
An Embedded Query Language in Scala

Amir Shaikhha

School of Computer and Communication Sciences, EPFL
Typesafe, Lausanne

Master Thesis, August 2013

1 / 60



Introduction

Outline

1 Introduction

2 Lifted Embedding

3 Direct Embedding

4 Shadow Embedding

5 Evaluation

1 / 60



Introduction

Introduction

Problem Statement
Write the code to access database

2 / 60



Introduction

Introduction

Instead of writing database code in SQL

select c.NAME from COFFEES c where c.ID = 10

Write database code in Scala

for (c <- coffees if c.id == 10) yield c.name

3 / 60



Introduction

Introduction

Instead of writing database code in SQL

select c.NAME from COFFEES c where c.ID = 10

Write database code in Scala

for (c <- coffees if c.id == 10) yield c.name

3 / 60



Introduction

Slick

Scala Language-Integrated Connection Kit

4 / 60



Introduction

Slick
Architecture

5 / 60



Lifted Embedding

Outline

1 Introduction

2 Lifted Embedding

3 Direct Embedding

4 Shadow Embedding

5 Evaluation

5 / 60



Lifted Embedding

Lifted Embedding
Architecture

Uses standard Scala
Not Scala-Virtualized

6 / 60



Lifted Embedding

Lifted Embedding
Architecture

Uses standard Scala

Not Scala-Virtualized

6 / 60



Lifted Embedding

Lifted Embedding
Architecture

Uses standard Scala
Not Scala-Virtualized

6 / 60



Lifted Embedding

Lifted Embedding
Example

Lifted Embedding Example

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

7 / 60



Lifted Embedding

Lifted Embedding
Example

Lifted Embedding Example

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

Scala for-comprehension

for (c <- Query(Coffees) if c.id === 10)
yield c.name

7 / 60



Lifted Embedding

Lifted Embedding
Example

Lifted Embedding Example

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

SQL Statement

select c.NAME from COFFEES c where c.ID = 10

7 / 60



Lifted Embedding

Lifted Embedding
Type Information

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

8 / 60



Lifted Embedding

Lifted Embedding
Type Information

Query(Coffees) filter
(c => c.id:Rep[Int] === 10:Rep[Int]) map
(c => c.name:Rep[String])

8 / 60



Lifted Embedding

Lifted Embedding
Problem 1

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

How to create Lifted Embedding Table?

9 / 60



Lifted Embedding

Lifted Embedding
Problem 1

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

How to create Lifted Embedding Table?

9 / 60



Lifted Embedding

Lifted Embedding

object Coffees extends Table[(Int , String , Double ,
String , Int)]("COFFEES") {

def id = column[Int]("ID", O.PrimaryKey)
def name = column[String ]("NAME")
//...

}

Boilerplate!

10 / 60



Lifted Embedding

Lifted Embedding

object Coffees extends Table[(Int , String , Double ,
String , Int)]("COFFEES") {

def id = column[Int]("ID", O.PrimaryKey)
def name = column[String ]("NAME")
//...

}

Boilerplate!

10 / 60



Lifted Embedding

Type Providers

Generate the types

Existing Schema
Annotated classes

11 / 60



Lifted Embedding

Type Providers

Generate the types out of:
Existing Schema

Annotated classes

11 / 60



Lifted Embedding

Type Providers

Generate the types out of:
Existing Schema
Annotated classes

11 / 60



Lifted Embedding

Type Providers
Architecture

Type Macros are in macro paradise
Code Generation uses standard Scala

12 / 60



Lifted Embedding

Type Providers
Architecture

Type Macros are in macro paradise

Code Generation uses standard Scala

12 / 60



Lifted Embedding

Type Providers
Architecture

Type Macros are in macro paradise
Code Generation uses standard Scala

12 / 60



Lifted Embedding

Lifted Embedding
Problem 2

How to catch the errors?

