
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

POSTGRADUATE STUDIES PROGRAM

MASTER THESIS

Faster Scala Collections with Compile-Time Reflection

Georgios Kollias

Supervisor: Yannis Smaragdakis, Associate Professor NKUA

ATHENS

MAY 2013

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ∆ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ∆ΩΝ

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γρήγορες ∆οµές ∆εδοµένων στη Γλώσσα Scala

µε Στατική Ανάκλαση

Γεώργιος Κόλλιας

Επιβλέπων: Γιάννης Σµαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΜΑΙΟΣ 2013

MASTER THESIS

Faster Scala Collections with Compile-Time Reflection

Georgios Kollias

RN: Μ1049

SUPERVISOR:

Yannis Smaragdakis, Associate Professor NKUA

THESIS COMMITTEE:

Yannis Smaragdakis, Associate Professor NKUA

Panos Rondogiannis, Associate Professor NKUA

∆ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γρήγορες ∆οµές ∆εδοµένων στη Γλώσσα Scala

µε Στατική Ανάκλαση

Γεώργιος Κόλλιας

ΑΜ: Μ1049

ΕΠΙΒΛΕΠΩΝ :

Γιάννης Σµαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

Γιάννης Σµαραγδάκης, Αναπληρωτής Καθηγητής ΕΚΠΑ

Παναγιώτης Ροντογιάννης, Αναπληρωτής Καθηγητής ΕΚΠΑ

Περίληψη

Περιγράφουµε την υλοποίηση συγκεκριµένων µεθόδων (map και foreach) των δοµών δε-

δοµένων στη ϐιβλιοθήκη της γλώσσας Scala, µε χρήση λειτουργιών στατικής ανάκλασης. Ο

σκοπός είναι η δηµιουργία γρηγορότερων δοµών µέσω ενσωµάτωσης και ϐελτιστοποίησης της

λειτουργίας στο σηµείο κλήσης. Η λειτουργικότητα αυτή περιλαµβάνεται στη ϐιβλιοθήκη της

γλώσσας, έτσι ώστε ταχύτερες λειτουργίες µπορούν να χρησιµοποιηθούν σε όλους τους τύπους

δοµών της γλώσσας (π.χ. λίστες, πίνακες, κτλ.) χωρίς ανάγκη ορισµού νέων τύπων. Ο

µηχανισµός µας έχει υλοποιηθεί κατέυθείαν στη ϐασική ϐιβλιοθήκη και το µεταγλωττιστή της

γλώσσας. Τα αποτελέσµατα είναι ενθαρρυντικά, µε πειράµατα να εµφανίζουν ταχύτητα ϐελτιωµένη

κατά 40%.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Στατικός Μεταπρογραµµατισµός

ΛΕΞΕΙΣ ΚΛΕΙ∆ΙΑ : Scala, Μεταπρογραµµατισµός, Μεταγλωττιστές, ∆οµές ∆εδοµένων,

Μακροεντολές

Abstract

We describe the implementation of specific Scala collections operations (currently the map

and foreach methods) using the Scala 2.10 compile-time reflection facilities. The primary

motivation for this work is to create faster collections by inlining operations at the call site.

The functionality is available at the standard Scala library level, so that our optimized oper-

ations can be used on all plain Scala collection types (e.g., List, Array, etc.) without the

need of creating new specialized types. Our mechanism is implemented directly inside the

Scala standard library and by modifying the default compiler. The results are encouraging

since benchmarks show a 40% speedup.

SUBJECT AREA: Compile-Time Metaprogramming

KEYWORDS: Scala, Metaprogramming, Compilers, Collections, Macros

Acknowledgements

I am grateful to my supervisor, Prof. Yannis Smaragdakis for giving me the chance to

work on what i found interesting. His valuable insights and vast knowledge on the field of

programming languages were crucial throughout the research for and writing of this thesis.

Of course, i would like to express my gratitude to EPFL PhD student Vlad Ureche whose

expertise, guidance, and patience were decisive for this work. He has devoted a lot of hours

to answer all of my questions, timely and consistently. I’ve learned a lot from him.

I would also like to thank all members of the PLAST group for their help, interest, and

advice. Lastly, I am deeply indebted to my parents for their support.

Contents

1 Introduction 12

2 Background 15

2.1 Scala Collections Overview . 15

2.2 Scala Compile-Time Reflection Overview . 17

3 Our Approach: ft-declosurify 20

3.1 ft-declosurify Overview . 20

3.2 ft-declosurify Implementation Specifics . 23

3.2.1 macroMap/macroForeach definitions 23

3.2.2 Linking macroMap/macroForeach definitions with implementations . 24

3.2.3 Transformation Method Interface . 26

3.2.4 Transformation Requirements . 27

3.2.5 Transformation Choice and Idiosyncrasies 28

3.2.6 Array, scala.collection.mutable.ArraysOps and

scala.collection.mutable.IndexedSeq Transformation 29

3.2.7 scala.collection.LinearSeq Transformation 31

3.2.8 scala.collection.Traversable Transformation 32

4 Experimental Results 35

4.1 Setup . 35

4.2 Evaluation . 35

5 Related Work 39

6 Conclusions 40

Acronyms and Abbreviations 41

References 42

List of Figures

1.1 Example of naive map in Java . 12

1.2 Example of generic map in Java . 13

2.1 All scala.collection collections . 16

3.1 scalac’s internal representation of List(1, 2, 3).map(_ + 1) 20

3.2 Scala’s default map implementation . 21

3.3 Expanded List(1, 2, 3).macroMap(_ + 1) 22

3.4 Mutable indexed sequences transformation code 30

3.5 Expanded Array(1, 2, 3).macroMap(_ + 1) 31

3.6 Linear sequences transformation code . 32

3.7 Expanded List(1, 2, 3).macroMap(_ + 1) 33

3.8 Traversable sequences transformation code 33

3.9 Expanded Set(1, 2, 3).macroMap(_ + 1) 34

4.1 Benchmarks of mutable indexed sequences representatives 36

4.2 List benchmark . 37

4.3 Benchmarks of Traversable representatives 38

List of Tables

4.1 Collections Benchmarks and Speedups . 38

Preface

This report is my master thesis for the conclusion of my postgraduate studies at the De-

partment of Informatics & Telecommunications, University of Athens. It was developed as

a part of the MorphPL Project for the University of Athens, funded by an Aristeia award

granted by GSRT and the EU, while conducting research with Prof. Yannis Smaragdakis on

compile-time metaprogramming techniques.

This work was implemented directly in the default Scala compiler and, using the new

Scala compile-time reflection capabilities, we were able to improve the performance of a few

common Scala standard library collections operations.

Athens, May 29, 2013

Faster Scala Collections with Compile-Time Reflection

Chapter 1

Introduction

This chapter will introduce our work and the problem it tries to attack. It is a real-world

hard problem that affects the whole Java Virtual Machine (JVM) ecosystem.

In ‘‘Fixing The Inlining Problem’’ [4], Cliff Click describes an issue that has emerged the

last few years in the JVM ecosystem:

‘‘The Problem is simply this: new languages on the JVM (e.g., JRuby) and new program-

ming paradigms (e.g., Fork Join) have exposed a weakness in the current crop of inlining

heuristics. Inlining is not happening in a crucial point in hot code exposed by these lan-

guages, and the lack of inlining is hurting performance in a major way. AND the inlining isn’t

happening because The Problem is a hard one to solve; (i.e. it’s not the case that we’ll wave

our wands and do a quick fix & rebuild HotSpot and the problem will go away). John Rose,

Doug Lea and I all agree that it’s a Major Problem facing JVMs with long and far reaching

implications.’’

