
Parallel machine learning using Menthor

Studer Bruno

Ecole polytechnique federale de Lausanne

June 8, 2012

1 Introduction

The algorithms of collaborative filtering are widely used in website which rec-
ommend some items, it could be movies, commercial product or even dating
site. These website use the users registered and the ratings they gives or the
habits they have to form their dataset. Of course the larger the dataset the
better result this category of algorithms yield.

Since we want the bigger dataset possible we also need a e�cient way to compute
the recomendation ; and of course if we cannot find more e�cient algorithm, we
can parallelize it. The last question remaining is : how well theses algorithms
can be parallelize ?

To answer this question we will investigate the scala parallel collection which
are pretty straigh-forward ; and we will also try to transform our problem into
a graph problem to fit the Menthor framework.

2 Framework

Menthor1 is a framework developed by Heather Miller and Philipp Haller at the
EPFL in Scala. The principle of menthor is to represent the dataset as a graph,
and working locally on the vertices. Then there is a communication over the
edges using messages ; and finally we have a crunch step who aggregate all the
data.

The algorithm must be split into two synchronized steps :
- The update step, where the vertices must locally update themselves using the
incoming messages form the adjacent vertices.
- The crunch step, which operate like a huge reduce, and once all the data are
processed, make the result available to all the vertices for the next step.

More information on Menthor can be found in the authors publication2

1Project page: http://lcavwww.epfl.ch/⇠hmiller/menthor/
2Publication: http://lcavwww.epfl.ch/⇠hmiller/docs/scalawksp11.pdf

1



3 Algorithm

The algorithm choosen is an algorithm use in collaborative filtering calledAlternating-

Least-Squares with Weigthed-�-regulation (ALS-WR).
The important idea behind this algorithm is to discretize users and items into
a vector of size nf , the bigger the size the more precise the algorithm will get.
This discretization represent a fix numbers of criteria which should (idealy) fully
describe a user or an item. And (if the model was perfect) we would only have
to calculate the scalar product between a user and an item to find the rating
this item would get from this user.
The optimisation method is a Least-Squares approach, the mathematical de-
veloppement is done in details in the article Large-scale Parallel Collaborative

Filtering for the Netflix Prize

3.

Nethertheless we will quickly see the core devloppement ; every vector rep-
resenting a user (ui) or a movies (mj) are put together to form the matrix U
and M :

ui ✓ Rnf

mj ✓ Rnf

U = [ui]

M = [mj]

We can then construct our least square rule, where rij is a known rating and
< ui,mj > is the scalar product between a user and a movie.

Lemp (R,U,M) =
1

n

X

(i,j)2I

(rij� < ui,mj >)2

This represent the Root Mean square error (RMSE). Now we can add the
lambda constraint :

Lemp
� (R,U,M) = Lemp (R,U,M) + �

⇣
kU�Uk2 + kM�Mk2

⌘

where �U and �M are choosen Tikhonov matrices. In our case, we will take
one of simpler matrices possible: the identity matrix weighted by the number
of user rated or movies rated :

�U = diag (nui)

�M = diag
�
nmj

�

To apply this least square optimisation we will use the following update steps
for U and M , which will be applied once after another.

3Yunhong Zhou. Dennis Wilkinson, Robert Schreiber and Rong Pan. Large-scale Parallel

Collaborative Filtering for the Netflix Prize. HP Labs, 1501 Page Mill Rd, Palo Alto, CA,
94304

2



Updating U
Ai = MIiM

T
Ii + �nuiE (1)

Vi = MIiR
T (i, Ii) (2)

ui = A�1
i Vi (3)

Updating M
Aj = UIjU

T
Ij + �nmiE (4)

Vj = UIjR
T (Ij , j) (5)

mj = A�1
j Vj (6)

Where :

• Ii is the set of movie that the user i has rated

• nui is the cardinality of Ii

• E is the nf ⇥ nf identity matrix

• MIi is the sub-matrix of M where columns j 2 Ii are selected

• R (i, Ii) is the row vector where columns j 2 Ii of the i-th row of R is
taken

3.1 Parallel processing

The important things to understand for parallelizing in this algorithm is that
there is three steps

1. Fixing the item, and solving the users

2. Fixing the user, and solving the item

3. Calculating the error

Each of theses steps are dependante from one another, but the first two steps
are about updating a huge matrix with independent opration on every line. So
the parallelization will apply mainly during linear algebra computation (matrix
multiplication, matrix inversion, multi equations solving).

