
A Menthor for Graph
Processing

Improving Parallel Graph Processing through
introduction of Parallel Collections

Semester Project
II

by

Florian S. Gysin
Fall Semester 2011/12

Supervised by
Prof. Dr. Martin Odersky

Dr. Philipp Haller
Heather Miller

For further information about this work and the tools used or for an electronic version
of this document feel free to contact the author.

Florian S. Gysin
florian.gysin@epfl.ch
www.barebulb.net

Ecole Polytéchnique Féderal de Lausanne
IC Faculty - Computer Science
Building INN
Station 14
1015 Lausanne

i

Abstract

Parallelization and distribution of algorithms have seen a lot of attention
in these last years and a lot of effort was put into more efficient parallelized
algorithms. A different aspect however, is how a user can be enabled to
implement these kinds of algorithms in an easy and generic way. We worked
with and improved Menthor, a Scala framework for parallel graph pro-
cessing. The focus was put on the different aspects of local parallelization
over several processors with some thoughts on distributing Menthor and
making it run on a cluster of networked machines. We improved the per-
formance of Menthor significantly by introducing parallel collections and
making several changes to certain parts of the Menthor code.

ii

Contents

Acknowledgements v

1 Introduction 1
1.1 Menthor in a Nutshell . 1

1.1.1 Computational model . 1
1.2 Parallelization vs. Distribution . 2

1.2.1 Terminology . 3
1.3 Contributions . 3
1.4 Structure of this Report . 3

2 Background and Related Work 5
2.1 Previous Work . 5
2.2 Related Work . 5

3 Improving Parallelization 7
3.1 Previous Parallelization . 7

3.1.1 Scala actors . 7
3.1.2 Akka actors . 8

3.2 Introducing Parallel Collections . 8
3.2.1 New operation modes . 8
3.2.2 Analysis . 9

3.3 Adaptations for Parallel Collections . 10
3.3.1 Substep Parallelization . 10
3.3.2 Analysis . 11

4 Benchmarking & Evaluation 13
4.1 How do we benchmark? . 13

4.1.1 Benchmarking environment . 13
4.1.2 Measurement of different processing phases 14

4.2 Comparing Operation Modes . 14
4.3 Comparing Collection Data Types . 15
4.4 A second iteration of refinement . 17

4.4.1 Data I/O – building the graph 18
4.4.2 Hashmap typing . 20
4.4.3 Limiting the number of threads 22
4.4.4 Hashmap to AtomicReferenceArray 23

4.5 Final Version . 24

5 Distribution of Menthor 27
5.1 Previous Distribution . 27
5.2 Distribution Issues . 27

5.2.1 Data serialization . 27
5.2.2 From references to lookups . 28

iii

iv CONTENTS

6 Conclusion 31
6.1 What is missing? . 31
6.2 Future Work . 32

6.2.1 Moving Menthor to Akka 2.0 . 32
6.2.2 Distribution . 32

A Additional Information 33
A.1 Operation Modes . 33
A.2 MTCQuad Specifics . 34

A.2.1 Hardware . 34
A.2.2 Software . 34
A.2.3 JVM Settings . 34

A.3 Number of Vertices per Input Size . 35

B Benchmarking Results 37
B.1 Comparing Operation Modes . 37
B.2 Comparing Collection Data Types . 39
B.3 Final Version . 40

List of Figures 41

List of Tables 43

Listings 45

Acknowledgements

I would like to express my gratitude to everyone who supported me during the time
I was working on this project. Only due to your support I managed to successfully
complete his work!

First of all I want to thank my supervisors Heather Miller and Philipp Haller—this
work would not have been possible without them. They supported me by providing
interesting problems to solve, by giving input and motivation and by sacrificing a lot of
time for discussing and working with me.

Aleksandar Prokopec for his experience and help with benchmarking Scala in gen-
eral and parallel collections specifically.

Prof. Martin Odersky for giving me the opportunity to write this project at the
LAMP Programming Methods Laboratory and for his inspirational lectures that con-
tributed a lot to my ongoing interest in computer science.

All the students that accompanied me, not only during the time of this work but
during my whole studies at EPFL, for the great time we had; be it over lunch, while
learning or working in the students pool.

v

vi ACKNOWLEDGEMENTS

Chapter 1

Introduction

Parallelization and distribution of algorithms have seen a lot of attention in these last
years. Especially in areas working with huge data sets and complex problems sequential
processing will just no longer suffice. One of the fields affected is machine learning:
machine learning algorithms have opened up new avenues of research and entirely new
approaches to certain kind of problems. A limiting factor is however again the size of
many meaningful problems, and the difficulty in parallelizing them.

Besides the task of devising and designing efficient parallel algorithms for specific
problems, the task of implementing these respective algorithms can not be ignored.
Implementing concurrent programs can be tricky and brings with it a lot of pitfalls which
a researcher/developer needs to navigate. Although the benefits would be considerable,
there seems to be certain reluctance in the machine learning community when it comes
to full-out parallelization of their field of work [14].

This emphasizes the need and the importance of easy-to-use and high-level frame-
works which researchers can use to implement their algorithms. The Menthor project
aims to be such a framework.

1.1 Menthor in a Nutshell

Menthor is a framework written in Scala designed for parallel graph processing. The
focus lies on a synchronous computational model which is generic and easily understand-
able in order to make the actual implementation of algorithms as simple as possible.

To quote the authors of Menthor:

“Our goal in designing this framework is to enable researchers and prac-
titioners to quickly implement and experiment with their algorithms in a
parallel or distributed setting. We believe that a synchronous model which
transparently distributes functional computations across cores (and eventu-
ally, machines in a cluster) is a first step towards this goal, by simplifying
reasoning about program semantics.”[7]

This section aims to give a short overview of Menthor and its functionality. For a
more detailed description of the Menthor framework and its internals please refer to
the work by P. Haller and H. Miller [7].

1.1.1 Computational model

Menthor operates using an hierarchical actor model. At the base of the computation
lies the actual graph which is to be processed by whatever algorithm is implemented.
The graph—an actor itself—consists of a collection of vertices, which are generic entities
containing some generic data value (e.g. a floating point value, an integer value, etc.).

1

2 CHAPTER 1. INTRODUCTION

Vertices know about their neighbours, i.e. the other vertices they share a directional
edge with, thus defining the graph.

The graph actor can be seen as the master actor (called ‘master’ from now on). It is
responsible for creating worker actors (called ‘workers’ from now on) and for distributing
the data, i.e. giving each worker a partition of the original graph. The master also
synchronizes the ‘supersteps’ between the workers (see below) that are reminiscent of
the Bulk Synchronous Parallel model introduced by Valiant et al. [16]. Furthermore, the
master takes responsibility for collecting the result of the computation either directly
by accessing the individual vertices, or through the use of ‘crunch steps’.

One of the aims of Menthor is to hide the computational model of the paralleliza-
tion and distribution from the user. Thus, from the perspective of a user of Menthor
the described computational reasoning is somewhat different: although the computation
follows the above model, a user of Menthor only needs to think in terms of a graph
and the vertices therein. A user can thus focus fully on the actual graph algorithm he
or she would like to implement. This is done via the substep function by defining how
each vertices value will change over time.

Supersteps and substeps

Supersteps are synchronized by the master actor. Each worker actor will start superstep
number i at the same time. Within any superstep a worker will perform a number
of substeps. Substeps operate on graph vertices—possibly changing the state of the
vertex—and produce outgoing messages to other graph vertices, which are collected by
the worker. At the end of each superstep the messages produced by all vertices are sent
to the worker containing the corresponding destination vertex. Before the next superstep
begins, these messages are put in the ‘inbox’ of the destination vertex. Therefore, at
the beginning of each new superstep, every vertex is assured to have all the messages
produced by other vertices during the last superstep.

Crunch steps

Crunch steps can be seen as Menthor’s counterpart to the ‘reduce’ phase of the Map
Reduce paradigm. As the name—and the reference to the reduce phase—imply, crunch
steps basically perform a ‘reduce’ operation as it is known in functional programming:
a crunch step aggregates a single result over all vertices. Furthermore this result is sent
as a message to all vertices and is thus available to each vertex at the beginning of the
next superstep.

1.2 Parallelization vs. Distribution

There exist two ways of increasing performance through concurrent processing. The
first is to locally parallelize the computation over several processors/cores1, the second
is to distribute the computation over multiple interconnected machines in a network or
cluster.

