
Adding diagrams to Scaladoc

Damien Obrist
Optional Semester Project

École Polytechnique Fédérale de Lausanne

Vlad Ureche
Collaboration and Supervision

Programming Methods Laboratory (LAMP)

June 8, 2012

1



1 Introduction

Scala provides a rich inheritance model in which not only classes can be extended
but where additionally traits can be ”mixed in” in order to obtain a behaviour
similar to the one offered by multiple inheritance in other languages. Similar
to extending classes, mixing in traits creates a new kind of relation between
types. Furthermore, Scala’s implicit conversion feature allows to define type
conversions that are used by the compiler where appropriate. This motivates the
need to keep track of all this information and trying to find ways of visualizing
it in Scaladoc-generated documentation.

The current implementation of Scaladoc offers the possibility to view the
inheritance hierarchy of a type by the means of two links ”Linear Supertypes”
and ”Known Subclasses” in the right frame of a type’s detail page. The first one
allows the user to show a type’s complete list of supertypes as an enumeration
in linear order (the linearization). The second one shows an alphabetically
sorted list of all of the type’s know subtypes, all the way down to the bottom
of the hierarchy. Both features are very useful and offer the hierarchy in the
fullest precision. However, they are not always very intuitive to look at. For
instance in the documentation of the scala.collection package, these two lists
can become quite large and thus not very easy to overview. Indeed, the Scala
library documentation (especially the Scala Collection package) was a motivator
for and the initial idea behind this project.

The goal of this project was to integrate diagrams into Scaladoc in order
to offer an intuitive way of viewing parts of the type hierarchy and visualizing
implicit conversions.

2 Approach

Our approach was to include into the documentation two types of diagrams,
class-level diagrams and package-level diagrams. They are displayed on the
Scaladoc class / trait and package detail pages, respectively. They are hidden
by default and can be made visible by clicking on the ”Type Hierarchy” link.
In both diagrams, types are displayed as nodes and inheritance relations are
indicated using arrows. Nodes representing classes and traits are colored green
and blue, respectively, in order to be consistent with Scaladoc’s existing color
model. An arrow pointing from one node to another one signifies that the first
node is a subtype of the latter (it extends it or mixes it in).

2



2.1 Class-level diagrams

Class-level diagrams focus on the type currently being looked at in the documen-
tation. This type is displayed as the center node of the diagram. On the level
above, the diagram displays not the whole linearization but only the current
type’s direct supertypes, i.e. all classes and traits it explicitly extends or mixes
in. This avoids overcrowded diagrams and enables the user to quickly identify
the key features of a type without having to look at the complete linearization.
The linearization is still available in the ”Linear Supertypes” section, and can
be used in order to find out the exact order of the member hierarchy (e.g. the
order of super calls). Similarly, below the current type are displayed all of its
direct subtypes. Instead of showing all implementing subtypes, the diagram
focuses on the next-in-line in order to be concise.

In order to visualize implicit conversions within the diagram, we integrated
the types the current type can implicitly be converted to or from. Our first
approach was to show them as super and subnodes and connect them with a
differently colored edge to the center node. However, due to their position,
they were not clearly distinguishable from super and subtypes and thus easily
mistaken. In order to emphasize on the fact that they are to some extent
equivalent to the current type, we chose to display implicit types on the same
level to left and right of the center node. This is more intuitive, as a step in
vertical direction in a hierarchy diagram should correspond to an actual step in
the hierarchy, which would not have been the case in our first approach.

Class-level diagrams are in fact a close-up view of a small part of the complete
type hierarchy and focus on its local aspect. Figure 1 shows an example of a
class-level diagram.

Figure 1: Class-level diagram (trait scala.collection.immutable.LinearSeq)

3



Package-level diagrams

Package-level diagrams provide a more global view of the type hierarchy, a fea-
ture that did not previously exist in Scaladoc. They visualize the inheritance
relation between types that are defined within a given package. In order to limit
the number of nodes and the complexity of the diagrams, inheritance involving
types defined in other packages (including subpackages) are not shown. This
aassumes that the majority of related classes are contained within the same
package. Isolated nodes (not taking part in any inheritance relationship) are
filtered out, as they don’t provide any information to the type hierarchy. Sim-
ilarly, objects are not shown. Package-level diagrams do not visualize implicit
conversions since they focus on inheritance. Implicit conversions for a given
type, however, can quickly be made visible by navigating to the class-level dia-
gram of that type. Figure 2 shows an example of a class-level diagram.