4 Implementation

4.1 Dataset

The first problem that arise is how to keep the dataset in memory. At first our
data can be view as a huge list of Tuple3 containing :

1. A unique user id

2. A unique movie id

3. the rating from the user for this movie

3



Of course as we want to go as fast as possible we need a much more optimal
data structure for our problem. For this we go back to the equations 1 and 4
and we see that during all the processing we will need to acces two kind of set
for every user or movie:

• the set of all the movie rated by one user.

• the set of all user which have rated a specific movie.

The best construct to acces theses two set, as faster as possible, is to create
two object :

• the user map : Map[userId, Map[movieId, rating]]

• the movie map : Map[movieId, Map[userId, rating]]

This is of course not optimal memory-wise since we dublicate all the infor-
mation ; but this duplication give us almost O (n) time acces to any of the set
from above.

4.2 Matrix

4.2.1 Multiplication

As we seen in the equations 3 and 6 there is an intensive usage of linear algebra
operation, thus we need to construct a Matrix class as fast as possible. The main
time-consuming operation is from 1 and 4 where we have the product between
two potentially huge matrix. Unfortunaly there is not much we can do about
this not to become O �

n3
�
; the Strassen’s algorithm (O �

n2.807
�
) require square

matrix and in our case it would mean to apply a padding which could become
very une�cient as the size of the matrix is very variable. However we can use
the fact that we are multiplying a matrix with same matrix tranposed which
will always result in a square-hermitian matrix. This give us the possibility to
calculate only half of the coe�cient and thus we got O �

n3/2
�
operations.

4.2.2 Inversion

Another important step of the algorithm are in the equations 3 and 6 where
we have a matrix inversion. To calculate this our first choice was the LU-
decomposition which is O �

2n3/3
�
. But as we seen before the two matrix from

1 and 4 are hermitian and thus we can use the Choelsky decomposition which
is O �

n3/3
�
.

4.3 Parallel Collections

The implementation using the parallel collection is very simple since we got
update step in which all the vector are updated independently. We only need
to transform our Map into the parallel equivalent which can be done by writing
the three letter ’Par’ before our collection and the trick is done. The update
operation on the user or movies matrix which was written as a single foreach
loop then becomes automatically parallel.

4



4.4 Menthor

Since menthor is build around machine learning in graphs, we must adapt our
algorithm to a graph. We start by collecting all the user into one set and all the
movies into another one. Then we simply connect the pair of vertices user-movie
if and only if the user rated the movies. With this consruct we can easily see
that the constructed graph is indeed bipartite. Furthermore, in this graph rep-
resentation we got only a few edges between the two sets (which are the given
ratings). The goal is now to construct the fully connect bipartite graph with all
the calculated ratings which minimize the error.

Now that we got the vertices, we must set the Data type which our graph
will use. In our case we need to be able to reduce all the graph during the
crunch step representing the RMSE computation. To achieve this we choose
the Data type as a Tuple2 of the vector representation of a user/movies and
a Float value representing the square error. With this kind of Data type the
crunch step become very easy since we will just have to sum all the local errors.

Finally we must construct our update step without inversion of control. We
do this using the ’then’ combinator, constructing five substeps :

1. the movies vertices send their (updated) values to the users vertices

2. the user vertices read their message, update their values and send them
back to the movies

3. the movies vertices update their values using the one’s sent by the users
vertices

4. calculate the RMSE using the crunch step

5. the monitor vertex receive the result of the aggregration and use it (in our
case it’s just printed)

These five substeps forms the single menthor step.

4.5 User’s perspective

Once the implementation completed, it is good to look back and compare the
practicity of the two way to paralellize we used. First the parallel collection,
their are very usefull and powerfull once you isolate an idependante set of oper-
ation to compute. In this project the idependente set was not very complicated
to dig out and thus the parallel collection were simple to use. Also technically
you only need to add a ’Par’ to your collection to make it parallel, which is very
quick and easy to do. On the other hand if this ’extraction’ is not easy to see
or even impossible, it quickly becomes very hard to use the parallel collection
well.