Let’s see what The Problem is with a small example in a Java-like language. The Problem

is getting the right amount of context in hot inner loops - which also contain a megamorphic

virtual call in the loop and not much else. Megamorphic virtual method calls are these whose

receiver can have many different runtime types. Figure 1.1 shows a naive implementation

of a map method that applies a predetermined function to all the elements of a source array

and assigns the result to a destination array. In this case we increment all source’s elements

by one.

1 // The function in the inner loop
2 long add1(long a) {return a + 1;}
3 // The iterator function
4 void map(long[] dst, long[] src) {
5 for(int i=0; i < dst.len; i++) // simple loop
6 dst[i] = add1(src[i]); // around a simple loop body
7 }

Figure 1.1: Example of naive map in Java

Georgios Kollias 12

Faster Scala Collections with Compile-Time Reflection

1 // A sample iterator function
2 void map(CallableOneArg fcn1arg, long[] dst, long[] src) {
3 for(int i=0; i < dst.len; i++)
4 dst[i] = fcn1arg.call(src[i]);
5 }

Figure 1.2: Example of generic map in Java

Inlining the function add1 is crucial to performance here. Without inlining the compiler

does not know what the loop body does (because function calls can in general do anything),

and with inlining it can understand the entire function completely - and then see it’s a

simple loop around a stream of array references. At this point the JIT can do range-check

elimination, loop unrolling, and prefetching, among other optimizations.

The Problem is that there are multiple variations of add1 and the wrapping iterator gets

complex. It’s the product of these two parts getting complicated that makes The Problem. In

this work, we are mostly interested in the first part, since the Scala collections iterators are

not very big or complex.

More often than not, after implementing map, we would like to add more functions similar

to add1. We might also want to add add2, mult3, filter and so on. What we really want

is a way to pass in the function to apply on the basic data bits in the innermost loop of our

iterator. In Java, we often do this with either a Callable or a Runnable. Figure 1.2’s

example uses Callable.

We need only one copy of our iterator, and we can apply nearly all kinds of one argument

functions. Alas, that inner loop now contains a function call that needs inlining and there are

dozens of different functions for fcn1arg.call. The JIT does not know which one to inline

here, because all these different functions are called at different times. Typically then the JIT

does not inline any of them, and instead opts for a virtual call. While the virtual call itself is

not too bad, the lack of knowledge of what goes on inside the virtual call prevents all kinds of

crucial optimizations: loop unrolling, range-check elimination, all kinds of prefetching and

alias analyses.

One solution would be to make the inner function call a static (final) call, which then the

JIT can inline. Of course, if we do that we need an iterator for the add1 version, one for the

add2 version, and one for the mult3 version, so we need a lot of them. Also, we will need a

new one for each new function we can think of; we cannot just name them all up front. So

Georgios Kollias 13

Faster Scala Collections with Compile-Time Reflection

we will end up with a lot of these iterators each with a custom call in the inner loop. All these

iterators will start blowing out the instruction cache on our CPU, and besides it is a pain to

maintain dozens of cloned possibly complex iterators.

Several of the Java ecosystem’s prominent figures, like Cliff Click, John Rose, Doug Lea,

have proposed solutions that range from pure obscure technical to pure educational ones,

demonstrating possible megamorphic inlining friendly coding styles.

Scala, as most of the modern JVM languages, is no exception and it suffers from The

Problem too and, actually, it affects its adoption negatively. At the end of 2011, an email

from a Yammer employee towards the CEO of TypeSafe, the company backing the Scala

ecosystem, about Scala shortcomings, leaked to the public [1]. Most technical issues were

related with The Problem and, more specifically, with the Scala standard library collections’

performance.

In the next chapters we will see where exactly the problem lies and how our project can

help us alleviate it. We have named our project ft-declosurify; the ft prefix stands for Scala

compiler’s FastTrack mechanism, as we will see in Chapter 3, and the declosurify suffix

suggests that the implementation is based on Paul Phillips’s original declosurify project [16].

ft-declosurify defines two methods, macroMap and macroForeach, that can be used

from all the Scala standard library collections. They offer the same functionality as their

Scala standard library counterparts, map and foreach methods, but they are much faster

because they suffer much less from The Problem. In most cases, macroMap/macroForeach

can be considered as faster drop-in replacements of the default map/foreach methods.

Our solution tries to attack The Problem using Scala’s new compile-time reflection sub-

system. So, the next chapter will give us an overview of the Scala language, its standard

library collections and its new compile-time reflection subsystem, in order to prepare us

for Chapter 3 where we will explain our project’s core functionality and implementation.

Chapter 4 provides us with several benchmarks, showing promising performance speedups.

Chapter 5 presents some similar work in the area. Finally, Chapter 6 summarizes this work

and mentions its drawbacks.

Georgios Kollias 14

Faster Scala Collections with Compile-Time Reflection

Chapter 2

Background

Scala (which stands for ‘‘scalable language’’ [14]) is a relatively new statically typed program-

ming language that tries to unify the object-oriented and functional programming paradigms

into one coherent paradigm, recently called object-functional. Currently, its main imple-

mentation runs on the JVM and so its main goal is to provide a more general and uniform

superset of Java. Since version 2.8, Scala has a rich collections library [14, Chapter 24] and

since version 2.10, it has a completely new reflection subsystem [11].

2.1 Scala Collections Overview

The Scala library systematically distinguishes between mutable and immutable collections.

A mutable collection can be updated or extended in place. This means one can change, add,

or remove elements of a collection as a side effect. Immutable collections, by contrast, never

change. We still have operations that simulate additions, removals, or updates, but these

operations will in each case return a new collection and leave the old collection unchanged.

We will see in the next chapter how this mutable-immutable separation affects our macro

transformation plan.

All collection classes are found in the package scala.collection or one of its sub-

packages mutable, immutable, and generic. Most collection classes needed by client

code exist in three variants, which are located in packages scala.collection, scala.

collection.immutable, and scala.collection.mutable, respectively. Each variant has

different characteristics with respect to mutability.

A collection in package scala.collection.immutable is guaranteed to be immutable

for everyone. Such a collection will never change after it is created. A collection in package

scala.collection.mutable is known to have some operations that change the collection

in place.

A collection in package scala.collection can be either mutable or immutable. For

instance, collection.IndexedSeq[T] is a superclass of both collection.immutable.

IndexedSeq[T] and collection.mutable.IndexedSeq[T]. Generally, the root collections

Georgios Kollias 15

Faster Scala Collections with Compile-Time Reflection

Figure 2.1: Basic collections in scala.collection

in package scala.collection define the same interface as the immutable collections, and

the mutable collections in package scala.collection.mutable typically add some side-

effecting modification operations to this immutable interface.

By default, Scala always picks immutable collections. For instance, if we just write Set

without any prefix or without having imported Set from somewhere, we get an immutable set

because these are the default bindings imported from the scala package. To get the mutable

default version, we need to write explicitly collection.mutable.Set.

Figure 2.1 shows all collections in package scala.collection. These are all high-level

abstract classes or traits, which generally have mutable as well as immutable implementa-

tions.
1

This work focuses mainly on Seq’s subtree, since it’s where we can get the most prominent

speedups by exploiting the sequences’ properties. A sequence is a kind of iterable that has a

length method and whose elements have fixed index positions, starting from 0.

