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Background

Supercritical power cycles will play a key role in the energy transition towards renewable energies
benefiting from higher efficiencies and higher energy density.
Supercritical fluids are fluids at higher pressures and temperatures where the ideal gas law does not
apply. Supercritical fluids are subject to real gas effects, and non-linear thermo-physical proprieties.
Accurate thermophysical properties are required to precisely model the non-ideal gas behaviour.
A major challenge for supercritical turbomachinery is condensation at the blade suction side due to
a drop in static conditions resulting in a transition from the supercritical phase into the two phase
domain. Figure 1 shows the relative Mach number showing flow acceleration along the suction side
of an impeller blade.

Figure 1: Relative Mach number within an impeller [1]

Due to the time delay for nucleation to occur (formation of liquid droplets), the supercritical
phase transitions to a temporary metastable state (fluid within the two phase domain). The
thermophysical properties within the metastable state remain largely unexplored and difficult to
predict while playing a critical role in condensation prediction. Accurate thermophysical properties
within the metastable state will allow for optimizing the design of power cycles leading to higher
efficiencies.
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A large variance in power cycle performance has been correlated to large variance in thermophysical
properties of different fluids. Understanding which thermophysical properties leads to high power
cycle performance is key in reducing emissions. Prediction of thermophysical properties of unknown
fluids allows for fluid selection which deliver the highest performance. The extended corresponding
states (ECS) model allows the prediction of thermophysical properties using 11 defining parameters.
The ECS model has already been created. The model will be used as a tool and prospective students
are not expected to develop it[2].
The ECS model, while robust, necessitates multiple invocations of the Refprop software, intro-
ducing a significant computational bottleneck for data-driven strategies in thermodynamics. This
challenge underscores the imperative for a more efficient computational model. The proposed
solution is the development of a surrogate model, leveraging Physics-Informed Neural Networks
(PINNs), designed to expedite computations by several orders of magnitude and enable parallel
processing. PINNs diverge from conventional neural network methodologies by embedding physical
laws and governing equations directly into their structure. This integration not only ensures adher-
ence to thermodynamic principles but also significantly enhances the model’s efficiency, accuracy,
and scalability. Specifically, PINNs promise to offer superior generalization across different thermo-
dynamic states, optimize data utilization, provide insightful interpretations aligned with physical
laws, and minimize the risk of overfitting. Moreover, their inherent robustness and capacity for
handling multi-physics and multi-scale problems make them exceptionally suited for advancing
thermodynamic simulations and predictions, potentially rendering Refprop computations more
efficient or even unnecessary for a broad range of applications.

Objective

Creating physics-informed neural networks to obtaining thermophysical properties for a variety of
fluids within different phases.

Tasks

1. Literature review of existing approaches.

2. Identification of data sampling approach.

3. Implementation of physics-informed neural networks.

4. Implementation of extended corresponding states model into physics-informed neural net-
works.

5. Validation of physics-informed neural networks.

NB: adjustments may be required according to progress, results, and project duration.

Prerequisite knowledge

1. Machine learning / neural networks

2. Programming (MATLAB / Python)

3. Thermodynamics (fundamental equations)
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