13 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Good Part

Query(Coffees) map
(c => c.id.toDouble)

Compile Error

value toDouble is not a member of scala.slick.lifted.Column[Int]

14 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Good Part

Query(Coffees) map
(c => c.id.toDouble)

Compile Error

value toDouble is not a member of scala.slick.lifted.Column[Int]

14 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Bad Part

Query(Coffees) map
(c => c.id substring 2)

Compile Error

value substring is not a member of scala.slick.lifted.Column[Int]

15 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Bad Part

Query(Coffees) map
(c => c.id substring 2)

Compile Error

value substring is not a member of scala.slick.lifted.Column[Int]

15 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Bad Part

Query(Coffees) map
(c => c.id substring 2)

Compile Error

value substring is not a member of scala.slick.lifted.Column[Int]

15 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Even Worse!

Query(Coffees) map (c =>
if(c.origin == "Iran")

"Good"
else

c.quality
)

Compile Error
Don’t know how to unpack Any to T and pack to G
not enough arguments for method map: (implicit shape:
scala.slick.lifted.Shape[Any,T,G])scala.slick.lifted.Query[G,T].
Unspecified value parameter

Scala-Virtualized has not this problem

16 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Even Worse!

Query(Coffees) map (c =>
if(c.origin == "Iran")

"Good"
else

c.quality
)

Compile Error
Don’t know how to unpack Any to T and pack to G
not enough arguments for method map: (implicit shape:
scala.slick.lifted.Shape[Any,T,G])scala.slick.lifted.Query[G,T].
Unspecified value parameter

Scala-Virtualized has not this problem

16 / 60



Lifted Embedding

Lifted Embedding
Type Errors - Even Worse!

Query(Coffees) map (c =>
if(c.origin == "Iran")

"Good"
else

c.quality
)

Compile Error
Don’t know how to unpack Any to T and pack to G
not enough arguments for method map: (implicit shape:
scala.slick.lifted.Shape[Any,T,G])scala.slick.lifted.Query[G,T].
Unspecified value parameter

Scala-Virtualized has not this problem
16 / 60



Lifted Embedding

Lifted Embedding
Type Errors

Adapted from http://thumbs.dreamstime.com/z/old-bus-desert-7703223.jpg

17 / 60



Lifted Embedding

Lifted Embedding
Problem 3

How to have high performance?

18 / 60



Lifted Embedding

Lifted Embedding
Performance

19 / 60



Lifted Embedding

Lifted Embedding
Performance

19 / 60



Lifted Embedding

Lifted Embedding
Performance

Caching invokers

Query templates

20 / 60



Lifted Embedding

Lifted Embedding
Performance

Caching invokers
Query templates

20 / 60



Lifted Embedding

Lifted Embedding
Query Template

Lifted Embedding Query Template

val getCoffee = for {
id <- Parameters[Int]
c <- Query(Coffees) if c.id === id

} yield c.name

getCoffee (10)

JDBC Prepared Statement

"select c.NAME from COFFEES c where c.ID = ?"

21 / 60



Lifted Embedding

Lifted Embedding
Query Template

Lifted Embedding Query Template

val getCoffee = for {
id <- Parameters[Int]
c <- Query(Coffees) if c.id === id

} yield c.name

getCoffee (10)

JDBC Prepared Statement

"select c.NAME from COFFEES c where c.ID = ?"

21 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?

Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?

Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors

Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?

Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates

User effort needed

22 / 60



Lifted Embedding

Lifted Embedding
Summary

Problem 1
How to create Lifted Embedding Table?
Type Providers

Problem 2
How to catch the errors?
Comprehensive type errors
Nonunderstandable type errors

Problem 3
How to have high performance?
Caching Invokers and Query Templates
User effort needed

22 / 60



Lifted Embedding

Is it possible to have comprehensible type errors?

23 / 60



Direct Embedding

Outline

1 Introduction

2 Lifted Embedding

3 Direct Embedding

4 Shadow Embedding

5 Evaluation

23 / 60



Direct Embedding

Direct Embedding

Query expression to Scala AST (compile-time)
Scala AST to Slick AST (run time)
Similar to LINQ
A prototype

24 / 60



Direct Embedding

Direct Embedding

Query expression to Scala AST (compile-time)

Scala AST to Slick AST (run time)
Similar to LINQ
A prototype

24 / 60



Direct Embedding

Direct Embedding

Query expression to Scala AST (compile-time)
Scala AST to Slick AST (run time)