Figure 2: Package-level diagram (scala.xml package)

Features

The implementation of Scaladoc diagrams offers a certain number of features
which make them more interactive than simple static images. The nodes of a di-
agram are clickable, which allows the user to quickly navigate to a certain class.
When clicking on an node, the documentation page of the clicked type auto-
matically opens its diagram, which allows actual exploring of the type hierarchy.
Furthermore, nodes and edges are highlighted intelligently when moving over
them with the mouse. The diagrams adapt to the width of the browser window
and scale according to their available space. Whenever a diagram needs to be

4



scaled down, clicking on it opens a popup with the full-size diagram. Navigating
(i.e. clicking on a node) from within the popup is also possible and opens the
link in the main window. The popup can be closed using the link in its top left
corner or pressing ESC as a shortcut.

Another feature worthy of note about the diagram generation is that it avoids
overcrowded diagrams. Consider the trait scala.Product which has 173 subtypes.
Instead of showing a degenerate diagram with all children, the subtypes are
combined to and represented by a single node. The tooltip of that node contains
the names of all nodes represented by it. The same mechanism also holds for
supertypes and implicit conversion nodes. Figure 3 shows two examples of this
feature.

Figure 3: traits scala.Product and scala.collection.parallel.TraversableOps

3 Comparison to Other Documentation Tools

In this section we will briefly look at other existing documentation generators
and compare their way of visualizing type hierarchies to Scaladoc’s approach.

Javadoc

In Java, classes can extend at most one class and can implement one or more in-
terfaces. Interfaces however can extend multiple interfaces. For classes, Javadoc
generates an indented list of all superclasses all the way up to the top (i.e. the
Object class). Furthermore, it displays a list of all implemented interfaces and
of all direct subclasses (i.e. classes that directly extend the given class). For
interfaces, Javadoc generates three lists, one for each the superinterfaces, the
subinterfaces and the known implementing classes. Figure 4 shows an example
of the hierarchy part of a Javadoc documentation.

5



Figure 4: Javadoc for classes and interfaces

Doxygen

Doxygen [2] has a built-in functionality for generating inheritance diagrams,
collaboration diagrams and dependency graphs. Doxygen is often used for C++
projects, which features multiple inheritance between classes. Figure 5 shows the
inheritance diagram a small program containing four C++ classes. Doxygen’s
diagrams are hyperlinked and can be used to navigate across the classes.

Figure 5: Doxygen sample diagram [3]

Since Java only allows single inheritance, the simple intended lists of super-
classes are enough to describe the Java hierarchy. In the case of Scala and its
multiple inheritance, more complex diagrams are desirable in order to illustrate
the hierarchy meaningfully. Doxygen’s diagrams offer a visualization similar
to the Scaladoc diagrams. However, Scaladoc diagrams use more interactive
ways in order do display the information, such as highlighting related nodes on
mouseover.

6



4 Implementation

The diagrams are generated using the Graphviz dot tool [4]. Dot is a power-
ful diagram generation tool and features a sophisticated layouting engine that
minimizes edge crossings. The diagram generation in Scaladoc happens in two
phases.

First, a model of each diagram is created during the model-building phase
of Scaladoc. Diagrams, nodes and edges are modeled by classes in a way that
facilitates generating the graphical output using pattern matching and helper
methods. Building the diagram model takes into account the @diagram anno-
tation, which allows for fine-grained control over some aspects of the diagrams
(cf. section 5).

In a second phase, when Scaladoc templates are written into HTML files,
a DiagramGenerator takes care of producing a diagram from its model. It is
a trait that can possibly be implemented multiple times in order to generate
diagrams using different tools or in different output formats. The default im-
plementation is DotDiagramGenerator, which generates SVG diagrams using
the dot tool. It proceeds as follows: it assembles a dot string from the diagram
model and passes that string as an input to the dot program. Dot returns the
SVG representation of the diagram, which is then further transformed in order
to adjust it for our purposes. The SVG is embedded directly into the HTML
files and no separate image files are created. Finally, JavaScript functions (using
jQuery) and CSS definitions take care of styling the diagrams and making them
interactive.

Challenges

One challenge was to find a suitable and intuitive way of visualizing the type
hierarchy and implicit conversion in diagrams. Following weekly iterations, we
work towards the solution presented in section 2. For class-level diagrams,
another difficulty was to actually make dot layout the nodes as we wanted them
to be (especially the implicit nodes). We achieved the desired layout using
nested dot clusters.

