=Pl

PROJET SEMESTRE MASTER
PROFESSEUR: CHRISTOPHE SALZMANN

BABYFOOT 2021

David Kwakye




Projet d’ingénierie simultanée : Baby-foot

Contents

(1 _Introduction|

(2

Definition architecture project|

..........................................

[2.2  New architecture ot control of the Babytoot| . . . . . . . ... ... ... ......

B

Inner working]|

[B.1 Structure of the strat filel . . . . . . . .. ... o oo
[3.1.1 Syntax| . . . . . . . . .
[3.1.2  Strategy generator| . . . . . . . ...

[3.2 VI Strategy.vil . . . . . . . .

I;i‘;‘i y ] ‘s!:l‘l!zll,y‘ll ........................................
[3.3.1 Principlel . . . . . . ...
[3.3.2  Implement new action| . . . . . . . . . ... Lo

Condition testing]

Important SubVl|

BT Virtual visionl . . . . . . .

w w W

O © © 0 =1

[y
[y

11
11
12
12

14

15



Projet d’ingénierie simultanée : Baby-foot

1 Introduction

With the emergence of new possibility of action of the Babyfoot and its increasing complexity,
it became more and more necessary to have a way to implement everything without changing all
the code every time and a place where we could get most of the information. This work wants
to propose an architecture which allows to code strategies without altering the code, localise the
information and allow an easy way to implement filter for measurement.

On the first month of this semester project, Mr Salzmann and the author tried successfully to
resolve the problem of angular offset of the forward player. It seems like some connection was not
made correctly and somehow was messing with the measurements. Future work on this Babyfoot,
shall improve the implemented actions, implement some more actions and improve the control.
Indeed, the author saw that linear control can achieve error to 1 cm high ! Angular error is less
problematic, the max error seems to be around 2~3 degree.



Projet d’ingénierie simultanée : Baby-foot

2 Definition architecture project

2.1 0Old way

In previous generations of the Babyfoot, there was no fixed architecture. Everything was put
explicitly and it was very difficult to make any partition. This had multiple consequences for future
work :

— The last version required a high understanding of the entire code to be able to do anything.

— Implementation of new strategies would have made the code way heavier. Which makes every
next generation less accessible.

— Making a strategy independent is nearly impossible and therefore, altering previous strategies
may require to rethink the entire code.

— The debugging becomes more and more difficult with time and require the implementation of
new tools constantly

— Information are not localised and therefore, any correction becomes very difficult.

2.2 New architecture of control of the Babyfoot

We suggest an another way of doing thing. Here is how it works :

All the important constant of the Babyfoot are written as constant in the VI constante.vi and
all measurements are put together in the cluster measurement. The user provide a text file with a
compilation of the strategy that he want to applied to the Babyfoot. This file is interpreted once
at he beginning of the program by the VI stratGen.vi and send 4 table of cluster which follow this
structure :

— CI: Cluster nxoxe,, x8 with all the data of initial conditions. n is the number of implemented
strategy.o is the number of condition linked by a "OR". e,, is the number of basic condition
linked by a "AND" for the condition of the strategy currently considered. 8 is the number of
parameter needed for a basic condition. Example : the third strategy has an initial condition
like this [Bconditionl && Bcondition2 || Beondition3]. Then, to access the Becondition3, the
index needed are 2x1x0. More information in the section about Strategy

— SC: Cluster n X s X 0 X €4y, X 8 with all the data of success conditions. n is the number of
implemented strategy. s is the number of step. o, is the number of condition linked by a
"OR" for the step. e, is the number of basic condition linked by a "AND" for the condition
of the step of the strategy currently considered. 8 is the number of parameter needed for a
basic condition.

— AC: Cluster n X s X 0 X e4,, X 8 with all the data of abortion conditions. It follow the structure
of SC.

— data: Cluster n x s,, X 4 X 4 contains all the data of actions. n is the number of implemented
strategy. s, is the number of step in the strategy currently considered. More information in
the section about strategy

Then, those 4 table are used by the VI Strategy.vi along with the cluster measurement, to
select the strategy needed for the situation, manage the step and send a table 5x8 with the current
action that need to be achieved for every row.



Projet d’ingénierie simultanée : Baby-foot

Finaly, the table 4x4 is interpreted by the VI Action.vi which will activate a VI according to
the action that was requested and create a cluster of command for the motors.