Similar to LINQ
A prototype

24 / 60



Direct Embedding

Direct Embedding

Query expression to Scala AST (compile-time)
Scala AST to Slick AST (run time)
Similar to LINQ

A prototype

24 / 60



Direct Embedding

Direct Embedding

Query expression to Scala AST (compile-time)
Scala AST to Slick AST (run time)
Similar to LINQ
A prototype

24 / 60



Direct Embedding

Direct Embedding
Example

Direct Embedding Example

Query[Coffee] filter
(c => c.id == 10) map
(c => c.name)

SQL Statement

select c.NAME from COFFEES c where c.ID = 10

25 / 60



Direct Embedding

Direct Embedding
Example

Direct Embedding Example

Query[Coffee] filter
(c => c.id == 10) map
(c => c.name)

SQL Statement

select c.NAME from COFFEES c where c.ID = 10

25 / 60



Direct Embedding

Direct Embedding
Type Information

Query[Coffee] filter
(c => c.id == 10) map
(c => c.name)

26 / 60



Direct Embedding

Direct Embedding
Type Information

Query[Coffee] filter
(c => c.id:Int == 10:Int) map
(c => c.name:String)

26 / 60



Direct Embedding

Direct Embedding
Type Errors - Good Part

Query[Coffee] map
(c => c.id substring 2)

Compile Error
value substring is not a member of Int

27 / 60



Direct Embedding

Direct Embedding
Type Errors - Good Part

Query[Coffee] map
(c => c.id substring 2)

Compile Error
value substring is not a member of Int

27 / 60



Direct Embedding

Direct Embedding
Type Errors - Good Part

Query[Coffee] map
(c => c.id substring 2)

Compile Error
value substring is not a member of Int

27 / 60



Direct Embedding

Direct Embedding
Type Errors - Bad Part

Query[Coffee] map
(c => c.id.toDouble)

Compiles!
Run time error!

28 / 60



Direct Embedding

Direct Embedding
Type Errors - Bad Part

Query[Coffee] map
(c => c.id.toDouble)

Compiles!

Run time error!

28 / 60



Direct Embedding

Direct Embedding
Type Errors - Bad Part

Query[Coffee] map
(c => c.id.toDouble)

Compiles!
Run time error!

28 / 60



Direct Embedding

Direct Embedding
Type Errors

Adapted from http://r32argent.ca/R32%20information_files/VW%20ads/vw_bus.jpg

29 / 60



Direct Embedding

Direct Embedding
Summary

Problem 2 (recap)

How to catch the errors?

Comprehensible type errors
Incomprehensive type errors

30 / 60



Direct Embedding

Direct Embedding
Summary

Problem 2 (recap)

How to catch the errors?
Comprehensible type errors

Incomprehensive type errors

30 / 60



Direct Embedding

Direct Embedding
Summary

Problem 2 (recap)

How to catch the errors?
Comprehensible type errors
Incomprehensive type errors

30 / 60



Direct Embedding

Is it possible to have comprehensive and comprehensible
type errors at the same time?

31 / 60



Shadow Embedding

Outline

1 Introduction

2 Lifted Embedding

3 Direct Embedding

4 Shadow Embedding

5 Evaluation

31 / 60



Shadow Embedding

Shadow Embedding
Architecture

32 / 60



Shadow Embedding

Shadow Embedding
Architecture

shadow = shallow + deep

32 / 60



Shadow Embedding

Shadow Embedding
Architecture

32 / 60



Shadow Embedding

Shadow Embedding
Architecture

32 / 60



Shadow Embedding

Shadow Embedding
Shallow Interface

33 / 60



Shadow Embedding

Shadow Embedding
Shallow Interface

Query interface:

class Query[T] {
def map[S](f: T => S): Query[S]
def filter(f: T => Boolean): Query[T]
def flatMap[S](f: T => Query[S]): Query[S]
def groupBy[S](f: T => S): Query[(S, Query[T])]
def union(q2: Query[T]): Query[T]
def join[S](q2: Query[S]): JoinQuery[T, S]
// ...

}

34 / 60



Shadow Embedding

Shadow Embedding
Shallow Interface

Query interface:

class Query[T] {
def map[S](f: T => S): Query[S]
def filter(f: T => Boolean): Query[T]
def flatMap[S](f: T => Query[S]): Query[S]
def groupBy[S](f: T => S): Query[(S, Query[T])]
def union(q2: Query[T]): Query[T]
def join[S](q2: Query[S]): JoinQuery[T, S]
// ...