These two ways of concurrently attacking the same problem are not fundamentally
different from each other in theory. In practice however, there is a huge difference be-
tween local and remote concurrent algorithms, e.g. the issue of shared versus distributed
memory. This leads to the fact that the same implementation mechanics can be very
efficient in one case, but not in the other.

Our long-term objective with Menthor is to have a framework which provides both
these features and combines them in a useful way: the problem can be distributed over

1In this work we will not distinguish between single-core processors and hyper-threaded cores on
(physical) multi-core processors.

1.3. CONTRIBUTIONS 3

nodes in a cluster, and on each node the available sub-problem will be locally parallelized
over the available cores.

1.2.1 Terminology

In this work we make a clear distinction between the terms ‘parallelization’ and ‘dis-
tribution’. When we talk of parallelization we mean processing a problem in a way,
such that multiple processors/cores on some local machine are involved, this generally
means that these processors have access to shared memory and—in our case—that the
code runs within the same JVM2. When we talk about distribution we mean process-
ing a problem on different nodes or machines, which are part of a cluster or otherwise
connected over a network.

1.3 Contributions

Contributions of this report are as follows:

• We argue in favour of two-level concurrency of graph processing algorithms in
order to make the most of current hardware systems.

• We start out with proof-of-concept implementations of the Page Rank algorithm
which are parallelized; we improve the performance through the introduction of
parallel collections as introduced in Scala 2.9.

• Benchmarking results are presented which show that the proof-of-concept imple-
mentation can profit hugely from efficient local parallelization.

• We explore the use of different data types in the node-locally parallelized code and
discuss their impact on runtimes.

• We discuss problems and solutions for a future distributed implementation of the
Menthor framework.

• A final parallelized version of Menthor is presented which displays a considerable
speed-up over the existing version.

1.4 Structure of this Report

The remainder of this report is structured as follows: Chapter 2 discusses background
and related work. Chapter 3 describes the efforts undertaken to improve the local par-
allelization of Menthor and increase its local efficiency. parallel collections are intro-
duced and we also investigate implementation details as data types and their impact on
runtimes. Chapter 4 contains an evaluation of the benchmarking results that compare
the new computation modes and the improved parallelization to the existing solutions.
Also several special aspects of the parallel implementation are tested with more bench-
marks to identify optimal solutions. Chapter 5 explores the topic of distributing the
Menthor framework over multiple nodes in a network, we discuss issues that arise and
suggest how to resolve them. Eventually, we conclude in Chapter 6 with remarks on
future work.

2Java Virtual Machine

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

2.1 Previous Work

The Menthor graph processing framework was created by Philipp Haller and Heather
Miller [7]. It provides the user with an API to parallelize graph processing task in an
easy way, without relying on inversion-of-control style programming.

Menthor’s programming model uses event-driven actors. These are an efficient and
light-weight abstraction for parallel programming models in virtual machines that do
not require an explicit means to manage the execution state of a program [8].

The Scala Actors library unifies event-based and thread-based actors to provide a
full high-level framework for actor based programming models. Scala actors are light
weight and provide strong integration with existing threading models of mainstream
VM platforms [9].

There have been previous efforts to distribute the Menthor framework, foremost
by Georges Discry et al. [5]. He produced a distributed version of Menthor based
on Akka actors 1.1 [10], that provided good solutions for issues which arise during
distribution of a project like Menthor. There were however issues with the generality
of this solution when it came to merging the innovations into the main Menthor branch.

Given the difficulties encountered in the approach of Discry, Scacs [13]—Scala Clus-
ter Service—has the potential of making it significantly easier to distribute Menthor
since it provides the user with an intuitive and easy to use API to distribute tasks over a
cluster of computers. We used Scacs while investigating the distribution of Menthor
and while identifying issues which a distributed version has to address.

2.2 Related Work

Map Reduce is a framework introduced by Google in 2004 to provide a simple way to
design large scale distributed programming tasks [4]. The idea of Map Reduce is based
on the map and reduce functions known from functional programming and provides a
new functional abstraction for distributed algorithms.

The Map Reduce paradigm was also adopted in some parts by the machine learning
community and has been used on a small subset of machine learning problems with
considerable effort [3, 15]. Several parties have identified multiple drawbacks which
make Map Reduce difficult to impossible to use in a machine learning setup or make
computation inefficient [11].

Hadoop is a Java framework by Apache which provides Map Reduce functionality.
It serves as a good example that it is possible and feasible to run large scale parallel
and distributed computations using the Java Virtual Machine [1].

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

As a reference algorithm to benchmark the Menthor framework we chose the Page
Rank algorithm which was introduced by Page et al. [2]. The reason we chose this
algorithm is that it is widely known and actually used (in some variant) in very large
scale graph processing tasks: Google employs it to rank search results using a system
called Pregel [12]. Further the actual algorithm is rather simple, making it easy to
understand and reason about computations and message flows.

In an early sketch of this work we also studied the possibility of providing a native
way in Menthor to perform matrix and other linear algebra calculations. For this we
studied ScaLaLa, a Scala library for linear algebra functionality [6].

Chapter 3

Improving Parallelization

Menthor implements a hierarchical actor based model to parallelize computation lo-
cally. The first framework implementation relied on Scala actors, a later implemen-
tation makes use of the Akka actor library. Both versions already provide a parallel
computation model, after all this is the whole point of the Menthor framework.

It was however our opinion that the performance of Menthor could further be
improved by making sure that the local parallelization is as efficient as possible. As
a main step we introduce parallel collections into wide parts of Menthor. Parallel
collections are a part of the Scala standard library1 and provide the user with an
easy-to-use and highly efficient set of parallel operations on local collections.

3.1 Previous Parallelization

The first version of the Menthor framework uses Scala actors. Using this version
the Page Rank algorithm was implemented which calculates the Page Rank values over
a set of homepages (in our case Wikipedia pages downloaded at www.wikipedia.org).
This algorithm served as a usage example and reference implementation for a big part
of the past Menthor development. The implemenation of the algorithm is thereby
independent of the underlying version of Menthor as we try to stick with a fixed API.
Our work also uses Page Rank as a reference algorithm implementation to benchmark
and test our efforts to further improve the Menthor framework.

3.1.1 Scala actors

The previously existing implementation of Menthor relying on Scala actors contains
a bug which impacts its performances in some cases quite considerably. If the number
of vertices in the graph is divisible by the number of cores on the current machine, the
master creates as many workers as there are cores and distributes the graph data into
equally sized partitions. However, if this is not the case, i.e. the number of vertices is
not divisible by the number of cores, the master switches into a second mode where it
creates as many workers as vertices; thus giving each worker a single graph vertex to
handle.

This scheme presents two distinct problems:

• Firstly, the Page Rank algorithm which was chosen as a reference implementation
is computationally relatively cheap. On each iteration each vertex does some very
simple arithmetic operation on a hand full of floating point values. Creating and
setting up a separate worker instance for each of these vertices constitutes a huge

1Since version 2.9.0.

7

www.wikipedia.org

8 CHAPTER 3. IMPROVING PARALLELIZATION

overhead which is not at all justified by the computational (un-)complexity of the
underlying algorithm.

• Secondly, it is not clear for a user which of the above modes is selected when he
starts the computation. As choosing the mode of operation is decided internally
by the master and depends on the number of vertices, the operation mode varies
with the input size of the problem. This means that running two computations
with input sizes A and B where A and B are very close to each other can still result
in vastly varying run times if size A is divisible by the number of cores and size
B is not.2 This curiosity is reflected by the benchmarking results of the reference
implementation which can be found in Section 4.2; a bigger input size does not
always end up taking longer to compute than a smaller input size.

A first task of this work was to fix the above described problems to get clear and
predictable performance results from Menthor. We will further refer to the ‘old’ version
of Menthor still suffering from the described issue as SA-SEQ (Scala Actors using
Sequential Collections).

3.1.2 Akka actors

A second version of Menthor that existed before the start of our work makes use of the
Akka actor library. Akka actors provide basically the same API as Scala actors, but
have some advantages in configuration. Further, Akka actors version 2.0 and further
seem to promise an good way to distribute a computation over nodes in a network—
please refer to Chapter 5 for more a more detailed discussion. Our work is based on this
version of Menthor, i.e. relies on Akka actors and not Scala actors.