1
Figure courtesy of Matthias Doenitz

Georgios Kollias 16

Faster Scala Collections with Compile-Time Reflection

2.2 Scala Compile-Time Reflection Overview

Scala version 2.10, released in January 2013, introduced a new reflection subsystem adding

both run time and compile metaprogramming capabilities. The new run-time reflection is

much more general and feature complete compared to Java’s reflection. Compile-time re-

flection is quite rare in mainstream statically typed programming languages and, currently,

it can only be found in more exotic languages like Haskell [21] and Nemerle [22]. Compile-

time reflection enabled the introduction of an experimental version of type-safe syntactic

macros [3].

Syntactic macro systems work at the level of Abstract Syntax Trees (ASTs) and preserve

the lexical structure of the original program. Macro systems that work at the level of lexical

tokens, like the C preprocessor, cannot preserve the lexical structure reliably. The most

widely used implementations of syntactic macro systems are found in Lisp-like languages

such as Common Lisp, Scheme. These languages are especially suited for this style of macro

due to their uniform, parenthesized syntax (known as S-expressions).

According to [3], compile-time metaprogramming is a valuable tool for enabling such

programming techniques as:

• Language virtualization (overloading/overriding semantics of the original programming

language to enable deep embedding of Domain Specific Languages (DSLs))

• Program reification (providing programs with means to inspect their own code)

• Self-optimization (self-application of domain-specific optimizations based on program

reification)

• Algorithmic program construction (generation of code that is tedious to write with the

abstractions supported by a programming language)

This work falls in categories three and four, since we use compile-time reflection to gener-

ate code programmatically for each macroMap/macroForeach method, specialized at the

call-site for optimization reasons.

Scala’s compile-time metaprogramming can be used through Scala’s new macro system

that allows programmers to write macro defs: functions that are transparently loaded by the

compiler and executed during compilation.

Georgios Kollias 17

Faster Scala Collections with Compile-Time Reflection

Our project is implemented directly in the Scala compiler (scalac), so we can use most of

the available compile-time metaprogramming capabilities directly, without using macro defs

explicitly. In the next chapter we will see how we achieve it.

Compile-time reflection allows us to create new and/or manipulate existing ASTs dur-

ing the compiler’s typechecking phase. All the new or changed ASTs are re-typechecked,

guaranteeing us type-safe transformations. scalac represents ASTs with objects of type

scala.reflect.api.Tree or scala.reflect.api.Exprs, which is just a typed-wrapper

of scala.reflect.api.Tree. Through the available compiler APIs, we can create, inspect

or change the compiler’s scala.reflect.api.Symbol and scala.reflect.api.Type ob-

jects that are related with these ASTs.

For example, we can create the AST of the Scala expression x < 10manually, either with a

macro or directly within scalac, with this code: Apply(Select(Ident(newTermName("x")),

newTermName("$less"), List(Literal(Constant(10))))). Apply, Select, Ident,

Literal, Constant are AST objects themselves of scala.reflect.api.Tree type.

Obviously, the AST construction is cumbersome and error-prone. But most probably it is

also wrong. If the AST was generated within an internal scalac method or within a macro, the

returned AST will be inlined and type-checked at the method/macro call site. But this means

that the identifier x will be type-checked at a point where it is most likely not visible, or in the

worst case they might refer to something else. In the macro literature, this insensitivity to

bindings is called non-hygienic[8, 22]. Scala’s compile-time reflection solves the non-hygiene

problem providing a built-in macro, called reify, that produces its tree one stage later.

The reifymacro plays a crucial role in the compile-time metaprogramming. Its definition

as a member of Context is:

1 def reify[T](expr : T): Expr[T] = macro . . .

Reify accepts a single parameter expr, which can be any well-typed Scala expression,

and creates a tree that, when compiled and evaluated, will recreate the original tree expr.

So reify is like time-travel: trees get re-constituted at a later stage. If reify is called

from normal compiled code, its effect is that the AST passed to it will be recreated at run

time. Consequently, if reify is called from a macro implementation or a method inside

scalac, its effect is that the AST passed to it will be recreated at macro-expansion time (which

corresponds to run time for macros). This gives a convenient way to create syntax trees from

Scala code: pass the Scala code to reify, and the result will be a syntax tree that represents

that very same code.

Georgios Kollias 18

Faster Scala Collections with Compile-Time Reflection

For example, reify(x < 10) will generate an Expr object representing the same AST we

created manually before.

More importantly, reify packages the result expression tree with the types and values

of all free references that occur in it. This means in effect that all free references in the result

are already resolved, so that re-typechecking the tree is insensitive to its environment. All

identifiers referred to from an expression passed to reify are bound at the definition site,

and not re-bound at the call site. As a consequence, macros that generate trees only by

means of passing expressions to reify are hygienic.

So, in a sense, Scala macros are self-cleaning. Their basic form is minimal and unhygienic,

but that simple form is expressive enough to formulate a reify macro, which in turn can

be used to make tree construction in macros concise and hygienic.

Another important compile-time metaprogramming operation is the splicing, which could

be described as reify’s inverse operation. Using Expr’s splice method we can inject an

existing AST inside a reify’s body.

Reification and splicing operations are crucial to our implementation, as we will see in the

next chapter.

Georgios Kollias 19

Faster Scala Collections with Compile-Time Reflection

Chapter 3

Our Approach: ft-declosurify

This chapter presents the core of our work. Section 3.1 will give us a thorough overview of

ft-declosurify and section 3.2 will describe the major ft-declosurify implementation details.

3.1 ft-declosurify Overview

For understanding at a high-level what ft-declosurify does let’s see how an example expres-

sion List(1, 2, 3).map(_ + 1) is translated from both the scalac and the ft-declosurify

points of view. List(1, 2, 3).map(_ + 1) is a shortcut for List(1, 2, 3).map(x =>

x + 1), where x => x + 1 is an anonymous function -closure- that returns its argument

incremented by one. Applying that function to the List(1, 2, 3) will result in a new list

List(2, 3, 4). Since Scala code is translated into Java bytecode at the end and since

Java doesn’t support any notion of functions inherently, this anonymous function should be

translated somehow in constructs that are supported by the Java bytecode. This trivial Scala

expression List(1, 2, 3).map(_ + 1) is translated internally by scalac to Figure 3.1’s

code
1
.

We can see that scalac converts the _ + 1 function into a block of code (piece of code

between two braces), where a class, called $anonfun here, is defined. That class extends

1
The code listing below as well as most of the following listings are slightly abbreviated for readability reasons

1 immutable.this.List.apply[Int](Array[Int]{1, 2, 3}).map[Int, List[Int]]({
2 final class $anonfun extends scala.runtime.AbstractFunction1[Int,Int] with

Serializable {
3 def <init>(): anonymous class $anonfun = {
4 $anonfun.super.<init>();
5 ()
6 };
7 final def apply(x$1: Int): Int = x$1.+(1)
8 };
9 (new $anonfun(): Int => Int)

10 }, immutable.this.List.canBuildFrom[Int]())

Figure 3.1: scalac’s internal representation of List(1, 2, 3).map(_ + 1)

Georgios Kollias 20

Faster Scala Collections with Compile-Time Reflection

1 def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr, B, That]): That =
2 {
3 def builder = {
4 val b = bf(repr)
5 b.sizeHint(this)
6 b
7 }
8 val b = builder
9 for (x <- this) b += f(x)

10 b.result
11 }

Figure 3.2: Scala’s default map implementation

the AbstractFunction1[Int,Int] class, which is an abstract class that represents the

functions that accept one integer argument and return another integer. Inside the class, an

apply method is defined which is called whenever we apply a class object to one integer

argument. The apply body returns its argument incremented by one, e.g., val a1 = new

$anonfun(); a1(5); returns 6. Just after the class definition, scalac creates a new object

of this class and this is what is actually returned from that block of code. Eventually, the _

+ 1 is substituted by an object of a subclass of a class representing the functions internally,

which leads us to the conclusion that the scala source-level closures are translated to regular

class objects.