Another challenge met during the project were the limitations of dot. Dot
offers a great deal of possibilities and flexibility but is not really meant for
making interactive and heavily styled diagrams for usage in web browsers. For
instance, there is now way of assigning CSS classes to graph elements, which is
essential for using CSS and jQuery in order to enhance the diagrams. Another
problem was that dot generated <title> tags for every node and edge that
browsers could not handle correctly and there was no way to tell dot not to
generate them. We solved those and other problems by traversing dot’s SVG

7



output and transforming it so that it fit our needs.

Making the diagrams work in different browsers was another difficult task
that had to be accomplished. SVG, like HTML, is interpreted slightly differently
across different browsers. Far worse though is the interaction between SVG and
CSS / JavaScript, which is not even standardized and thus largely dependent on
the browser. It required a lot of effort to make all the features like highlighting,
resizing, cloning the diagram to the popup etc. work in multiple browsers, and
as with dot, we often had to work around problems and find solutions. Figure
6 shows the browsers and systems that have been tested and for which of them
the diagrams work.

Max OS X 10.6.8 Windows 7 Ubuntu 11.10
Firefox 6.0 Firefox 5.0 Firefox 13.0
Chrome 13.0 Chrome 19.0 Chrome 19.0
Safari 5.1 Safari 5.1
Opera 11.50 Opera 11.64

Internet Explorer 9

Figure 6: Cross-browser compatibility

5 Usage

Diagram generation in Scaladoc is disabled by default and requires dot version
2.26 or higher. Following Scaladoc options can be used in order to enable and
configure diagram generation:

-diagrams

Enable diagram generation
-diagrams-debug

Show debug information while generating the diagrams
-diagrams-dot-path [path]

Specify full path to the dot program, e.g. ”/usr/bin/dot”
-doc-diagrams-max-classes [n]

Maximum number of super and subclasses to show
-doc-diagrams-max-implicits [n]

Maximum number of implicit types to show

8



Some aspects of the diagrams can be controlled using the @diagram anno-
tation. The annotation can be placed in a comment on a Scala class or trait
:

/∗∗
∗ Comment
∗ @diagram <d i r e c t i v e s >
∗/

<directives> corresponds to a comma-separated list of directives. All valid
directives are listed and explained in the following schema. Note that class
names in hideClasses and hideEdges can contain regular expressions.

hideDiagram Hide diagram for current type
hideIncomingImplicits Hide incoming implicit nodes
hideOutgoingImplicits Hide outgoing implicit nodes
hideSuperclasses Hide superclasses
hideSubclasses Hide subclasses
hideClasses "Class1, ..." List of classes / traits to hide
hideEdges "Class1 -> Class2, ..." List of edges to hide

6 Conclusion

The goal of this project was to include type hierarchy diagrams into documen-
tations generated by Scaladoc. This has been achieved by adding class-level
diagrams for classes and traits and package-level diagrams for package pages.
The diagrams are intuitive to understand and visually fit into the existing user
interface design of Scaladoc documentations. Compared to other documentation
generators that feature diagrams, Scaladoc’s diagrams provide more interactiv-
ity and have an improved styling.

7 Acknowledgements

I would like to thank Vlad Ureche for his supervision of the project and his
contributions to it. He contributed to great parts of the project by taking care
of building the model of the diagrams and also by putting a lot of effort into
helping me and guiding me through the project. Thanks also to the people who
gave their feedback, especially Heather Miller, who’s insights on the diagrams
were very valuable. At last I would like to thank the Scala team at EPFL for
providing the build infrastructure and letting us have nightly builds.

9



References

[1] Javadoc images: docs.oracle.com/javase/6/docs/api/

[2] www.doxygen.org

[3] Doxygen image: www.stack.nl/~dimitri/doxygen/examples/diagrams/

html/

[4] www.graphviz.org

10

docs.oracle.com/javase/6/docs/api/
www.doxygen.org
www.stack.nl/~dimitri/doxygen/examples/diagrams/html/
www.stack.nl/~dimitri/doxygen/examples/diagrams/html/
www.graphviz.org

	Introduction
	Approach
	Class-level diagrams

	Comparison to Other Documentation Tools
	Implementation
	Usage
	Conclusion
	Acknowledgements