3.2 Introducing Parallel Collections

3.2.1 New operation modes

To resolve the above mentioned drawbacks in the way SA-SEQ version handles worker
creation we decided it is best to trust the user with the control over how many workers
are created in each setup. To achieve this we introduced a new API to Menthor,
Operation Modes. For each graph to process with Menthor an operation mode can be
set when the graph is initialized. According to this operation mode the master actor
will then create a specific amount of workers and set them up with the correspondingly
sized partitions of the graph data.

The new operation modes are the following:

Single Worker Mode In Single Worker Mode (SWM) the master actor creates only
a single local worker containing the entire graph.

Multi Worker Mode In Multi Worker Mode (MWM) the master actor tries to make
an educated decision about the optimal number of workers for the computation at
hand. In the current version of Menthor this means creating as many workers
as there are available processing cores on the local machine. The vertices are split
evenly over all the created workers.

I Am Legion Mode In ‘I Am Legion’ Mode (IAL) the master actor creates one worker
per vertex, i.e. each worker handles the computation and communication of a
single vertex. This is only feasible for algorithms with require very expensive

2For example on a machine with 4 cores an input of A=1000 vertices will lead to four workers
containing 250 vertices each, where input B=1001 vertices will lead to 1001 workers(!) each containing
a single vertex. This is obviously quite a different situation, hence the run times are not comparable.

3.2. INTRODUCING PARALLEL COLLECTIONS 9

Worker

Master

Worker

Master

Worker

Multi-Worker-Mode,
using sequential collections

Single-Worker-Mode,
using Parallel Collections

= Data partitions, processed in parallel

Parallel CollectionCollectionCollection

Figure 3.1: Multi-Worker-Mode using sequential collections on the left and Single-Worker-
Mode using parallel collections on the right (both using Akka actors). The graph is partitioned
in both cases and the partitions are processed in parallel.

computations on single graph vertices. (This is also the mode used in some of the
SA-SEQ computations, see Subsection 3.1.1.)

Fixed Worker Mode In Fixed Worker Mode (FWM) the user specifies exactly how
many workers are to be created by the master. This can be useful in specific
situations (e.g. for testing/benchmarking purposes) but in general we suggest the
user trust Menthor to figure out the correct number of workers for the most
efficient computation.

3.2.2 Analysis

We performed benchmark measurements of the different operation modes and the dif-
ferent versions, i.e. with and without parallel collections. The cases benchmarked are
the following:

SA-SEQ (as described in Subsection 3.1.1),

AA-SEQ-SWM (Akka Actors using Sequential Collections and Single Worker Mode)

AA-SEQ-MWM (Akka Actors using Sequential Collections and Multi Worker Mode)

AA-PC-SWM (Akka Actors using Parallel Collections and Single Worker Mode)

AA-PC-MWM (Akka Actors using Parallel Collections and Multi Worker Mode)

After initial tests and a preliminary analysis we decided not to further pursue the
setups which employ the IAL mode. For reasons described above (see Subsection 3.1.1)
this operation mode is highly inefficient in the case of the Page Rank algorithm. The
run times are therefore not comparable to those of other implementations.

For the above mentioned settings and operation modes we ran benchmarks to eval-
uate their respective efficiency. The most interesting modes are AA-SEQ-MWM, repre-
senting the prior way Menthor parallelized its local computation and the new mode

10 CHAPTER 3. IMPROVING PARALLELIZATION

AA-PC-SWM, which puts the task of local parallelization with the parallel collections
framework. These two modes of operation give us the most direct comparison between
parallelization using actors and parallelization using parallel collections. For a detailed
evaluation and analysis please refer to Chapter 4.

3.3 Adaptations for Parallel Collections

As we have shown with the preliminary analysis of the impact of parallel collections it
is well worth it in terms of speedup to introduce this feature into Menthor. While
working on rewriting part of the algorithm to enable the use of parallel collections we
noticed a strong effect of certain specific parts of the source code on the overall runtime.
We decided to delve into these issues more deeply to see if it was not possible to further
enhance Menthor’s power by tweaking the code which is run in parallel by the parallel
collections API.

3.3.1 Substep Parallelization

The thing which stood out most in terms of impacting the runtime was the functionality
to collect outgoing messages of all vertices on a worker in each superstep.

Each vertex goes through a number of substeps in each superstep. During these
substeps it generates a number of messages to other vertices. These message need
only be available at their destination vertex at the beginning of the next superstep.
To maximize efficiency the worker responsible for a certain vertex collects all messages
generated during a superstep and handles dispatching them to their destination vertex.3

Now, as the processing of the substeps over all vertices is exactly the computation
which Menthor tries to parallelize in the first place, we need a way of concurrently
collecting all vertices’ outgoing messages. A schematic implementation of this code can
be seen in Listing 3.1.4

Listing 3.1: Schematic design of the substep parallelization.

1

2 var allOutgoingMessages List[Message] = ...

3 var outgoingMessagesPerVertex : Array[List[Message]] = ...

4

5 allVertices.foreach{ eachVertex =>

6 ...

7

8 // Computation of substep of the vertex

9 val outgoing = eachVertex.substep.stepfun ()

10

11 // Add outgoing messages of this vertex

12 outgoingPerVertex(i) = outgoing

13

14 ...

15 }

16 // Collect all outgoing messages into one collection

17 allOutgoingMessages = outgoingPerVertex.flatMap(x =>

x).toList

3In particular this includes checking if the destination is remote, i.e. on a different worker (read:
Akka actor), or local in which case the messages are directly passed to the vertex.

4Note, that this is not the actual Scala code, but a simplified ‘pseudo-code style’ version.

3.3. ADAPTATIONS FOR PARALLEL COLLECTIONS 11

A Note on the collection of messages

The code shown in Listing 3.1 contains a foreach which is run in parallel by the parallel
collections framework. It is therefore important to pay attention when concurrently
accessing objects which are defined outside of this foreach. To avoid race conditions
(and thus lost messages) we decided to use a set of message collections, one for each
vertex (line 3 in the source code of Listing 3.1). During the parallel foreach the messages
of each vertex are added to ‘its’ message collection. Only after the parallel computation
part is done—after the foreach that is—are all vertices’ messages collected into one set
of outoing messages of this superstep (line 17).

Impact of collection data types

We noticed that the data type of the collection of messages which is accessed from the
parallelized code (i.e. the code within the foreach) has a big impact on the computation
runtime. To get our hands on some real data we conducted benchmarks to find out which
collection data types are best suited for the task at hand.

3.3.2 Analysis

Both the inner and the outer data type were varied during the benchmarking.5 This
allowed us to see an impact of

• adding/changing items in the outer collection,

• and collecting all items in the inner collection.

Times for data I/O, computation time and clean up were measured for different combi-
nations of data types.

For a detailed analysis including benchmarks and graphs please refer to Section 4.3
in Chapter 4.

5In the source code in Listing 3.1 (line 3) the inner collection corresponds to the List of Message
objects, whereas the outer collection refers to the Array containing said lists.

12 CHAPTER 3. IMPROVING PARALLELIZATION

Chapter 4

Benchmarking & Evaluation

We performed benchmarks on different versions of Menthor, using different opera-
tion modes and different implementations of the local parallelization. As a reference
algorithm to benchmark we chose the Page Rank algorithm[2] which was already imple-
mented as a Menthor usage example. In this chapter we evaluate the new paralleliza-
tion strategies introduced in Chapter 3.

4.1 How do we benchmark?

The actual timing information originates from within the Scala code. We wrote a short
Scala Trait called TicToc which can be used by any class that needs timing information.
TicToc provides a very simple API: the tic method starts a time measurement, the
toc method terminates the last time measurement (the measurements thus behave like
they’re being pushed to a stack). Finally TicToc also lets the user print all the timing
information or save it to a log file. To start our benchmarking runs we wrote short
Python scripts. The Python scripts take care of setting the correct Java Virtual Machine
settings (cf. Appendix, Subsection A.2.3) and start the actual Scala run. The runs
are repeated by the Python scripts several times over and all the timing information is
saved to a log file, allowing us to calculate average runtimes over the different runs.1

4.1.1 Benchmarking environment

All benchmarks were run on a server machine called MTCQuad in the EPFL network.
The machine was chosen because it is fitted with 8 cores, making it thus very suitable
as a candidate for local parallelization. Whenever possible benchmarks were run in
the evenings or at night, care was taken to only benchmark when the machine is not
under heavy use by other users. The exact specifications of MTCQuad can be found
in Appendix A, Section A.2.

