bytecodes

instrumentation with statistically rigorous performance detection methodology. We next step

back and reflect on the significance of this work.

5.1. Scala and dynamic language benchmarking

Scala is a programming language created in Programming Methods Laboratory –

LAMP, EPFL - Switzerland. It supports both object-oriented and functional programming

styles with a concise syntax and advanced features.

Scala can compile into Java bytecodes to be run on Java Virtual Machine. JVM is a

dynamic compilation language runtime environment which does most of the code

optimizations at runtime. It also comes with an advanced garbage collection mechanism.

Those advanced features run unmanageable by user and thereby introduce noises and

uncertainties to the performance measurements.

A methodology has been advocated to use statistics theory as a rigorous data analysis

approach for dealing with the non-determinism altogether with the experiment designs to

evaluate performances.

87

5.2. Scala Benchmarking Suite

Scala Benchmarking Suite is a tool used to evaluate the performance of programs

written in the Scala programming language and to detect performance regressions caused by

changes to the language. It is an extensive tool for tracking program performance and

detecting performance regressions. SBS is integrated with Scala nightly build system as well

as can be used as a standalone tool for statistically rigorous benchmarking on Scala.

Currently, SBS has the ability to measure and statistically detect performance

regressions in start-up or steady-state of a Scala program. It can also profile a certain metrics

during a benchmark run and the ability to point out the piece of code that causes the

performance regressions.

5.3. Performance regression pinpointing

With benchmarking, we can only detect whether there is performance regression exists

inside our program and have to do guessing on almost all of the post-process to find out the

bottleneck.

Based on the fact that developers and/or library designer lack their useful tools to

automatically locate the performance bottleneck, we introduced a methodology to

programmatically point out the as-small-as-possible piece of code that causes the performance

regression. We have described the main work flow which is recursively repeating the

regression causer narrowing process in a method body. Also, we advocated the behind-the-

scene trick which is using bytecode instrumentation to measure the performance of a piece of

code and statistically detect its difference from the performance of a previous version

implementation kept from earlier builds.

5.4. Future work

Being limited in time we have just been able to come so far and there are things have to

be improved. The strengthens of performance regression pinpointing currently come up with

the following two approaches

88

 One is to (re-) generate the AST for the inspected method and do

instrumentation at the first level nodes of the tree. The AST can be achieved

through the compilation of the benchmark or de-compilation .class file

 The other one is to record all of the function invocations through one running

pass of the inspected method and use the invocation-dependency-graph as the

input for narrowing algorithms

Another thing to do is continuing maintaining SBS. Not only because it is the biggest

and most useful one among our projects, working on SBS also allows us to have more

experience programming in the very interesting language Scala.

89

References

[1] M. Odersky, L. Spoon & B. Venners. Programming in Scala, Second Edition.

Artima Press, Walnut Creek, California, 2010.

[2] A. Georges, D. Buytaert, L. Eeckhout. Statistically Rigorous Java Performance

Evaluation. In OOPSLA, 2007.

[3] A. Georges, L. Eeckhout, D. Buytaert. Java Performance Evaluation through

Rigorous Replay Compilation. In OOPSLA, 2008.

[4] B. Goetz. Java theory and practice: Anatomy of a flawed microbenchmark. IBM

DeveloperWorks, 2005.

[5] B. Goetz. Dynamic compilation and performance measurement. IBM

DeveloperWorks, 2004.

[6] A. Shipilev. (The Art of) (Java) Benchmarking. Java Platform Performance, Oracle,

2011.

[7] K. Hoste, A. Georges, L. Eeckhout. Automated Just-In-Time Compiler Tuning. In

CGO, 2010.

[8] A. Sewe, M. Mezini, A.Sarimbekov, W. Binder. Da Capo con Scala – Design and

Analysis of a Scala Benchmark Suite for the Java Virtual Machine. In OOPSLA,

2011.

[9] J. Ortiz. Manifests: Reified Types. http://www.scala-blogs.org, 2008

[10] I. Dragos, M. Odersky. Compiling Generics Through User-Directed Type

Specialization. In ICOOOLPS, 2009.

[11] A. Sarimbekov, P. Moret, W. Binder, A. Sewe, M. Mezini. Complete and

Platform‐independent Calling Context Profiling for the Java Virtual Machine.

BYTECODE 2011.

[12] J. Aarniala. Instrumenting Java bytecode. University of Helsinki, Finlan, 2010.

[13] S. Haines. Byte Code Instrumentation Article Series. http://www.stevenhaines.com,

2010.

90

[14] W. Binder, J. Hulaas, P. Moret. Advanced Java Bytecode Instrumentation. In PPPJ,

2007.

[15] S. Chiba, M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode

Translators. In GPCE, 2003.

[16] S. Chiba. Javassist - A Reflection-based Programming Wizard for Java. In

OOPSLA, 1998.

[17] T. A. Proebsting , S. A. Watterson. Krakatoa: Decompilation in Java (Does

Bytecode Reveal Source?). In COOTS, 1997.

Coding counts LOC, thesis counts page.

In nowadays, it’s how things work.

January 2012