In Figure 3.2 we can see the Scala standard library’s map implementation. Here f is

the function object scalac passed during the map call, i.e., the object resulted from new

$anonfun() call from Figure 3.1. f(x) invocation will expand to f.apply(x) and, therefore,

it is a normal method call on object f. We can easily see how similar this map definition is

with the one provided in Figure 1.2. They both suffer from The Problem. Here, f’s runtime

type will, usually, be different on each map call since the functions we pass are generally

different. As we explained in Chapter 1, such calls are called megamorphic virtual calls and,

currently, cannot be inlined efficiently by the JVM. So on each map we generally have the

added overhead of a dynamic call to the passed function object. Even worse, the lack of

knowledge of what goes on inside the virtual call prevents all kinds of crucial optimizations.

We can see how ft-declosurify translates the respective piece of code, List(1, 2, 3).

macroMap(_ + 1), in Figure 3.3. The only difference here is the use of macroMap instead

of the plain map.

Here we use a scala.collection.mutable.Builder object to construct the target col-

Georgios Kollias 21

Faster Scala Collections with Compile-Time Reflection

1 {
2 private def local1(x$1: Int): Int = x$1.+(1);
3 private def builder1: scala.collection.mutable.Builder[Int,List[Int]] = {
4 val b: scala.collection.mutable.Builder[Int,List[Int]] =
5 immutable.this.List.canBuildFrom[Int].apply();
6 b.sizeHint(immutable.this.List.apply[Int](1, 2, 3));
7 b
8 };
9 val buf = builder1();

10 var these = immutable.this.List.apply[Int](1, 2, 3);
11 while(!these.isEmpty){
12 buf.+=(local1(these.head));
13 these = these.tail
14 };
15 buf.result
16 }

Figure 3.3: Expanded List(1, 2, 3).macroMap(_ + 1)

lection. The builder itself is created from the canBuildFrom object the compiler passed in

implicitly, as we will explain more thoroughly in section 3.2. The builder creation and ini-

tialization takes place in the builder1 method. While we traverse the prefix, we apply the

local1 function to all elements and we append (through method +=) them to the builder.

When the traversal is over, we call the builder’s result method which returns the full target

collection we want (a List in this example).

In macroMap’s transformation, we see that there is no explicit call to any map method.

Instead, the list’s traversal happens directly within a while loop where the local1 local free

method is applied to all of the list’s elements. The local1 method is called a free method

since it’s not directly attached to any class or object. During scalac’s ‘‘flatten’’ phase, it will

be lifted and become a method of the enclosing class with a new mangled name. That way

local1’s receiver runtime type will, likely, remain unchanged during a program’s execution.

Therefore, it’s much easier for JVM to inline local1 and reason about further optimizations.

We can easily see that ft-declosurify works well for cases where the closure is stati-

cally available at the call-site, like List(1,2,3).macroMap(x => x + 1), where it will be

expanded to something like

1 {

2 def local1(x$1: Int): Int = x$1.+(1);

3 ...

4 }

Georgios Kollias 22

Faster Scala Collections with Compile-Time Reflection

according to the transformations above. This case doesn’t solve The Problem at its core

but, instead, it ‘‘sidesteps’’ it at a metalinguistic level, by eager compile-time inlining and by

‘‘breaking’’ and transforming the passed function object to a local method.

A more interesting case is when we have something like List(1, 2, 3).macroMap(myf),

where we don’t know much about the myf function except, let’s say, its type is Int => Int.

Then, macroMap will be expanded into something like:

1 {

2 def local1(x$1: Int): Int = myf.apply(x$1);

3 ...

4 }

Initially, it seems that we fall back to The Problem again, without having any advantage,

since myf.apply seems to be a megamorphic virtual call again. But, in a program, all

macroMap instances will be expanded at the call-site and their myf’s runtime type will,

usually, remain the same during each call and, theoretically, the type profiler can inline each

myf.apply, which again alleviates The Problem. So, in both cases, we do achieve some wins

against The Problem.

In summary, macroMap transformation takes advantage of:

• Knowing the static type of macroMap’s receiver, because it can apply different trans-

formations depending on the type.

• Knowing the static type of the macroMap’s function, because it can transform it in a

local method and, make it inlining friendly.

• Having a fixed built-in implementation, applying eager compile-time inlining.

3.2 ft-declosurify Implementation Specifics

In this section, we will see the ft-declosurify implementation in more detail.
2

3.2.1 macroMap/macroForeach definitions

The macroForeach method, just like the standard foreach, is meant to traverse all ele-

ments of the collection, and apply the given operation, f, to each element. The invocation

2
The full implementation source code is available at http://github.com/geo-kollias/scala/tree/

ft-declosurify

Georgios Kollias 23

http://github.com/geo-kollias/scala/tree/ft-declosurify
http://github.com/geo-kollias/scala/tree/ft-declosurify

Faster Scala Collections with Compile-Time Reflection

of f is done for its side effect only; in fact any function result of f is discarded. Similarly,

macroMap, just like the standard map, traverses all elements of the collection, and applies

the given operation, f, to each element but, also, it always returns a collection whose type

depends on f. We could see macroMap’s functionality as a superset of macroForeach’s

functionality and that’s true on the implementation side too. The same code handles both

cases but, in the case of macroForeach, we ignore the result. For that reason and without

any loss of generality we will be referring only to macroMap in the rest of the text.

macroMap is defined in standard library’s scala.collection.TraversableLike trait,

where the default map method is defined too. Its definition is an unusual one:

1 def macroMap[B, That](f0: A => B)(implicit bf: CanBuildFrom[Repr, B, That]): That

= ???’

Instead of a usual implementation on the right hand side, we see a ???. The ??? is an

actual special Scala method which is used to throw NotImplementedError exceptions.

Our macroMap implementation will be generated at compile-time, as we will explain in the

next subsections, so no exception is raised.

The above signature is exactly the same as the map’s one. Regarding the type parameters,

A is the collection’s element type and, therefore, f0’s argument type, B is f0’s return type,

Repr is the underlying collection’s type and That is the generated collection’s type. Also,

as we said, macroMap is a curried method. The first parameter list accepts the operation’s

function. The second list gets an implicit CanBuildFrom object. CanBuildFrom objects

are builder factories which generate the appropriate scala.collection.generic.Builder

objects depending on their type parameters. Generally, builders makes the creation of a new

collection out of existing ones easier and more maintainable. For example, a CanBuildFrom[

List[String], Int, Array[Int]] object will create a Builder[Int, Array[Int]] ob-

ject which can create an Array of integers out of a List of strings. Since bf is implicit, it

will usually be generated and passed by the compiler automatically.

3.2.2 Linking macroMap/macroForeach definitions with implementa-

tions

The upstream declosurify project can be used as a library adding the -extension- meth-

ods macroMap and macroForeach on all Scala collections that implement the scala.

collection.TraversableOnce trait and Arrays, through Scala’s implicit conversions [15].

Since, ultimately, we would like to substitute the default map and foreach methods with

Georgios Kollias 24

Faster Scala Collections with Compile-Time Reflection

the macroMap and macroForeach implementations respectively, we had to move the defini-

tions of macroMap, macroForeach inside the Scala standard library. The Scala standard

library doesn’t have access to the new compile-time reflection capabilities since it doesn’t

depend on the scala-reflect and scala-compiler packages, so we cannot have macro

definitions in it. As a solution, we used the scala compiler’s FastTrack mechanism defined

in the scala.tools.reflect.FastTrack trait.