A note on our input data

The data which was used to benchmark the Page Rank algorithm implementation orig-
inates from Wikipedia.org. As it consists of actual real-life web pages linking to each
other, the complexity of the graph is distributed unevenly over the vertices, as certain
vertices (i.e. pages) will tend to link to more neighbours (other pages) than others.
This has the effect that we can not exactly predict how an increase in the problem input
size will affect the runtime of the Page Rank algorithm: if we process twice the number
of pages there is no guarantee that this second half of the graph will be of the same

1For our benchmarks we averaged the runtimes over 5 or 10 runs.

13

14 CHAPTER 4. BENCHMARKING & EVALUATION

complexity (i.e. interconnectedness) as the first half, hence it might be easier or harder
to process.

A note on input sizes

Due to the non-uniform distribution of complexity in the graph (cf. last paragraph) it
was not deemed useful to display actual vertex numbers. The input sizes given in our
benchmarks hence do not represent the number of vertices in the processed graph, but
the number of lines read in from our input data. The number of lines roughly correlates
with the number of vertices in a linear fashion. To still give the reader an idea of
the numbers of vertices processed, Section A.3 lists the precise number of vertices for
different input sizes.

4.1.2 Measurement of different processing phases

It is important to know what benefits we can expect by working with parallelization
models and what will not be possible. Reading data from disk, for example, will not be
improved by any kind of process changes.2 Therefore, we measured three phases of the
total Page Rank computation for all of our benchmarks:

I/O phase The I/O phase contains the code which reads the graph data from disk,
initializes the data structures, and builds up the network of workers (if needed).

Computation phase The computation phase is concerned with the actual time spent
on the algorithms computation. It starts at the time where the graph processing
is started and ends when the algorithm terminates.

Clean-up phase The clean-up phase measures the rest of the time spent after the main
computation is done. This includes collecting the results, creating human-readable
output and displaying this output to the user3.

In retrospect it proved very valuable to have applied this separation of measurements.
Several issues were identified by comparing an implementations impact on computation
with its impact in data I/O for example; this would not have been possible without
detailed time measurements. For this reason we often show several different graphs
for a certain benchmarking run, e.g. pure computation, pure data I/O and the total
runtime. The clean-up phase is however comparably small and stays constant over any
kind of input size or computational model, we do no longer bother with it (but it is part
of the ‘total runtime’ of course).

4.2 Comparing Operation Modes

In Subsection 3.2.1 we introduced different operation modes to represent different models
of local parallelization. As the main goal of this work was to improve the efficiency of
local parallelization it is of course inevitable that we perform solid benchmarks to assure
the efficiency of the different variants and compare them among each others.

Figure 4.1 shows the results of our first series of benchmarks. In this figure we see
the computation time of the Page Rank algorithm for different input sizes and different
operation modes4.

We note several important things:

2Without also changing the storage hardware, e.g. by replacing hard disks it with a RAID system.
3In other words printing it to standard out.
4For an explanation of the different operation modes please refer to Subsection 3.2.1.

4.3. COMPARING COLLECTION DATA TYPES 15

500 1000 1500 2000 2500 3000
0

50000

100000

150000

200000

250000

300000

Pure Computation

SA-SEQ

AA-SEQ-SWM

AA-SEQ-MWM

AA-PC-SWM

AA-PC-MWM

input size

ru
n

tim
e

(m
s)

Figure 4.1: The computation time of different operation modes for different input sizes.

• SA-SEQ operation mode behaves in a strange way. An input size of 3000 actually
takes less time to process than a smaller input size of 2500. This anomaly can be
explained by internals of this older Menthor version, for a detailed explanation
please refer to Subsection 3.1.1.

• As is to be expected AA-SEQ-SWM has the worst runtime. The explanation for
this fact is obvious, as this operation mode does not employ any kind of paral-
lelization using neither different workers nor parallel collections.

• The newly implemented computation modes AA-PC-SWM and AA-PC-MWM are
both considerably faster than the existing implementations which rely purely on
workers for parallelization. It seems that the introduction of parallel collections
into Menthor was a sound decision that should lead to a remarkable overall
speedup.

Figure 4.2 shows the data I/O benchmarks for the same operation modes as shown
above. We see that I/O times of all previous Menthor versions are about the same.
However we also see a strong increase in time spent on data I/O for the new operation
modes employing parallel collections (AA-PC-SWM and AA-PC-MWM). For small in-
put sizes this effect is negligible—it enlarges however with increasing inputs, up to a point
where more time is actually spent on I/O than on the computation itself (not shown on
graph). The issue of this data I/O inefficiency is investigated in Subsection 4.4.1 and
the problem is solved.

Figure 4.3 shows the total runtime of the Page Rank algorithm over the different
operation modes. Despite the introduced inefficiency in data I/O the new operation
modes still feature a considerable speedup when compared with the existing modes.

4.3 Comparing Collection Data Types

In Section 3.3 we explained the changes which were made to the Menthor code in
order to successfully integrate parallel collections. One of the changes involved the
concurrent collection of messages which are sent from vertex to vertex. As explained in
more detail in Subsection 3.3.1 messages are buffered in a collection of collections. The
outer collection serves as a way to separate access to the inner collections, allowing us

16 CHAPTER 4. BENCHMARKING & EVALUATION

500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Pure I/O

SA-SEQ

AA-SEQ-SWM

AA-SEQ-MWM

AA-PC-SWM

AA-PC-MWM

input size

ru
n

tim
e

(m
s)

Figure 4.2: The data I/O time of different operation modes for different input sizes.

500 1000 1500 2000 2500 3000
0

50000

100000

150000

200000

250000

300000

Total Runtime

SA-SEQ

AA-SEQ-SWM

AA-SEQ-MWM

AA-PC-SWM

AA-PC-MWM

input size

ru
n

tim
e

(m
s)

Figure 4.3: The total runtime of different operation modes for different input sizes.

4.4. A SECOND ITERATION OF REFINEMENT 17

to access different inner collections in parallel without worrying about race conditions
or other concurrency problems.

Array of Lists
Array of ListBuffers

Array of ArrayBuffers
Array of Vectors

0

10000

20000

30000

40000

50000

60000

Varying Inner Container Type

Total Computation Time (AA-SEQ-SWM)

Data Types used

R
u

n
tim

e
(m

s)

Figure 4.4: The computation time of the algorithm for different versions using different inner
collection types to collect messages in parallel. (Input size = 2000)

As this new feature is woven through a big part of the worker computation code we
thought it a good idea to perform benchmarks to evaluate which data structures, i.e.
collection types, are best suited for the use case at hand. Both the inner and the outer
collection data type were varied in these benchmarks, the results of which can be seen
in Figure 4.4 and Figure 4.5.

As we can see in Figure 4.4, varying the inner collection type shows relatively lit-
tle difference in the overall runtime. Still, the results differ enough to say that it is
reasonable to use ListBuffer as the type of the inner collection.

Figure 4.5 shows the benchmarking results for the variation of the outer collection
type. While Array and ArrayBuffer perform in a comparable fashion, ListBuffer

gives us a horrible runtime. This also corresponds to our intuition, as random access on
a large collection is a lot more efficient on arrays than it is on linked lists.

After taking into consideration the results shown in these graphs, we decided to
use Arrays of Lists and Arrays of ListBuffers in the current versions of the Menthor
framework.

4.4 A second iteration of refinement

The changes introduced in Section 3.2 and Section 3.3 already provide a significant
speedup when compared with the original versions (classic SA-SEQ and AA-SEQ-
MWM). While benchmarking AA-PC-SWM on different numbers of computing cores
we discovered however that there are still further improvements to be made, some of
which were directly implemented in the parcol branch of Menthor. This section cov-
ers some of these changes and tries to explain why the respective changes affect the
computation time in the way they do.