As you can see, this method is very adaptable and powerful. Once an action is implemented,
we can request whenever we want and as much as we want and make combination without altering
the code. Just by changing the text file. Every important step are well define and localised. The
decision making process is in strategy.vi and the action is in Action.vi and even in Action.vi, each
action are implement with a vi see Action.vi which make the code way accessible since you don’t
need to know all the code to implement new action or just modify one. Also, since all important
constant are localised in the VI constante.vi, changing values is not a problem anymore. And finally,
since all measurements are localised in the cluster measurements, all you need is a filter upstream
to upgrade the measurement for the entire code.

3 Inner working

3.1 Structure of the strat file

3.1.1 Syntax

The idea behind this new way of implementing requires to, more or less, create a new computer
language for the Babyfoot, to indicate which kind of condition should be met and what kind of action
needs to be done. It is a huge work and unfortunately, I can not pretend it is perfect yet but all
the base was done during this project. It just needs some tuning.

3.1.1.1 Strat

To code a strategy using this work’s syntax, instructions are supposed to be put exactly as
follow:

1. # Type of strat

2.

3.

4. /Abort condition
5. Action

6. JAbort condition

7. Action2



Projet d’ingénierie simultanée : Baby-foot

There is 2 types or strategies. Defense and Attack. Defense strategies must be put before
Attack strategies and it is very strongly advised to put as last defense strategy the Basic Defense
strategy:

1. #Def

2.

3.

4. PosbBP0OY0:/

5. GokDepB+-0:4-0;DefDepB+-0:+0;MidDepB+0:+0;FwdDepB+-0:+0;
6.

The order of the strategies is really important because it will create the hierarchy of the plan.
The process of selection is explained in figure

near robot players

Defense

Strat n+1 Condition Condition Strat 1
Mo Mo
v v
e yes
Strat n+2 ! Condition Att 2 Def 2 Condition Strat 2
Mo ' Mo
¥
yes . yes
Strat n+2 Condition Att 3
Def n-1 Condition Strat n-1
. No o
/ Defn Basic Defanse

Mo

Figure 3.1: Strategy tree. First, the algorithm will look where is the ball. If it is at reach of the
robot team, it will look for an attack strategy. Else, it will look for a defense strategy. It will test
the current type of strategies until he find one that is true. It will not test beyond that which

mean, it will stop looking as soon as it find a satisfied initial condition. If it does not find a
satisfied initial condition, it selects the last strategy of defense which is supposed to be Basic
Defense.



Projet d’ingénierie simultanée : Baby-foot

3.1.1.2 Conditions

Conditions are essential for any strategy. When we create a language, there is a trade off with
complexity and freedom. Everything is not yet possible. For example, it is not yet possible to
test the whereabouts of every opponent player at any time. Not because it is really difficult to
implement but because the author did not have time to do it.

The conditions follow the syntax in Table [I] with the option listed in Table 2]

| Pos [ [0-5] | P/B | A/P[[0-5] | X/Y/T | valuel : | (value2 :) |
| Vel [ [0-5] | X/)Y/V] 0 [ 0 [ 0 |valuel: | (value2:) |

Table 1: Condition parameter

Pos/Vel | indicate if the condition is about position or velocity

[0-5] | indicate the inequality (see table [5|in annex for more precision)

PA Take the absolute position of the robot players.

PP Take the position of the nearest to the ball human’s player with respect
to the considered robot’s player.
BA Take the absolute position of the ball
BP Take the position of the ball with respect to the considered robot’s
player.
X/Y/T | indicate the axis considered [mm]|. T indicate an angle [deg].
valuel | Mandatory value. 777 makes the conditions always true (except for
abortion condition were it’s always false).
Value2 | Only necessary for inequalities 0 and 1, it states the upper value. 777
makes the conditions always true (except for abortion condition were
it’s always false).
X/Y/V | indicate the axis considered. V indicate the modulus of the veloc-
ity.[mm/s]

Table 2: Condition parameter

It is possible to couple condition together using "&" for "AND" and "|" for "OR". There is no
"NOT" and every expression must be developed. (Conditionl | Condition2) & Condition3 is not
valid for example.