}

34 / 60



Shadow Embedding

Shadow Embedding
Example

Shallow Embedding Example

stage {
Query[Coffee] filter

(c => c.id == 10) map
(c => c.name)

}

35 / 60



Shadow Embedding

Shadow Embedding
Type Information

Query[Coffee] filter
(c => c.id == 10) map
(c => c.name)

36 / 60



Shadow Embedding

Shadow Embedding
Type Information

Query[Coffee] filter
(c => c.id:Int == 10:Int) map
(c => c.name:String)

36 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

37 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

Shallow Query

stage {
Query (1) filter (x => x == 10)

}

38 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

After Language Virtualization

Query (1) filter (x => x __== 10)

38 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

After Ascription

Query(1:Int) filter
((x:Int) => (x:Int) __== (10:Int))

38 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

After Lifting

Query(lift(1):Int) filter
((x:Int) => (x:Int) __== (lift(10):Int))

38 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

After Type Transformation

Query(lift (1):this.Int) filter
((x:this.Int) =>

(x:this.Int) __== (lift (10):this.Int))

38 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

After Scope Injection

new ShadowDSLComponent {
this.Query(lift (1):this.Int) filter

((x:this.Int) =>
(x:this.Int) __== (lift (10):this.Int))

}

38 / 60



Shadow Embedding

Shadow Embedding
Yin-Yang Transformation

Lifted Embedding Query

new ShadowDSLComponent {
this.Query(lift (1):this.Int) filter

((x:this.Int) =>
(x:this.Int) __== (lift (10):this.Int))

}

38 / 60



Shadow Embedding

Shadow Embedding
Lifted Embedding

39 / 60



Shadow Embedding

Shadow Embedding
Lifted Embedding

No need to convert from Scala AST to Slick AST

Interoperable with Lifted Embedding

40 / 60



Shadow Embedding

Shadow Embedding
Lifted Embedding

No need to convert from Scala AST to Slick AST
Interoperable with Lifted Embedding

40 / 60



Shadow Embedding

Shadow Embedding
A Problem similar to Problem 1

Problem 1 (recap)

How to create Lifted Embedding Table?

stage {
Query[Coffee] map (c => c.id)

}

How to create Shadow Embedding Table?
Reuse Type Providers of Lifted Embedding!

41 / 60



Shadow Embedding

Shadow Embedding
A Problem similar to Problem 1

Problem 1 (recap)

How to create Lifted Embedding Table?

stage {
Query[Coffee] map (c => c.id)

}

How to create Shadow Embedding Table?
Reuse Type Providers of Lifted Embedding!

41 / 60



Shadow Embedding

Shadow Embedding
A Problem similar to Problem 1

Problem 1 (recap)

How to create Lifted Embedding Table?

stage {
Query[Coffee] map (c => c.id)

}

How to create Shadow Embedding Table?
Reuse Type Providers of Lifted Embedding!

41 / 60



Shadow Embedding

Shadow Embedding
A Problem similar to Problem 1

Problem 1 (recap)

How to create Lifted Embedding Table?

stage {
Query[Coffee] map (c => c.id)

}

How to create Shadow Embedding Table?

Reuse Type Providers of Lifted Embedding!

41 / 60



Shadow Embedding

Shadow Embedding
A Problem similar to Problem 1

Problem 1 (recap)

How to create Lifted Embedding Table?

stage {
Query[Coffee] map (c => c.id)

}

How to create Shadow Embedding Table?
Reuse Type Providers of Lifted Embedding!

41 / 60



Shadow Embedding

Shadow Embedding
Problem 2

Problem 2 (recap)

How to catch the errors?

42 / 60



Shadow Embedding

Shadow Embedding
Problem 2

Problem 2 (recap)

How to catch the errors?