18 CHAPTER 4. BENCHMARKING & EVALUATION

Array of Lists ArrayBuffer of Lists ListBuffer of Lists
0

50000

100000

150000

200000

250000

300000

350000

400000

Varying Outer Container Type

Total Computation Time (AA-SEQ-SWM)

Data Types used

R
u

n
tim

e
(m

s)

Figure 4.5: The computation time of the algorithm for different versions using different outer
collection types to collect messages in parallel. (Input size = 2000)

4.4.1 Data I/O – building the graph

Adapting the source code for the introduction of parallel collections brought with it
some changes, one of which was picking GenSeq as the type of the vertex collections in
the graph and the workers. This is useful, as GenSeq is the lowest common supertype of
parallel and sequential collections. This allows the developer to switch between different
collection types without actually changing much else in the source code.

However, although the API provided by GenSeq allows to work with parallel and
sequential collections, specifics about the efficiency of certain features are very different.
For example it is pretty efficient to create a collection of vertices of type List[Vertex]

by prepending vertices one after the other. If the same is done with a ParArray[Vertex]

on the other hand, prepending elements one at a time basically means copying the whole
array on each addition of a vertex—resulting in a horrible time complexity.

This effect was responsible for the big increase in data I/O time which is visible on
the first series of benchmarks in Figure 4.2. We fixed this problem by introducing a
ListBuffer[Vertex] in the master which is used during the I/O process to build up
the graph of vertices. It is to this buffer collection that vertices are added while their
respective data is read in from disk. Once all vertex objects are created and the graph
is thus complete, the collection is transformed into a ParArray and is thereby paral-
lelized. The introduction of this temporary buffer collection fixed the problem which
was introduced by switching to ParArray as the main type to hold vertex collections.

The effects described can be seen in Figure 4.6. It shows the difference between data
I/O time of the inefficient version versus the fixed data I/O version. The curve for the
unfixed version shows the beginning of an exponential development, this corresponds
to the (horrible) time complexity of O(n2) for building up an Array one-element at a
time.5 As was to be expected, the fixed part is considerably faster, not even showing a
noticeable increase in data I/O time for inputs of used sizes.

5Building an array of length n means allocating a size 1 array and writing the first element; then
allocating an array of size 2, copying the first entry, writing the second, etc. Adding elements 1..n calls

for
∑n

i=1(i− 1) + 1 or
n(n+1)

2
write operations—n2 in O-notation.

4.4. A SECOND ITERATION OF REFINEMENT 19

500 1000 1500 2000 2500 3000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Pure I/O

AA-PC-SWM AA-PC-SWM FIXED I/O

input size

ru
n

tim
e

(m
s)

Figure 4.6: Comparison between data I/O time of the inefficient versus the fixed data I/O
part. As was to be expected, the fixed part is considerably faster.

Figure 4.7 shows a comparison between computation time of the inefficient versus the
fixed I/O part. We can see from this that the runtime is not affected by the introduced
solution. This comes from the fact that the buffer collection is never referred to in the
actual computation (and is most likely garbage-collected before it starts).

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

Pure Computation

AA-PC-SWM AA-PC-SWM FIXED I/O

input size

ru
n

tim
e

(m
s)

Figure 4.7: Comparison between computation time of the inefficient versus the fixed data
I/O part.

To give an idea of the overall impact of the I/O-fix Figure 4.8 shows the total runtime
of fixed versus unfixed version. Although the AA-PC-SWM version with ‘broken’ I/O is
still faster than the previously existing Menthor modes like AA-SEQ-MWM, we can
see that the impact of the introduced inefficiency on the affected version was indeed
considerable. This emphasizes again the care which must be taken when choosing how
to operate on different kinds of data structures.

The changes on the graph build-up described in this section belong to the most

20 CHAPTER 4. BENCHMARKING & EVALUATION

important findings we achieved after a large series of benchmarks which set out to test
different parts of Menthor.

500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

12000

14000

Total Runtime

AA-PC-SWM AA-PC-SWM FIXED I/O

input size

ru
n

tim
e

(m
s)

Figure 4.8: Comparison between total runtime of the inefficient versus the fixed data I/O
part. As can be seen the performance is enhanced considerably by the latter.

4.4.2 Hashmap typing

Each vertex sends out messages during the run of an algorithm, in the case of Page Rank
it updates his neighbours with its latest Page Rank value. Now, generally each worker
is responsible for a rather large set of graph vertices. Therefore it is quite probable, that
a good amount of messages sent from vertex to vertex will actually end up on the same
worker. Sending messages using the Akka framework is not as efficient as accessing
objects locally—thus a special handling of local messages was introduced.

At the beginning of a new superstep the messages which were sent to a worker and
ended up in its message queue are sorted into a hash map (cf. Listing 4.1, lines 8–
11). Correspondingly, at the end of each superstep, when the messages are sent, each
messages destination is checked. If it turns out that the destination of a message is
actually the same worker the message is not passed via the Akka framework but is put
into a local hash map (cf. Listing 4.1, lines 15–21). In between these two events lies the
actual computation where vertices access their incoming messages from the hash map.

In the previous versions of Menthor the hash map had the type HashMap[Vertex,

List[Message]]. As can be seen from the linked source code in Listing 4.1 the build-up
of each vertex’ message list is done through creating new List objects which consist of
the old incoming list plus the prepended message. This follows from the usage of the
List type. Now, creating as many objects only to throw them away shortly after can
be a waste of resources.

4.4. A SECOND ITERATION OF REFINEMENT 21

Listing 4.1: Schematic design of the message handling for local messages.

1 // Definition of the HashMap for worker -local messages

2 var incoming = new HashMap[Vertex , List[Message]]() {

3 override def default(v: Vertex[Data]) =

collection.mutable.ListBuffer ()

4 }

5 ...

6 def superstep () {

7 // Sort incoming messages from the queue into the HashMap

8 while (! queue.isEmpty) {

9 val msg = queue.dequeue ()

10 incoming(msg.dest) = msg :: incoming(msg.dest)

11 }

12 // Actual computation using the messages

13 ...

14 // Sort the outgoing messages

15 for (out <- allOutgoing) {

16 if (out.dest.worker == self) {

17 incoming(out.dest) = out :: incoming(out.dest)

18 } else {

19 out.dest.worker ! out

20 }

21 }

22 }

We tried therefore to improve the performance of this part through the introduction
of a new type for the hash map: HashMap[Vertex, ListBuffer[Message]]. Through
the usage of the ListBuffer type we hope to cut away the unneeded creation of objects
as each vertex’s incoming list will only have to be created once—future messages can be
appended to the ListBuffer, as it is a mutable collection.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Pure Computation

Using List[] Using ListBuffer[]

input size

ru
n

tim
e

(m
s)

Figure 4.9: The impact of the HashMap typing on computation time.

In Figure 4.9 we display the results of benchmarks which compare the computation
time using two different versions of hash map types, HashMap[Vertex, List[Message]]

and HashMap[Vertex, ListBuffer[Message]]. As we can see we achieve no clear
improvement of the computation time by choosing one map type over the other.

22 CHAPTER 4. BENCHMARKING & EVALUATION

This does not correspond to our intuition which told us that the version using
ListBuffer types should be more efficient than the version using List types. We
try to make an educated guess about why this is case.

Reasons as for why we were not able to achieve our goal in this regards could be the
following:

• Most Wikipedia webpages are linked to by a rather small number of other pages.
Thus, generally the number of messages per vertex and therefore the size of its
incoming list are not that large, which limits the effect of building up the list.

• The overhead through creating and garbage-collecting List objects is not as big
as initially assumed.

• The MTCQuad machine used for benchmarks and the applied JVM settings
provide us with a lot of memory for our computation. Although we tried to use
bigger input sizes than in other benchmarks, we may still not have exhausted
the available memory. As garbage collection gets more important if the available
memory is not sufficient, the effect we expected to see could become visible for
certain cases which exhaust the memory available—i.e. for computations using
small amount of memory or very large input sizes.

4.4.3 Limiting the number of threads

The parallel collection framework generally takes control of setting up the number of
threads used for parallel computations on a parallelized collection. There is however an
API—one might call it a ‘dirty hack’—that also allows the user to manually limit the
‘parallelism’ of a parallel collection scenario, i.e. the number of threads the operating
system or rather the JVM assigns to the task. This can be done through a command
which sets the default parallelism value for fork join tasks, as seen in Listing 4.2.

Listing 4.2: How set the number of threads for parallel collections. The parameter i

would be the integer giving the number of threads.