FastTrack is a low level mechanism of scalac to invoke macro expansions for builtin

macros and it is, also, the key machinery used by our implementation in order to register

and invoke our transformations. One builtin macro that uses this mechanism is the reify

function itself that we saw in the previous chapter. The FastTrack module uses a registry

where one links methods’ compiler Symbols with special handler methods. For example,

whenever the compiler sees a Symbol representing an application of reify, it calls its

respective FastTrack special handler which has access to the reify application’s call-site

context and all of its arguments’ ASTs, through pattern matching. The call-site context

object, generally, holds call-site information like the macro application’s enclosing method, its

enclosing class, its line in the file. The ASTs contain the internal representation of the macro

application like List(1, 2, 3).macroMap(_ + 1) i.e., the receiver object, the macroMap

method call and its function argument. Pattern matching happens upon these ASTs so,

theoretically, we can choose to match successfully against List(1,2,3).macroMap(_ + 1)

but not against val r = List(1,2,3); r.macroMap(_ + 1) depending on our needs. If

the pattern matching is successful, its respective compiler handler will eventually generate

the AST which replaces the macro application’s AST at the call-site, completing that way the

low-level macro expansion. In our case, whenever scalac finds a Symbol of an application

of the scala.collection.TraversableLike’s macroMap method, it triggers the expansion

we will describe in the next subsection.

Regular Scala macros implementations can be generic in the sense that they can be

customized with type parameters as any regular Scala method. On top of that, the Scala

compiler allows us to ‘‘tag’’ each of these type parameters with special compiler-generated

objects, of type (Weak)TypeTag [15], that store the type parameters’ full types on each

call and make them available at runtime. In short, it’s Scala’s solution against JVM’s type

erasure. This machinery is especially useful for macros, since we can inspect these TypeTag

objects and generate the most suitable code for each occasion. Unfortunately, using the low

level compiler’s FastTrack mechanism doesn’t permit us using this facility. Instead, we are

forced to work directly with the compiler’s internal type representations lowering the level of

Georgios Kollias 25

Faster Scala Collections with Compile-Time Reflection

abstraction we can work with.

FastTrack’s special handler for the macroMap method, after doing some preprocessing

on the pattern matched ASTs, will call the method that does the actual transformation and

code generation.

3.2.3 Transformation Method Interface

Firstly, let’s see the transformation method’s signature and what arguments it obtains from

the handler. This method is defined in scala.tools.reflect.declosurify.Declosurify

object

1 def mapInfix[A, B](c0: Ctx)(f0: c0.Expr[A => B], inElemTpe: c0.Type, outElemTpe:

c0.Type, inCollTpe: c0.Type, outCollTpe: c0.Type, bfTree: c0.Tree): c0.Tree

Despite its name, mapInfix can generate ASTs for both macroMap and macroForeach.

It’s a curried method parameterized on the received function’s input (A) and return (B) types.

In the first parameter list, c0 is a context object as we described it in subsection 3.2.2, giving

us access to the macro application’s call-site information. The most important field of c0

is the prefix which represents the receiver collection object of the macroMap application.

We will call it simply prefix from now on. In the second parameter list, f0 represents the

function’s AST which is going to be applied to the prefix. Its type, Expr, wraps an AST and an

internal type tag (TypeTag) to provide access to the type of the tree. As we mentioned before,

using Expr doesn’t really help us working at that level of the compiler, since we cannot really

exploit the (Weak)TypeTag’s facilities. The next five arguments are:

• inElemTpe: the internal compiler type of prefix’s elements

• outElemTpe: the internal compiler type of the elements of the collection our macroMap

is going to return

• inCollTpe: the internal compiler type of the prefix

• outCollTpe: the internal compiler type of the collection our macroMap is going to

return

• bfTree: the AST of the implicit scala.collection.generic.CanBuildFrom object

that got inserted by the compiler at the macroMap call-site. This provides us with

Georgios Kollias 26

Faster Scala Collections with Compile-Time Reflection

an easy and accurate way to create the appropriate builder for the generated collec-

tion, taking full advantage of all the existing implicit CanBuildFrom objects that are

declared in the standard library [12] .

It’s easy to observe that all of second parameter list types are prepended with the context

object c0. This qualified notation realizes the notion of Scala’s path-dependent types. For

example, here we choose the Expr that is defined inside the c0 object. Generally, if we have

two different objects c0 and c1 of the same type which include an inner type MyType, e.g.,

through type member or inner class, then c0.MyType is a different type from c1.MyType in

Scala. The same holds for the c0.Types that follow.

3.2.4 Transformation Requirements

Now that we know what our transformation method can operate upon, we can examine the

main points of the actual transformation. One of the first things ft-declosurify checks is if

the outCollTpe is Unit type. If it’s Unit then it means the macro is applied only for its

side-effects so it’s a foreach call. Instead of relying on this heuristic, newer version of the

Scala macros provide us with the exact name of the calling method.

After that, we check three conditions to ensure that a typical transformation can take

place:

• the f0 AST is actually a function AST or a block whose last expression is a function,

since, in Scala, the value of a block is the block’s last expression.

• the f0 AST doesn’t contain any return expressions.

• macro application is enclosed in a method. Currently, that limitation makes the trans-

formation easier.

If any of the above points is not satisfied, then the mapInfix falls back to the default

map/foreach implementation by generating an AST which calls the map/foreach method

on the same prefix object:

1 def mkFallbackImpl: c.Tree = {

2 val name: TermName = if (isForeach) "foreach" else "map"

3 val pre = c.prefix.tree

4 val fallbacktree = Apply(Select(pre, name), f0.tree :: Nil)

5 fallbacktree

6 }

Georgios Kollias 27

Faster Scala Collections with Compile-Time Reflection

The next important step is the transformation of the passed closure AST into a local free

method AST:

1 def functionToLocalMethod(fnTree: Function): DefDef = {

2 val Function(fparams, fbody) = fnTree

3 val frestpe = fbody.tpe

4 val fsyms = fparams map (_.symbol)

5 val vparams = for (vd @ ValDef(mods, name, tpt, _) <- fparams) yield ValDef(

mods, name, TypeTree(vd.symbol.typeSignature.normalize), EmptyTree)

6 val method = newLocalMethod(freshName("local"), vparams, frestpe)

7 val tree = DefDef(NoMods, freshName("local"), Nil, List(vparams), TypeTree(

frestpe), c.resetAllAttrs(fbody.duplicate))

8

9 tree setSymbol method

10 c.resetAllAttrs(tree)

11 c.typeCheck(tree).asInstanceOf[DefDef]

12 }

For example, the passed closure x => x + 1 would be transformed to:

1 def local1(x$1: Int): Int = x$1.+(1);

A closure like x => x + y where y is defined in the local scope would be transformed to

something like:

1 def local1(x: Int): Int = x.+(TestMacroMapObject.this.y)

Also, a closure like {println("hi"); x => x + 1} would be transformed to:

1 println("hi");

2 def local1(x: Int): Int = x.+(1);

3.2.5 Transformation Choice and Idiosyncrasies

The transformation choice depends, primarily, upon the prefix’s static type. Right now, there

are three different transformation paths for different kinds of prefixes. We will check them in

the following subsections, but all of them generate similar code with the original Scala map

implementation, although they use more low-level constructs.

The reasons we need different implementations for different kinds of prefixes and target

collections are:

• Each kind has different API, e.g., different supported methods.

