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Lifted Embedding

object Coffees extends Table[(Int , String , Double ,
String , Int)]("COFFEES") {

def id = column[Int]("ID", O.PrimaryKey)
def name = column[String ]("NAME")
//...

}

Boilerplate!
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(c => c.id.toDouble)

Compile Error

value toDouble is not a member of scala.slick.lifted.Column[Int]
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Query(Coffees) map (c =>
if(c.origin == "Iran")

"Good"
else

c.quality
)

Compile Error
Don’t know how to unpack Any to T and pack to G
not enough arguments for method map: (implicit shape:
scala.slick.lifted.Shape[Any,T,G])scala.slick.lifted.Query[G,T].
Unspecified value parameter

Scala-Virtualized has not this problem
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Type Errors

Adapted from http://thumbs.dreamstime.com/z/old-bus-desert-7703223.jpg
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How to have high performance?
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Is it possible to have comprehensible type errors?
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Type Errors

Adapted from http://r32argent.ca/R32%20information_files/VW%20ads/vw_bus.jpg
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Direct Embedding

Is it possible to have comprehensive and comprehensible
type errors at the same time?
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Architecture

shadow = shallow + deep
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Query interface:

class Query[T] {
def map[S](f: T => S): Query[S]
def filter(f: T => Boolean): Query[T]
def flatMap[S](f: T => Query[S]): Query[S]
def groupBy[S](f: T => S): Query[(S, Query[T])]
def union(q2: Query[T]): Query[T]
def join[S](q2: Query[S]): JoinQuery[T, S]
// ...

}
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Example

Shallow Embedding Example

stage {
Query[Coffee] filter

(c => c.id == 10) map
(c => c.name)

}
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Shallow Query

stage {
Query (1) filter (x => x == 10)

}
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Query(lift(1):Int) filter
((x:Int) => (x:Int) __== (lift(10):Int))
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After Type Transformation

Query(lift (1):this.Int) filter
((x:this.Int) =>

(x:this.Int) __== (lift (10):this.Int))
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After Scope Injection

new ShadowDSLComponent {
this.Query(lift (1):this.Int) filter

((x:this.Int) =>
(x:this.Int) __== (lift (10):this.Int))

}
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Lifted Embedding Query

new ShadowDSLComponent {
this.Query(lift (1):this.Int) filter

((x:this.Int) =>
(x:this.Int) __== (lift (10):this.Int))

}
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if(c.origin == "Iran")
"Good"

else
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Compiles and works!
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Shadow Embedding Query Template

def getCoffee(id: Int) = stage {
for {

c <- Query[Coffee] if c.id == id
} yield c.name

}

getCoffee (10)

JDBC Prepared Statement

"select c.NAME from COFFEES c where c.ID = ?"
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Query Template - Shadow vs. Lifted

def getCoffee(id: Int) = stage {
for {

c <- Query[Coffee] if c.id == id
} yield c.name

}

getCoffee (10)

vs.
val getCoffee = for {

id <- Parameters[Int]
c <- Query(Coffees) if c.id === id

} yield c.name

getCoffee (10)
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val query: Query[Coffee] = stage {
Query[Coffee] filter (_.origin == "Iran")

}

stage {
query map (_.name)

}
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Correctness
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Performance
Microbenchmarking

Shadow Embedding Simple Selection

for (i <- range) {
stage {

for (c <- Query[Coffee] if c.id == 1) yield c
}

}
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Evaluation

Thank You

Thank You!
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