1 scala.collection.parallel.ForkJoinTasks

2 .defaultForkJoinPool.setParallelism(i)

We used the above option to benchmark different configurations, the results thereof
can be seen in Figure 4.10. The range tested was from one to seven threads, as a
comparison we also included the results for ‘unmodified’—i.e. not manually altered—
parallelism. The latter is shown under eight threads in the graph, which is what the
parallel collection framework would devise by itself.

The benchmark was run for the same versions also used in the benchmarking of the
hash map typing (cf. Subsection 4.4.2). At the time we had the suspicion that, the
garbage-collection would play a bigger role in the hash map case employing List types
and would thus impact performance. The results tell us otherwise, the hashmap type
still shows no significant influence on the computation time.

Nota bene It is worth noting that the decrease in performance, i.e. the increase in
runtime is over-all very small when we decrease the number of parallel threads using the
parallelism setting. One possible explanation could be that computation bottlenecks
exist in the sequential code that are not parallelized and are thus also unaffected by
the changed number of threads. This is a topic that would be interesting for future
investigation; could such sequential code parts be parallelized or optimized in some way,
Menthor would benefit considerably.

4.4. A SECOND ITERATION OF REFINEMENT 23

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

14000

Pure Computation

Impact of parallelism setting; Input size = 10000

Using List[] Using ListBuffer[]

Parallelism setting of Parallel Collection API

ru
n

tim
e

(m
s)

Figure 4.10: The impact of limiting parallelism via parallel collection API. The benchmark
for ‘8’ threads actually corresponds to an unmodified parallelism setting.

4.4.4 Hashmap to AtomicReferenceArray

In Subsection 4.4.2 we described the process of sorting incoming—and to some degree
also outgoing—messages into a hash map. This sorting procedure which happens in two
loops (cf. Listing 4.1, lines 8–11 & 15–21) constitutes the bulk computation on each
worker which is not yet parallelized.

We assume that a lot of time could be further saved by optimizing this functionality.
One approach which we contemplated—but due to time limitations were not able to
fully implement—is the following:

Using an AtomicReferenceArray6 one could forgo the hashmap altogether. In the
current Menthor version it is possible to use an array because the number of vertices is
fixed and known at the beginning of the computation without ever changing thereafter.
Further an AtomicReferenceArray guarantees atomicity in accessing its stored values:
this would allow us to do the sorting of the outgoing messages in each vertex’ substep,
i.e. within the parallelized part of the worker code. Also the code construct which
was introduced to collect outgoing messages (described in Section 3.3) would become
superfluous and could thus be removed.

We believe that a rewrite of the Menthor worker code according to this mentioned
idea could result in a good improvement of performance—especially so as it tackles one
of the portions of code that is not yet parallelized but runs sequentially. However, future
plans for the Menthor framework include having dynamic graphs—allowing the user
to add or remove vertices during computation—as many applications require this. This
would prohibit the use of an array data structure7, possibly making the above described
changes infeasible.

6java.util.concurrent.atomic.AtomicReferenceArray
7Adding elements to an array is very expensive.

24 CHAPTER 4. BENCHMARKING & EVALUATION

4.5 Final Version

We set out to create a new version of the Menthor framework which employs parallel
collections and, more importantly, is faster than the existing ones. After taking into
consideration the findings of the benchmarks we presented in this chapter we can say
that we achieved this goal.

A final version of the latest Menthor branch was created using the AA-PC-SWM
operation mode, i.e. Akka actors, parallel collections and a single worker. In this
version we also incorporated the various changes introduced through this chapter, e.g.
the correction fixing the data I/O inefficiency. In the cases where we benchmarked
different variations of the same code (e.g. for different data structure types), we naturally
chose the variation giving us the best runtime.

500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

Pure I/O

SA-SEQ

AA-SEQ-MWM

AA-PC-SWM

input size

ru
n

tim
e

(m
s)

Figure 4.11: The data I/O time of the final Menthor version compared to previous imple-
mentations.

Figure 4.11 gives us the data I/O part benchmarks for the three main versions of
Menthor, SA-SEQ being the first implementation, AA-SEQ-MWM the classic Akka
Actor version and AA-PC-SWM the latest final version using only one worker and
parallel collections. We see that this part of the total runtime was not affected much
with the changes introduced during the course of this work: the timings stay more or
less the same. Furthermore, the data I/O part makes for only a small part of the total
runtime, it is dwarfed by the computation part especially for larger input sizes.

In Figure 4.12 we see the speedup of the computation part achieved through the intro-
duction of parallel collections (along with the accompanying adaptations and tweaks).
The newly introduced version using parallel collections is considerably faster for any
input size, more so the bigger the input is chosen. A similar picture can be seen in
Figure 4.13 where we display the total runtime of the Page Rank algorithm for all three
versions.8

8As the computation part makes for the lion’s share of the total runtime, the graph looks very similar
to the one showing the pure computation benchmarks.

4.5. FINAL VERSION 25

500 1000 1500 2000 2500 3000
0

20000

40000

60000

80000

100000

120000

140000

Pure Computation

SA-SEQ

AA-SEQ-MWM

AA-PC-SWM

input size

ru
n

tim
e

(m
s)

Figure 4.12: The computation time of the final Menthor version compared to previous
implementations.

500 1000 1500 2000 2500 3000
0

20000

40000

60000

80000

100000

120000

140000

Total Runtime

SA-SEQ

AA-SEQ-MWM

AA-PC-SWM

input size

ru
n

tim
e

(m
s)

Figure 4.13: The total runtime of the final Menthor version compared to previous imple-
mentations.

26 CHAPTER 4. BENCHMARKING & EVALUATION

Chapter 5

Distribution of Menthor

Besides node-local parallelization distributing the Menthor framework is an important
step towards making most efficient use of modern hardware to gain the best performance
possible. Distributing Menthor is however not a trivial task, this work makes strides
in that direction.

5.1 Previous Distribution

There have been previous efforts to distribute the Menthor framework, foremost by
Georges Discry et al. [5]. Their work provided a solid proof-of-concept implementation
demonstrating the possibility and feasibility of distributing the Menthor framework.
It is here we would like to continue in identifying and addressing key issues which arise
while distributing Menthor. We hope that we can thus lay the ground work for a future
distributed version of Menthor which is based on Akka actors 2.0 (and beyond) and
which also incorporates efficient local parallelization.

A new version of the Akka actor library (version 2.0) is currently under development.
This new version promises to bring a lot of improvements compared with the existing
version 1.1 which is used in the current local and distributed versions of Menthor. One
particular issue which is addressed is the use of Akka actors in the setup of distributed
computing. As Akka 2.0 is not published at the time of writing, we thought it not
reasonable to try to distribute Menthor using the old Akka version.

5.2 Distribution Issues

While working towards a Menthor version that should one day be distributed we
identified several core issues. These are issues that generally arise when distributing
a program over a network, they are inherent to distributed computing. It is therefore
important to recognize these problems as soon as they arise and to deal with them in
an efficient manner.

5.2.1 Data serialization

One of the main issues when it comes to distributing any kind of program is serializa-
tion. Messages which were passed around in the JVM so far, and were stored in memory
shared by the different local parallel threads, now have to be passed through a network.
The process of serialization, i.e. transforming an instance of a class into a data stream
to be propagated by network protocols brings with it some limitations upon the kind of
objects which can be passed around. In our context, which is the context of Scala code

27

28 CHAPTER 5. DISTRIBUTION OF MENTHOR

eventually running in a Java Virtual Machine this means using classes that are ‘serial-
izable’. Similarly to the Java interface Serializable which is implemented by the classes
who are to be serialized, Scala provides a trait Serializable—again to be extended in
custom classes. Implementing/extending above mentioned interfaces/traits will make
the referencing class serializable—as long as the members of the class are themselves
serializable.

Messages Menthor uses Message objects to send information around between differ-
ent concurrent computing instances. In a distributed setup these are obviously exactly
the objects which have to be serialized. Now, message objects are very simple wrappers
that contain a generic data item of type T. Java and Scala check for serialization
during runtime, this means that in this case we can pass the responsibility of ensuring
serialization to the user of the framework: as long as the type T of this data item is
serializable, the message object will be serializable as well.