Georgios Kollias 28

Faster Scala Collections with Compile-Time Reflection

• Different implementation logic is needed for each kind in order to produce faster code,

by exploiting each kinds’ specific characteristics since the same methods might take

different time on different collections.

For example, trait Seq has two subtraits LinearSeq and IndexedSeq. These do not add

any new operations, but each offers different performance characteristics: A linear sequence

has efficient head and tail operations, whereas an indexed sequence has efficient apply,

length, and (if mutable) update operations.

Also, we will see how important reifying and splicing operations are. The generated ASTs

we splice inside the reify expression are constructed with one of these three ways depending

on the occasion:

• we get them directly from the FastTrack’s pattern matching.

• we get them by using the Symbol and Type APIs.

• we construct them manually.

Whatever AST is returned from the reify will eventually replace the macro application’s

AST in the first place.

Finally, we should also mention that in contrast to most of the other collections operations,

a map operation can generate a collection that has the same type constructor as the prefix

collection but possibly with a different element type, or even a entirely different collection

type. As an example of the former case, if f is a function from String to Int, and xs is

a List[String], then xs map f gives a List[Int]. Likewise, if ys is an Array[String],

then ys map f gives a Array[Int]. As an example of the later case,

1 Map("a" -> 1, "b" -> 2) map { case (x, y) => y}

returns List(1, 2) of type scala.collection.immutable.Iterable[Int], which is dif-

ferent from the prefix’s Map type. The upstream declosurify project could handle partially only

the first case. ft-declosurify can handle both of the cases successfully due to the introduc-

tion of the implicit CanBuildFrom object, making it a more general purpose transformation

tool.

3.2.6 Array, scala.collection.mutable.ArraysOps and

scala.collection.mutable.IndexedSeq Transformation

scala.Array and all collections that implement the scala.collection.mutable.ArrayOps

Georgios Kollias 29

Faster Scala Collections with Compile-Time Reflection

1 def mkMutIndexed[Prefix](prefixTree: Tree): c.Tree = {
2 val prefix = c.Expr[Prefix](prefixTree)
3 val len = c.Expr[Int](’xs dot ’length) // might be array or indexedseq
4 val call = c.Expr[Unit]((’buf dot ’update)(’i, closure(’xs(’i))))
5 def mkResult = c.Expr[Nothing](if (isForeach) mkUnit else ’buf)
6

7 val arrCons = Apply(Select(New(TypeTree(outCollTpe)), nme.CONSTRUCTOR), List
((’xs dot ’length).lhs))

8 val builderVal = c.Expr[Prefix](arrCons)
9

10 reify {
11 closureDef.splice
12 val xs = prefix.splice
13 var buf = builderVal.splice
14 var i = 0
15 while (i < len.splice) {
16 call.splice
17 i += 1
18 }
19 mkResult.splice
20 }.tree
21 }

Figure 3.4: Mutable indexed sequences transformation code

and scala.collection.mutable.IndexedSeq traits, like scala.collection.mutable.

ArraySeq, scala.collection.mutable.StringBuilder, scala.collection.mutable.

ArrayBuffer, share the same transformation, since all of them are mutable indexed se-

quences. The transformation code is in Figure 3.4.

As an example, any macroMap applications on Arrays like:

1 Array(1, 2, 3).macroMap(_ + 1)

will expand to Figure 3.5’s code.

Exactly the same transformation applies for all the other collections that fall into this

category. The reasons we chose this transformation path for this category are:

• only this category’s collections accept a length in the constructor

• the length method here takes constant time

• the element selection through xs.apply(i) takes constant time

• the update method is supported, since all collections of this category are mutable, and

takes constant time

Georgios Kollias 30

Faster Scala Collections with Compile-Time Reflection

1 {
2 def local1(x$1: Int): Int = x$1.+(1);
3 val xs: Array[Int] = scala.this.Predef.intArrayOps(scala.Array.apply(1,
4 scala.this.Predef.wrapIntArray(Array[Int]{2, 3}))).repr();
5 var buf: Array[Int] = new Array[Int](xs.length());
6 var i: Int = 0;
7 while(i.<(xs.length())){
8 buf.update(i, local1(xs.apply(i))); // buf(i) = (local1(r(i)));
9 i = i.+(1)

10 };
11 buf
12 }

Figure 3.5: Expanded Array(1, 2, 3).macroMap(_ + 1)

Also, all of this category’s collections can only be mutated through the update method

(the assignment operator) on a specific index, with one exception, the scala.collection.

mutable.ArrayBuffer. ArrayBuffer supports mutating methods for appending/remov-

ing elements which could affect the semantics of macroMap in case we mutate the underlying

collection in the function we pass in macroMap. Our transformation seems to behave in the

same way as the default map method. For example both

1 buf map {x => buf += x; x+1 }

and

1 buf macroMap { x => buf += x; x+1 }

return ArrayBuffer(2, 3, 4). So, we assume the macroMap keeps the same semantics

on the ArrayBuffer as the original map method.

In the next chapter will see how much faster this version is compared to the default map

on Arrays and ArraySeqs.

3.2.7 scala.collection.LinearSeq Transformation

This category includes scala.collection.{immutable.List, immutable.Stream,

immutable.Queue, immutable.Stack, mutable.MutableList, mutable.MutableList,

mutable.LinkedList, mutable.DoubleLinkedList}. All of these collections are linear.

For example, in this category’s transformation we couldn’t use the apply (for indexing) or

the length method because both of them take linear time, instead of constant. The trans-

formation is in Figure 3.6.

Georgios Kollias 31

Faster Scala Collections with Compile-Time Reflection

1 def mkLinear(prefixTree: Tree): c.Tree = {
2 val prefix = c.Expr[Lin[A]](prefixTree)
3 val call = mkCall(’these dot ’head)
4

5 reify {
6 closureDef.splice
7 builderDef.splice
8 builderVal.splice
9 var these = prefix.splice

10 while (!these.isEmpty) {
11 call.splice
12 these = these.tail
13 }
14 mkResult.splice
15 }.tree
16 }

Figure 3.6: Linear sequences transformation code

As an example, any macroMap applications on scala.collection.immutable.List

like:

1 List(1, 2, 3).macroMap(_ + 1)

will be replaced from Figure’s 3.7’s code.

This category uses this transformation because:

• isEmpty takes constant time

• head takes constant time

• tail takes constant time

In the next chapter will see how much faster this version is compared to the default map

on Lists.

3.2.8 scala.collection.Traversable Transformation

This category includes all collections that don’t fit in any of the previous categories. Roughly,

it includes all kinds of Sets, Maps, Buffers and immutable.IndexedSeqs. Obviously,

since it includes such a broad range of collections we are allowed to use only methods that

are supported from all the collections, meaning that we cannot use the length, apply,

head, tail methods of the previous transformations. The transformation is in Figure 3.8.