Second, Menthor, as a framework it is not as quick or simple to use it for
the first time, but once your problem is transform in a graph problem, the tool
of menthor becomes very practical. You can easily creat vertices, connect them
and add them to the graph ; and when it’s time to form the update steps the

5



’then’ and ’crunch’ combinator becomes very handy. In this view menthor take
more time to use, but its construction force more clarity in the steps, substeps
process.

5 Benchmark

5.1 Protocol

The benchmarking is done using the datasets from GroupLens research lab

4.
We are using the two set ’100k’ and ’1m’ :

• 100k - 100,000 ratings from 1000 users on 1700 movies.

• 1M - 1 million ratings from 6000 users on 4000 movies.

With these sets we are going to test the tree di↵erent version of our algorithm :

1. serial control version

2. parallel using parallel collections

3. parallel using Menthor

For each one of theses, we are going to do three-pass run with the following
number of hidden factor nf = 50, 100, 200, 300, 500
Then we will continue using only the two parallel version with nf = 700, 1000

For each of these run we collect the run time of the sum of the three steps
; each step containing three substeps :

1. updating the users matrix

2. updating the movies matrix

3. computing the error

5.2 Results

The benchmarking were done on i7-920 (4 physical core with hyperthreading).
We also try another machine with 8 physical cores and no hyperthreading, but
the result were about the same.

The first set of benchmarks were made on the small database (100k ratings)
to get a general idea of how well the parallel collections and menthors would
manage the algorithm, and to get an aproximation how the speedup we could
hope for.

4http://www.grouplens.org/node/73

6



As expected, the parallelization becomes usefull only once we reach a nf factor
large enough. It is also interesting to see that whith the small database the
di↵erence between the parallel collection and menthor is almost invisible.
The speedup for this first part is shown in the next graph :

We see that parallel collection are consistent in their speedup. Menthor, by
is construction, use much more object and high level construct which, for very
small value, diminishes the speedup. But even with average value (nf � 300)
menthor catch up to the parallel collections.
We now add the remaining part with a higher hidden factor :

7



This time we are starting to see a gap beetween menthor and the parallel col-
lections at the highest factor. The di↵erence in about 7% on average. We can
see that already in the smaller dataset, we have some emerging tendencies. On
the parallelization side, it still works pretty well with this algorithm, and for
now the menthor framework is not much behind in terms of performances.

To investigate this a little further we will now look at the next graph, which is
from the bigger dataset (1m ratings)

Now as we would expect this is very similar to the smaller dataset but this
time we see a little more the di↵erence between menthor and the parallel col-
lections.
Let us see the speedup this time :

8



The same remarks as the increasing speedup on menthor applies, but this time
it is more consistent.

And finally we expand to the full graph of the ’1m’ dataset :

This last graph confirms two things :
- the parallel collections as well as menthor seems consistently scalable, as theses
benchmarks running time were between 8 secondes to 7 hours.
- with this simple algorithm which use mainly basic operation (linear algebra)
with very little abstraction, the parallels collections keep an ⇠ 10% advantage
in running time.

9



6 Conclusions

The algorithm we choose was a really good test because it was ideal for parallel
collections ; all the update can be done independently from one another and the
weight of the update is about uniform. As we would have expected the parallel
collection performed and scaled very consistently for a wide range of parame-
ters. Furthermore they were easy to use and did not need specific tuning.

The menthor framework, even so it was not the best context for it, still manage
to be almost as e�cient as the parallel collections and has a very good scaling
too. However, one of the di�culty was to understand the algorithm as a graph
problem ; but this di�culty is more of a theorical one.

On the implementation side, once you find a good representation, the men-
thor construction feel natural with its easy vertex construct, vertex connection
and of course the update steps which can be split into substeps. It feel more
like flow programming with synchronous jump to the next step.

Finally, if we want to go deeper in the menthor’s capacity, we could try more
complex algorithms or more intensive parallelization (increase number of core,
distributed system or GPU parallelization).

10