Vertices An other kind of data which is passed through the network are graph vertices,
namely during the initialization of the distributed computation where the graph is set
up and distributed over all computing nodes. Vertex objects are a bit more complicated
to serialize than messages. Vertices also have a data member of generic type T that puts
the burden of assuring serializability on the user. Aside from that they also have a list
of neighbours, i.e. the graph vertices to which the current vertex has a directed edge. In
the non-distributed case, where serialization is not an issue, these neighbours were are
as a list of references to other vertex objects. The serialized version of the vertex class
needs to ensure two things:

1. The collection class used to store the neighbour references is itself serializable—
which is for example not the case with the common List—and

2. the references themselves can be resolved after deserialization.

The latter of these two points is addressed in the following subsection.

5.2.2 From references to lookups

Vertices do not only contain data items which are to be serialized, but also references
to a variety of different actors in the graph computation. Namely these are a reference
to the master actor, a reference to the actor holding the vertex and a set of references
to the neighbours of the vertex in the graph. These references work of course fine to
pass messages and method calls between objects. In a distributed environment however,
special care needs to be taken in order to preserve these references in their functionality.
The references can be categorized into two sets:

Akka Actor References The references to the master actor and the worker holding
the current vertex are of this type. Luckily Akka already provides a built in
mechanism to handle remote actor references, the so called called actor registry.
The actor registry allows to switch between LocalActorRef and RemoteActorRef

through lookups using a unique identifier (UUID).

Menthor Vertex References The second kind of references concern the edge rela-
tions in the graph which is to be processed. Each vertex contains a set of references
to the vertices to which there exist a directed edge in the graph.1

For the vertex references a distributed version of Menthor would need to provide some
sort of lookup or directory functionality. A way to implement this would for example

1In the (local) parallelized implementations this is handled as a list of Vertex objects.

5.2. DISTRIBUTION ISSUES 29

be a static singleton instance of a directory translating between local object references
and global vertex identifiers. In a distributed setup of Menthor each remote node
instance will be running in its own JVM, thus allowing it to have its own singleton
directory. During the creation of the graph the master actor would have to take care of
also building up the global directory master which is then distributed, or rather copied
redundantly, to all remote node instances.

30 CHAPTER 5. DISTRIBUTION OF MENTHOR

Chapter 6

Conclusion

We set out to create a new version of the Menthor framework which employs parallel
collections and, more importantly, is faster than the existing versions. We can say with
certainty that we have reached this goal.

In this work we showed that the Menthor graph processing framework benefits
hugely from the use of parallel collections. When compared with reference implementa-
tions of the same algorithm in different versions/modes of Menthor which do not use
parallel collections, speedups of up to a factor of 20 have been achieved. This suggests
that parallel collections will play a definite role in future versions of Menthor and will
take over most responsibility of node-local parallelization.

The Scacs framework was used to explore distribution of Menthor over multiple
nodes. Instead of aiming for a fully distributed version, which would have exceeded
the extent of this work, we identified key issues of distribution and presented possible
solutions. As these findings are all based on the Menthor master branch, they should
be of help for future projects concerned with the distribution of Menthor.

Further different parts of the Menthor source code were benchmarked to study the
impact of small changes in the computational model on the runtime. We also compared
the performance of different data structures in different use cases to choose the most
efficient ones for the latest version of Menthor.

6.1 What is missing?

Menthor was benchmarked using an implementation of the Page Rank algorithm. It
is important to keep in mind that different kinds of graph algorithms have very different
requirements in terms of computation and communication in the processed graph. By
choosing efficient and well-performing variants of Menthor implementations in the
Page Rank case we can not automatically guarantee that the same choices will also be
the most efficient for other algorithms using Menthor. For future benchmarking it
would be interesting to implement more graph algorithms with Menthor and compare
the benchmark results of these algorithms against each other.

All the benchmarks were run on a single machine in the EPFL network, MTCQuad.
It would be interesting to see how changing the hardware impacts different variants of
the Menthor computation, for example by varying the amount of available memory or
switching to machines with a very high number of processors.

31

32 CHAPTER 6. CONCLUSION

6.2 Future Work

6.2.1 Moving Menthor to Akka 2.0

The Menthor framework is at the moment based on Akka version 1.0 and 1.1 (both
are compatible actually). During the last stages of this work the Akka project pub-
lished their latest version, milestone one of version 2.0. Although preliminary tests in
incorporating Akka 2.0 were made, Menthor was not yet updated fully to use the
new available features of Akka 2.0. In the future Menthor could however certainly
profit of the latest additions and improvements of the Akka project.

6.2.2 Distribution

The main branch of Menthor still remains a node-locally parallelized version and does
not yet provide distribution over multiple nodes in a network. To really capitalize on
modern cluster and network hardware it is however inevitable to eventually come up
with a distributed version, as any shared-memory parallel machine will only allow for
that many cores/processors and that much available memory on a single machine.

Appendix A

Additional Information

A.1 Operation Modes

SA-SEQ (as described in Subsection 3.1.1),

AA-SEQ-SWM (Akka Actors using Sequential Collections and Single Worker Mode)

AA-SEQ-MWM (Akka Actors using Sequential Collections and Multi Worker Mode)

AA-SEQ-FWM (Akka Actors using Sequential Collections and Fixed Worker Mode)

AA-SEQ-IAL (Akka Actors using Sequential Collections and I Am Legion Mode)

AA-PC-SWM (Akka Actors using Parallel Collections and Single Worker Mode)

AA-PC-MWM (Akka Actors using Parallel Collections and Multi Worker Mode)

AA-PC-FWM (Akka Actors using Parallel Collections and Fixed Worker Mode)

AA-PC-IAL (Akka Actors using Parallel Collections and I Am Legion Mode)

33

34 APPENDIX A. ADDITIONAL INFORMATION

A.2 MTCQuad Specifics

A.2.1 Hardware

The following hardware assets were available to us on the machine MTCQuad which
we used for benchmarking.

CPU 4 x Dual-Core AMD Opteron(tm) Processor 8220 SE

CPU Speed 2800 Mhz

CPU Cache 1024 KB

Memory 16 GB

Swap 16 GB

A.2.2 Software

The following software was installed and used on the machine MTCQuad which on
which we run our benchmarks.

Operating System Ubuntu 6.06 ‘Dapper Drake’ LTS

Scala Version Scala code runner version 2.9.1.final – Copyright 2002-2011,
LAMP/EPFL

Scacs Version Development build from August 17th, 2011

Akka Version Akka Actors 1.11

A.2.3 JVM Settings

The following JVM settings were used to benchmark the different Menthor verions on
MTCQuad:

-Xmx4G -Xmx8G

These settings set the heap space to be between minimum of 4 and a maximum of 8
Gigabytes.

1We also experimented with Akka 1.0 and 2.0, these were, however, not used for the benchmarking
process.

A.3. NUMBER OF VERTICES PER INPUT SIZE 35

A.3 Number of Vertices per Input Size

Input Size Number of Vertices
1000 6821
2000 11467
3000 18696
4000 23637
5000 27556
6000 30731
7000 34597
8000 39368
9000 49557

10000 59067

Table A.1: The number of graph vertices which are processed for certain input sizes.

36 APPENDIX A. ADDITIONAL INFORMATION

Appendix B

Benchmarking Results

All run times in the following tables are listed in milliseconds.

B.1 Comparing Operation Modes

These benchmarks use the following collection data type for vertex substep message col-
lection: Array[List[Message[Data]]] (cf. Section 3.3). The algorithm performed 30
iterations. All runtimes are given in milliseconds and were averaged over 5 independent
runs.

Input Size I/O Computation Cleanup Total
500 1862.2 1694.6 27.2 3584

1000 1878.4 2774.6 49.4 4702.4
1500 2162.2 5291.4 66.8 7520.4
2000 2135.4 22080.6 74.2 24290.2
2500 1870.4 118219.2 96.4 120186
3000 1693.8 72624.8 120.4 74439

Table B.1: Runtimes for SA-SEQ mode with different input sizes.

Input Size I/O Computation Cleanup Total
500 2438.8 2717.4 23.2 5179.4

1000 2706.4 9135.8 46 11888.2
1500 3032 28098 66.8 31196.8
2000 2155.8 45931 71.8 48158.6
2500 2537 99499.8 95.8 102132.6
3000 2558.8 279437.8 119.4 282116

Table B.2: Runtimes for AA-SEQ-SWM mode with different input sizes.

37

38 APPENDIX B. BENCHMARKING RESULTS

Input Size I/O Computation Cleanup Total
500 2460.6 1427.4 26 3914

1000 2676 2776 47 5499
1500 3040.2 7562.8 68.2 10671.2
2000 2159.6 10318 73 12550.6
2500 2559 30750.6 97.6 33407.2
3000 2540.2 80987.8 118 83646

Table B.3: Runtimes for AA-SEQ-MWM mode with different input sizes.