Georgios Kollias 32

Faster Scala Collections with Compile-Time Reflection

1 {
2 private def local1(x$1: Int): Int = x$1.+(1);
3 private def builder1: scala.collection.mutable.Builder[Int,List[Int]] = {
4 val b: scala.collection.mutable.Builder[Int,List[Int]] =
5 immutable.this.List.canBuildFrom[Int].apply();
6 b.sizeHint(immutable.this.List.apply[Int](1, 2, 3));
7 b
8 };
9 val buf = builder1();

10 var these = immutable.this.List.apply[Int](1, 2, 3);
11 while(!these.isEmpty){
12 buf.+=(local1(these.head));
13 these = these.tail
14 };
15 buf.result
16 }

Figure 3.7: Expanded List(1, 2, 3).macroMap(_ + 1)

1 def mkTraversable(prefixTree: Tree): c.Tree = {
2 val prefix = c.Expr[Traversable[A]](prefixTree)
3 val call = mkCall(’it dot ’next)
4

5 reify {
6 closureDef.splice
7 builderDef.splice
8 builderVal.splice
9 val it = prefix.splice.toIterator

10 while (it.hasNext)
11 call.splice
12

13 mkResult.splice
14 }.tree
15 }

Figure 3.8: Traversable sequences transformation code

Georgios Kollias 33

Faster Scala Collections with Compile-Time Reflection

1 {
2 private def local1(x$1: Int): Int = x$1.+(1);
3 private def builder1:
4 scala.collection.mutable.Builder[Int,scala.collection.immutable.Set[Int]] = {
5 val b:
6 scala.collection.mutable.Builder[Int,scala.collection.immutable.Set[Int]] =
7 immutable.this.Set.canBuildFrom[Int].apply();
8 b.sizeHint(r);
9 b

10 };
11 val buf = builder1();
12 val it = r.toIterator;
13 while(it.hasNext){
14 buf.+=(local1(it.next));
15 };
16 buf.result
17 }

Figure 3.9: Expanded Set(1, 2, 3).macroMap(_ + 1)

As an example, any macroMap applications on scala.collection.immutable.Set like:

1 Set(1, 2, 3).macroMap(_ + 1)

will expand to Figure 3.9’s code.

Here, we use the toIterator method to generate a prefix’s iterator object. All collec-

tions have an toIterator method since all of them implement the scala.collection.

Iterable trait. Each collection implements it using its scala.collection.Traversable’s

foreachmethod, which is implemented according to each collection’s special characteristics

in order to be more efficient.

For the collections that implement the immutable.IndexedSeq trait, like Vector, we

could have used a modified version of the mutable indexed sequences transformation where

we would use a builder object to build the target collection, since we cannot mutate it in

place. Interestingly, our experiments showed us that solution was slower than the current

one.

Georgios Kollias 34

Faster Scala Collections with Compile-Time Reflection

Chapter 4

Experimental Results

In this chapter we will benchmark all the categories we explored in the previous chapter

against their default Scala counterparts. We choose a few representative collections for

each category in order to see how the different transformation strategies and the different

collections characteristics affect the speedups.

4.1 Setup

We used the ScalaMeter [17] microbenchmarking and performance regression testing frame-

work for the JVM platform. We use the same benchmark template for all the different cate-

gories. In short, each benchmark compares the macroMap’s speed against map’s speed on

different sizes of the same collection applying the same closure, the successor function.

The benchmarks run on a Linux 64-bit machine with an Intel Core i7-2720QM 8-core

CPU and 8GB RAM.

In order to make the benchmarking process more stable, reproducible and reliable we

have tweaked the benchmark template with the following parameters:

• each measurement of map/macroMap on a specific collection size is run 25 times

successively

• the 25 measurements are divided on 5 separate JVM instances

• every 2 measurements the current collection is re-instantiated

• every 2 measurements a full GC cycle is forced

4.2 Evaluation

In Figure 4.1 we see the benchmark results for scala.collection.mutable.ArraySeq

and Array, as representatives of the mutable indexed sequences category, i.e., subtypes of

Georgios Kollias 35

Faster Scala Collections with Compile-Time Reflection

(a) mutable.ArraySeq benchmark (b) Array benchmark

Figure 4.1: Benchmarks of mutable indexed sequences representatives

scala.collection.mutable.IndexedSeq and Array, where we achieve speedups of 55%

and 88% on average, respectively.

The speedup on Array is impressive and the highest one among all the other bench-

marked collections. In this series of benchmarks, all collections hold integers and the sup-

plied closure returns an integer too (the successor integer). The Scala language has only one

integer type, scala.Int, which is similar to Java’s boxed java.lang.Integer. scalac tries

to use Java’s respective primitive types under the hood, whenever possible, for optimization

reasons. More specifically, after scalac’s erasure phase, a scala.Int will become either a

int or a java.lang.Integer. For example, in our benchmarks, the closure function will

become a local method like:

1 def local1$1(x$1: int): int = x$1.+(1);

This method deals solely with Java’s primitive integers under the hood. On the other

hand, operations on ArraySeq, List and most of the collections except Array, deal with

java.lang.Integer. So, for example, in an ArraySeq transformation the target collection

is constructed like this:

1 buf.update(i, scala.Int.box(local1$1(scala.Int.unbox(xs.apply(i))

while on Arrays we have:

1 buf.update(i, local1$1(xs.apply(i)))

Georgios Kollias 36

Faster Scala Collections with Compile-Time Reflection

Figure 4.2: List benchmark

This is due the way Arrays are constructed. In particular, when we ask for an

Array[scala.Int] in Scala, the compiler inspects it and creates an Array[int] auto-

matically and, as a consequence, all of its methods operate upon primitive integers. We can

see that avoiding the boxing/unboxing operations can give us a huge performance boost. For

that reason, Scala already provides the @specialized annotation for creating specialized

classes/collections and, more generally, specialization is a hot research topic in the Scala

community [7, 24].

In Figure 4.2 we see the benchmark results for scala.collection.immutable.List,

representative of the linear sequences category, i.e., subtypes of scala.collection.

LinearSeq, where we achieve a 28% speedup on average.

In Figure 4.3, we see the benchmark results for scala.collection.immutable.Set

and scala.collection.immutable.Vector, representatives of the general category of

traversables, i.e., subtypes of Traversable, where we achieve speedups of 5% and 25%

on average, respectively.

Finally, Table 4.1 includes all benchmarks’ exact times and their associated speedups.

Georgios Kollias 37

Faster Scala Collections with Compile-Time Reflection

(a) immutable.Set benchmark (b) immutable.Vector benchmark

Figure 4.3: Benchmarks of Traversable representatives

Collection Sizes

Transformation Category Collection Method 500K 700K 900K 1.1M 1.3M 1.5M

Mutable Indexed Seq.

ArraySeq

map 07.63 11.02 13.06 16.71 19.28 22.42
macroMap 03.46 04.75 06.06 07.42 08.67 09.92
speedup 54.65% 56.89% 53.59% 55.59% 55.03% 55.75%

Array

map 04.46 06.30 08.08 09.79 11.55 13.34
macroMap 00.56 00.71 00.96 01.21 01.47 01.74
speedup 87.44% 88.73% 88.11% 87.64% 87.27% 86.95%

Linear Seq. List

map 08.49 12.17 14.76 17.83 20.58 23.08
macroMap 06.26 08.49 10.80 12.77 15.41 16.79
speedup 26.27% 30.24% 26.83% 28.37% 25.12% 27.25%

Traversable

Set

map 225.10 428.75 552.36 783.19 1021.15 1256.04
macroMap 221.50 404.77 517.20 780.34 980.57 1196.13
speedup 01.60% 05.60% 06.37% 00.36% 03.40% 04.77%

Vector

map 07.80 09.82 12.20 14.64 16.93 19.06
macroMap 04.35 06.97 09.13 11.80 13.05 15.43
speedup 44.23% 29.02% 25.16% 19.39% 22.92% 19.05%

Table 4.1: Collections Benchmarks and Speedups

Georgios Kollias 38

Faster Scala Collections with Compile-Time Reflection

Chapter 5

Related Work

As discussed earlier, Scala’s performance issue-s-, due to the semantic gap between high-

level abstractions and the runtime model of the JVM, are not new, so a lot of research is

taking place in order to improve its performance. Dragos’ PhD thesis [7] was dedicated to the

Scala compiler’s optimizations and specialization. More related to our work was [6], where

he applied a series of more aggressive optimizations of higher-order functions in the scalac,

through decompilation of library code combined with inlining, dead code elimination, and

copy propagation.