42 / 60



Shadow Embedding

Shadow Embedding
Type Errors - Good Part

stage {
Query[Coffee] map

(c => c.id substring 2)
}

Compile Error
value substring is not a member of Int

43 / 60



Shadow Embedding

Shadow Embedding
Type Errors - Good Part

stage {
Query[Coffee] map

(c => c.id substring 2)
}

Compile Error
value substring is not a member of Int

43 / 60



Shadow Embedding

Shadow Embedding
Type Errors - Good Part

stage {
Query[Coffee] map

(c => c.id substring 2)
}

Compile Error
value substring is not a member of Int

43 / 60



Shadow Embedding

Shadow Embedding
Type Errors - Good Part Again!

stage {
Query[Coffee] map

(c => c.id.toDouble)
}

Compile Error
in Slick method toDouble is not a member of Int

44 / 60



Shadow Embedding

Shadow Embedding
Type Errors - Good Part Again!

stage {
Query[Coffee] map

(c => c.id.toDouble)
}

Compile Error
in Slick method toDouble is not a member of Int

44 / 60



Shadow Embedding

Shadow Embedding
Type Errors - Surprise!

stage {
Query[Coffee] map (c =>

if(c.origin == "Iran")
"Good"

else
c.quality

)
}

Compiles and works!

45 / 60



Shadow Embedding

Shadow Embedding
Type Errors - Surprise!

stage {
Query[Coffee] map (c =>

if(c.origin == "Iran")
"Good"

else
c.quality

)
}

Compiles and works!

45 / 60



Shadow Embedding

Shadow Embedding
Type Errors

Adapted from http://www.littlerocktours.com/images/vehicles/buses/109-lg.jpg

46 / 60



Shadow Embedding

Shadow Embedding
Problem 3

Problem 3 (recap)

How to have high performance?

47 / 60



Shadow Embedding

Shadow Embedding
Problem 3

Problem 3 (recap)

How to have high performance?

47 / 60



Shadow Embedding

Shadow Embedding
Shadow Interpreter

48 / 60



Shadow Embedding

Shadow Embedding
Shadow Interpreter

49 / 60



Shadow Embedding

Shadow Embedding
Shadow Interpreter

49 / 60



Shadow Embedding

Shadow Embedding
Query Template

Shadow Embedding Query Template

def getCoffee(id: Int) = stage {
for {

c <- Query[Coffee] if c.id == id
} yield c.name

}

getCoffee (10)

JDBC Prepared Statement

"select c.NAME from COFFEES c where c.ID = ?"

50 / 60



Shadow Embedding

Shadow Embedding
Query Template

Shadow Embedding Query Template

def getCoffee(id: Int) = stage {
for {

c <- Query[Coffee] if c.id == id
} yield c.name

}

getCoffee (10)

JDBC Prepared Statement

"select c.NAME from COFFEES c where c.ID = ?"

50 / 60



Shadow Embedding

Shadow Embedding
Query Template

Shadow Embedding Query Template

def getCoffee(id: Int) = stage {
for {

c <- Query[Coffee] if c.id == id
} yield c.name

}

getCoffee (10)

JDBC Prepared Statement

"select c.NAME from COFFEES c where c.ID = ?"

50 / 60



Shadow Embedding

Shadow Embedding
Query Template - Shadow vs. Lifted

def getCoffee(id: Int) = stage {
for {

c <- Query[Coffee] if c.id == id
} yield c.name

}

getCoffee (10)

vs.
val getCoffee = for {

id <- Parameters[Int]
c <- Query(Coffees) if c.id === id

} yield c.name

getCoffee (10)

51 / 60



Shadow Embedding

Shadow Embedding
Composability

val query: Query[Coffee] = stage {
Query[Coffee] filter (_.origin == "Iran")

}

stage {
query map (_.name)

}

52 / 60



Shadow Embedding

Shadow Embedding
Composability

val query: Query[Coffee] = stage {
Query[Coffee] filter (_.origin == "Iran")

}

stage {
query map (_.name)

}

52 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?
Type Providers

Problem 2 (recap)

How to catch the errors?
Shallow Interface makes it comprehensible
Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?
Shadow Interpreter reduces the user effort

53 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?

Type Providers

Problem 2 (recap)

How to catch the errors?
Shallow Interface makes it comprehensible
Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?
Shadow Interpreter reduces the user effort

53 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?
Type Providers

Problem 2 (recap)

How to catch the errors?
Shallow Interface makes it comprehensible
Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?
Shadow Interpreter reduces the user effort

53 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?
Type Providers

Problem 2 (recap)

How to catch the errors?