Input Size I/O Computation Cleanup Total
500 2172.8 1080 29.2 3282

1000 2862.8 1326.8 47 4236.6
1500 3745.4 1815.4 66 5626.8
2000 4371.6 2404.8 74.6 6851
2500 6342.2 1950.8 97.4 8390.4
3000 8706.4 3082.2 120.4 11909

Table B.4: Runtimes for AA-PC-SWM mode with different input sizes.

Input Size I/O Computation Cleanup Total
500 2129.8 1217 26 3372.8

1000 2815.4 1332.6 50.4 4198.4
1500 3737.6 1818.2 66 5621.8
2000 4365 2256.4 74.6 6696
2500 6405.2 2037.4 96.6 8539.2
3000 8717.8 2677.2 122.2 11517.2

Table B.5: Runtimes for AA-PC-MWM mode with different input sizes.

B.2. COMPARING COLLECTION DATA TYPES 39

B.2 Comparing Collection Data Types

The input size for the following benchmarks is fixed at 2000, the algorithm performed 30
iterations. All runtimes are given in milliseconds and were averaged over 10 independent
runs.

Outer Container Type I/O Computation Cleanup Total
Array of Lists 2198.6 36868.2 71.8 39138.6

ArrayBuffer of Lists 2352.1 40189.3 71.3 42612.7
ListBuffer of Lists 2200.5 359267.5 72 361540

Table B.6: Runtimes for AA-SEQ-SWM with varying collection types for the outer vertex
message collection.

Inner Container Type I/O Computation Cleanup Total
Array of Lists 2198.6 36868.2 71.8 39138.6

Array of ListBuffers 2160.6 32638.2 70.4 34869.2
Array of ArrayBuffers 2345 46968 71.5 49384.5

Array of Vectors 2204.1 37307.1 72.6 39583.8

Table B.7: Runtimes for AA-SEQ-SWM with varying collection types for the inner vertex
message collection.

40 APPENDIX B. BENCHMARKING RESULTS

B.3 Final Version

Input Size I/O Computation Cleanup Total
500 2469.8 736.2 25.2 3231.2

1000 2771.4 955.6 48.8 3775.8
1500 2941.6 1850.4 70.6 4862.6
2000 2229 2500.6 78.6 4808.2
2500 2561.2 2850.4 106.4 5518
3000 2527.6 3358.2 124.2 6010

Table B.8: Runtimes for the latest Menthor branch. It uses the operation mode AA-SEQ-
SWM and benefits from the various benchmark findings presented in Chapter 4.

List of Figures

3.1 Computational model of Single-Worker-Mode with sequential and Multi-
Worker-Mode using parallel collections. 9

4.1 Computation time of different operation modes. 15
4.2 Data I/O time for different operation modes. 16
4.3 Total runtime of different operation modes. 16
4.4 Message collection benchmarks for different ‘inner; collections. 17
4.5 Message collection benchmarks for different ‘outer’ collections. 18
4.6 Comparison of I/O time of the I/O-fix. 19
4.7 Comparison of computation time of the I/O-fix. 19
4.8 Comparison of total runtime of the I/O-fix. 20
4.9 Impact of the HashMap typing on computation time. 21
4.10 Impact of limiting parallelism via parallel collection API. 23
4.11 Data I/O time of the final Menthor version compared to previous im-

plementations. 24
4.12 Computation time of the final Menthor version compared to previous

implementations. 25
4.13 Total runtime of the final Menthor version compared to previous im-

plementations. 25

41

42 LIST OF FIGURES

List of Tables

A.1 The number of graph vertices which are processed for certain input sizes. 35

B.1 Runtimes for SA-SEQ mode with different input sizes. 37
B.2 Runtimes for AA-SEQ-SWM mode with different input sizes. 37
B.3 Runtimes for AA-SEQ-MWM mode with different input sizes. 38
B.4 Runtimes for AA-PC-SWM mode with different input sizes. 38
B.5 Runtimes for AA-PC-MWM mode with different input sizes. 38
B.6 Runtimes for AA-SEQ-SWM with varying collection types for the outer

vertex message collection. 39
B.7 Runtimes for AA-SEQ-SWM with varying collection types for the inner

vertex message collection. 39
B.8 Runtimes for the latest Menthor branch. It uses the operation mode

AA-SEQ-SWM and benefits from the various benchmark findings pre-
sented in Chapter 4. 40

43

44 LIST OF TABLES

Listings

3.1 Schematic design of the substep parallelization. 10
4.1 Schematic design of the message handling for local messages. 21
4.2 How set the number of threads for parallel collections. The parameter i

would be the integer giving the number of threads. 22

45

46 LISTINGS

Bibliography

[1] Apache. Hadoop MapReduce. http://hadoop.apache.org/mapreduce/. 5

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998. 6, 13

[3] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski,
Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore.
In Bernhard Schölkopf, John C. Platt, and Thomas Hoffman, editors, NIPS, pages
281–288. MIT Press, 2006. 5

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI, pages 137–150, 2004. 5

[5] Georges Discry. Extending the menthor framework for parallel graph processing to
distributed computing. Semester Project Report, Ecole Politéchnique Féderal de
Lausanne. 5, 27

[6] GNU Lesser GPL. ScaLaLa – Scala Linear Algebra. https://github.com/

scalala/Scalala. 6

[7] Philipp Haller and Heather Miller. Parallelizing machine learning- functionally: A
framework and abstractions for parallel graph processing, 2011. 1, 5

[8] Philipp Haller and Martin Odersky. Event-based programming without inversion of
control. In David E. Lightfoot and Clemens A. Szyperski, editors, JMLC, volume
4228 of Lecture Notes in Computer Science, pages 4–22. Springer, 2006. 5

[9] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-
based programming. Theor. Comput. Sci, 410(2-3):202–220, 2009. 5

[10] Typesafe Inc. Akka project. http://akka.io/. 5

[11] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Graphlab: A new framework for parallel machine learning.
June 25 2010. 5

[12] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Friedhelm Meyer auf der Heide and Michael A. Bender, editors,
SPAA, page 48. ACM, 2009. 6

[13] Heather Miller. Scacs – Scala Cluster Service. https://github.com/

heathermiller/scacs. 5

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-
so-foreign language for data processing. SIGMOD ’08, pages ?–?, June 2008. 1

47

http://hadoop.apache.org/mapreduce/
https://github.com/scalala/Scalala
https://github.com/scalala/Scalala
http://akka.io/
https://github.com/heathermiller/scacs
https://github.com/heathermiller/scacs

48 BIBLIOGRAPHY

[15] Biswanath Panda, Joshua Herbach, Sugato Basu, and Roberto J. Bayardo.
PLANET: Massively parallel learning of tree ensembles with mapreduce. PVLDB,
2(2):1426–1437, 2009. 5

[16] Leslie G. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, August 1990. 2

	Acknowledgements
	Introduction
	Menthor in a Nutshell
	Computational model

	Parallelization vs. Distribution
	Terminology

	Contributions
	Structure of this Report

	Background and Related Work
	Previous Work
	Related Work

	Improving Parallelization
	Previous Parallelization
	Scala actors
	Akka actors

	Introducing Parallel Collections
	New operation modes
	Analysis

	Adaptations for Parallel Collections
	Substep Parallelization
	Analysis

	Benchmarking & Evaluation
	How do we benchmark?
	Benchmarking environment
	Measurement of different processing phases

	Comparing Operation Modes
	Comparing Collection Data Types
	A second iteration of refinement
	Data I/O – building the graph
	Hashmap typing
	Limiting the number of threads
	Hashmap to AtomicReferenceArray

	Final Version

	Distribution of Menthor
	Previous Distribution
	Distribution Issues
	Data serialization
	From references to lookups

	Conclusion
	What is missing?
	Future Work
	Moving Menthor to Akka 2.0
	Distribution

	Additional Information
	Operation Modes
	MTCQuad Specifics
	Hardware
	Software
	JVM Settings

	Number of Vertices per Input Size

	Benchmarking Results
	Comparing Operation Modes
	Comparing Collection Data Types
	Final Version

	List of Figures
	List of Tables
	Listings