More recently, and in parallel with the new Scala compile-time code generation facili-

ties we saw in this work, a new dynamic code generation approach has emerged, called

Lightweight Modular Staging (LMS) [18, 20]. This framework provides a library of core com-

ponents for building high performance code generators and embedded compilers in Scala,

enabling the creation of new DSLs/optimizations that improve the performance of Scala and

its libraries [13, 2, 23, 19].

Another interesting technique for collections performance improvement, which has been

applied to Haskell’s reference compiler, the Glasgow Haskell Compiler (GHC), is Stream Fu-

sion [5, 10]. It would be interesting to see how it applies in Scala’s case too.

Georgios Kollias 39

Faster Scala Collections with Compile-Time Reflection

Chapter 6

Conclusions

By using the Scala 2.10 compile-time reflection APIs we were able to add the

macroMap/macroForeach methods to the Scala standard library and make them about

40% faster than the default map/foreach methods, on average. That performance improve-

ment is, in part, due to our choice to trade off the implicitly and programmatically duplicated

code at the call site for the reduction of the megamorphic virtual calls, in this way alleviating

one part of The Problem.

Even if the macroMap/macroForeach iterators aren’t particularly big or complex, this

trade off’s code duplication can blow out the CPU’s instruction cache in programs which use

these methods heavily, negatively affecting performance. Also, applying these transforma-

tions statically and eagerly at compile-time leads us to a few more problems:

• We cannot override a collection’s macroMap/macroForeach methods, in this way

violating the Liskov’s Substitution Principle [9].

• In code like Traversable[Int] tr = List(1,2,3); tr.macroMap(_+1),

macroMap will expand according to tr’s static type, so it won’t expand to the

most performant alternative.

We intend to continue improving our implementation and looking for new ways to improve

Scala’s performance in general.

Georgios Kollias 40

Faster Scala Collections with Compile-Time Reflection

Acronyms and Abbreviations

Abbreviation Full Name

AST Abstract Syntax Tree

JVM Java Virtual Machine

LMS Lightweight Modular Staging

Georgios Kollias 41

Faster Scala Collections with Compile-Time Reflection

References

[1] Alex Blewitt. Yammer Moving from Scala to Java. http://www.infoq.com/news/

2011/11/yammer-scala, November 2011.

[2] Kevin J Brown, Arvind K Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi, Martin

Odersky, and Kunle Olukotun. A heterogeneous parallel framework for domain-specific

languages. In Parallel Architectures and Compilation Techniques (PACT), 2011 Interna-

tional Conference on, pages 89–100. IEEE, 2011.

[3] Eugene Burmako and Martin Odersky. Scala Macros, a Technical Report. In Third

International Valentin Turchin Workshop on Metacomputation, page 23, 2012.

[4] Cliff Click. Fixing The Inlining "Problem". http://www.azulsystems.com/blog/

cliff/2011-04-04-fixing-the-inlining-problem, April 2011.

[5] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists to

streams to nothing at all. In ACM SIGPLAN Notices, volume 42, pages 315–326. ACM,

2007.

[6] Iulian Dragos. Optimizing Higher-Order Functions in Scala. In Third International Work-

shop on Implementation Compilation Optimization of ObjectOriented Languages Programs

and Systems, volume 32, 2008.

[7] Iulian Dragos. Compiling Scala for performance. PhD thesis, ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE, 2010.

[8] Eugene Kohlbecker, Daniel P Friedman, Matthias Felleisen, and Bruce Duba. Hygienic

macro expansion. In Proceedings of the 1986 ACM conference on LISP and functional

programming, pages 151–161. ACM, 1986.

[9] Barbara H Liskov and Jeannette M Wing. A behavioral notion of subtyping. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

[10] Geoffrey Mainland, Roman Leshchinskiy, Simon Peyton Jones, and Simon Marlow.

Haskell Beats C Using Generalized Stream Fusion. Under submission.

[11] Heather Miller, Eugene Burmako, and Philipp Haller. Reflection. http://docs.

scala-lang.org/overviews/reflection/overview.html.

Georgios Kollias 42

http://www.infoq.com/news/2011/11/yammer-scala
http://www.infoq.com/news/2011/11/yammer-scala
http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem
http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem
http://docs.scala-lang.org/overviews/reflection/overview.html
http://docs.scala-lang.org/overviews/reflection/overview.html

Faster Scala Collections with Compile-Time Reflection

[12] Adriaan Moors. Type Constructor Polymorphism for Scala: Theory and Practice. PhD

thesis, PhD thesis, Katholieke Universiteit Leuven, 2009.

[13] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. Scala-virtualized.

In Proceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation and program

manipulation, pages 117–120. ACM, 2012.

[14] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Press, 2nd

edition, 2010.

[15] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and

implicits. SIGPLAN Not., 45(10):341–360, October 2010.

[16] Paul Phillips. Declosurify. https://github.com/paulp/declosurify.

[17] Aleksandar Prokopec. Scalameter. http://axel22.github.io/scalameter/.

[18] Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic approach

to runtime code generation and compiled DSLs. In ACM SIGPLAN Notices, volume 46,

pages 127–136. ACM, 2010.

[19] Tiark Rompf, Arvind K Sujeeth, Nada Amin, Kevin J Brown, Vojin Jovanovic, Hy-

oukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky. Opti-

mizing data structures in high-level programs: New directions for extensible compilers

based on staging. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 497–510. ACM, 2013.

[20] Tiark Rompf, Arvind K Sujeeth, HyoukJoong Lee, Kevin J Brown, Hassan Chafi, Martin

Odersky, and Kunle Olukotun. Building-blocks for performance oriented DSLs. arXiv

preprint arXiv:1109.0778, 2011.

[21] Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. SIGPLAN

Not., 37(12):60–75, December 2002.

[22] Kamil Skalski. Syntax-extending and type-reflecting macros in an object-oriented lan-

guage. Master’s thesis, University of Wrocław, 2005.

[23] Vlad Ureche, Tiark Rompf, Arvind Sujeeth, Hassan Chafi, and Martin Odersky. Staged-

sac: A case study in performance-oriented dsl development. In Proceedings of the ACM

Georgios Kollias 43

https://github.com/paulp/declosurify
http://axel22.github.io/scalameter/

Faster Scala Collections with Compile-Time Reflection

SIGPLAN 2012 workshop on Partial evaluation and program manipulation, pages 73–82.

ACM, 2012.

[24] Vlad Ureche, Cristian Talau, and Martin Odersky. Miniboxing: Improving the Speed

to Code Size Tradeoff in Parametric Polymorphism Translations. Under submission to

OOPSLA 2013.

Georgios Kollias 44

	Introduction
	Background
	Scala Collections Overview
	Scala Compile-Time Reflection Overview

	Our Approach: ft-declosurify
	ft-declosurify Overview
	ft-declosurify Implementation Specifics
	 macroMap/macroForeach definitions
	Linking macroMap/macroForeach definitions with implementations
	Transformation Method Interface
	Transformation Requirements
	Transformation Choice and Idiosyncrasies
	Array, scala.collection.mutable.ArraysOps and scala.collection.mutable.IndexedSeq Transformation
	scala.collection.LinearSeq Transformation
	scala.collection.Traversable Transformation

	Experimental Results
	Setup
	Evaluation

	Related Work
	Conclusions
	Acronyms and Abbreviations
	References