Shallow Interface makes it comprehensible
Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?
Shadow Interpreter reduces the user effort

53 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?
Type Providers

Problem 2 (recap)

How to catch the errors?
Shallow Interface makes it comprehensible

Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?
Shadow Interpreter reduces the user effort

53 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?
Type Providers

Problem 2 (recap)

How to catch the errors?
Shallow Interface makes it comprehensible
Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?
Shadow Interpreter reduces the user effort

53 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?
Type Providers

Problem 2 (recap)

How to catch the errors?
Shallow Interface makes it comprehensible
Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?

Shadow Interpreter reduces the user effort

53 / 60



Shadow Embedding

Shadow Embedding
Summary

Problem 1 (recap)

How to create Lifted Embedding Table?
Type Providers

Problem 2 (recap)

How to catch the errors?
Shallow Interface makes it comprehensible
Yin-Yang makes it comprehensive

Problem 3 (recap)

How to have high performance?
Shadow Interpreter reduces the user effort

53 / 60



Evaluation

Outline

1 Introduction

2 Lifted Embedding

3 Direct Embedding

4 Shadow Embedding

5 Evaluation

53 / 60



Evaluation

Correctness

Several basic tests

All Direct Embedding test suites
Important Lifted Embedding test suites

54 / 60



Evaluation

Correctness

Several basic tests
All Direct Embedding test suites

Important Lifted Embedding test suites

54 / 60



Evaluation

Correctness

Several basic tests
All Direct Embedding test suites
Important Lifted Embedding test suites

54 / 60



Evaluation

Performance
Microbenchmarking

Shadow Embedding Simple Selection

for (i <- range) {
stage {

for (c <- Query[Coffee] if c.id == 1) yield c
}

}

55 / 60



Evaluation

Performance
Microbenchmarking

55 / 60



Evaluation

Performance
Microbenchmarking

Shadow Embedding Parameterized Selection

for (i <- range) {
stage {

for (c <- Query[Coffee] if c.id < i) yield c
}

}

55 / 60



Evaluation

Performance
Microbenchmarking

55 / 60



Evaluation

Performance
Databench

50,000 accounts
500,000 transactions
20% updating
80% reading

56 / 60



Evaluation

Performance
Databench

57 / 60



Evaluation

Conclusion

User-friendly

Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors

Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface

Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors

Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers

Composability
Shadow Interpreter

Comprehensive and comprehensible type errors

Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability

Shadow Interpreter
Comprehensive and comprehensible type errors

Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors

Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors

Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface

Yin-Yang
Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface
Yin-Yang

Highly performant

Shadow Interpreter
Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface
Yin-Yang

Highly performant
Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface
Yin-Yang

Highly performant
Shadow Interpreter

Interoperable with Lifted Embedding

Reusing Lifted Embedding
Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface
Yin-Yang

Highly performant
Shadow Interpreter

Interoperable with Lifted Embedding
Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface
Yin-Yang

Highly performant
Shadow Interpreter

Interoperable with Lifted Embedding
Reusing Lifted Embedding

Maintainable

Reusing Lifted Embedding

58 / 60



Evaluation

Conclusion

User-friendly
Shallow Interface
Type Providers
Composability
Shadow Interpreter

Comprehensive and comprehensible type errors
Shallow Interface
Yin-Yang

Highly performant
Shadow Interpreter

Interoperable with Lifted Embedding
Reusing Lifted Embedding

Maintainable
Reusing Lifted Embedding

58 / 60



Evaluation

Future Work

Macro annotations

Shadow Programming

Yin-Yang
Type providers

59 / 60



Evaluation

Future Work

Macro annotations
Shadow Programming

Yin-Yang
Type providers

59 / 60



Evaluation

Future Work

Macro annotations
Shadow Programming

Yin-Yang

Type providers

59 / 60



Evaluation

Future Work

Macro annotations
Shadow Programming

Yin-Yang
Type providers

59 / 60



Evaluation

Thank You

Thank You!

60 / 60


	Introduction
	Lifted Embedding
	Direct Embedding
	Shadow Embedding
	Evaluation