3.1.1.3 Action

Action can be easily implemented. The syntax is composed of an index and 3 values which

compose the options (Table . It is totally customable. To separate different action in the same

step, a ;" needs to be put between 2 action (see next section for example).

| 3 letter of the Row | 3 letter of the action | (Valuel) | (Value2) | (Value3) |

Table 3: Action parameter

At the time of this report, the implementation of action is stated in the Table



Projet d’ingénierie simultanée : Baby-foot

Index | Action (Valuel) | (Value2) | (Value3)
0 : maintain the current position. X X X
1 Fei : Does nothing right now. v v v
2 Dep : Displaces the row linearly (y) or rotate (¢) v v v

.Valuel: indicate the origin of the y (Absolute A,
Joueur J or Ball B). Value2 : y. value3: ¢.
3 Pas : Still in work. Pass the ball to teammate. v v X
Valuel: which teammate. Value2: what kind of
pass.
4 Tir : Shoot the ball straight forward. X X X
5 Amo : damps the ball’s velocity to capture the X X X
ball.

Table 4: Current action implemented. Attention ! numerical value for Pas and Tir need to have
a sign! (+/-)

3.1.1.4 Example

In this section, The Basic defense strat is explained as an example.

1. #Def

2.

3.

4. PosbBP0OY0:/

5. GokDepB+0:4-0;DefDepB+-0:40;MidDepB+0:+0;FwdDepB+-0:+0;

6.

The line 1: indicate that it is a defense strategy.

The line 2: indicate the initial condition. Basic defense is a special case: it does not have an
initial condition because it is suppose to be the last resort in term of defense and strategy.

Line 3: separation between the initial condition and first step.

Line 4: Conditions of the first step. The success condition is Pos5BP0OY0: which mean "if the
difference between the coordinate y of the ball and the y coordinate of the nearest players to the
ball is equal to 0". There is no abort condition because it is the last resort.

Line 5: Action. They are only displacement action for each row. It ask each row to go at the
origin which is the y coordinate of the ball (B).

The end because there is only one step.

3.1.2 Strategy generator

Since the author was aware that it could be difficult, confusing and challenging to code long
plan in a bloc note, a basic interface has been implemented : Strat David.vi. This interface will
help for the code. Although, the user must stay vigilant and check the positioning of each portion
of code after validation. The author can not guaranty that it is bug free.



Projet d’ingénierie simultanée : Baby-foot

3.2 VI Strategy.vi

We can see in figure [3.2] how the decision is made in the VI Strategy. First it looks to know
if the ball is within reach of the robot player. This determines if the algorithm looks for attack
strategies or defense. It will then test the condition initial of the each strategy until it finds the
first one which is satisfied. If it looks for an attack strategy and does not find any satisfied initial
condition, then it will execute the last defense strategy. Then if the success condition is not met
and the abortion condition is not met either, it will send the current action. If the condition of
success is met, then it will go to the next step. If the abortion condition is met, the program comes
back to chose the strategy.

Measurments <

Aftague Strateges « Defense Sfrateges
Condition Inital Condition Inital
Step 1 Step1

Yes

Condition satified ? Other Attaque Strat 7

MNext Step
Step
Sucess Condition -
Abortion Conditon =
Action =
Y65 Condition satified 3
s g Yes =
Condition satified ? 4){ Keep position
A
No
b4
Action
Yes
Other step ?
No

Figure 3.2: Flowchart of Action decision



Projet d’ingénierie simultanée : Baby-foot

3.3 VI Action.vi

In this section, a more precise description of the action handling system is provided. First, the
relation between the strategy.vi and action.vi is shown in the figure [3.3]

Strategy.vi

fes Measurments
Select strategy

if strat=Basic defense

Mew Action

Action
Action.vi

Success cond

Fini ?

Mo
Keep old Action

Abort cond

Mo

Action 0
h —

Figure 3.3: Relation between strategy.vi and action.vi

3.3.1 Principle

An Action is a table 4x4. Each row contains the data for an action for one row. The first row
is for the goal keeper, the second for defense etc. The first value in the column contain the index of
the action and the 3 other are the options. When the Action is send, it will go to a case structure
where VI are implemented for the given action (figure |3.4]).



Projet d’ingénierie simultanée : Baby-foot

~ 4
s

3

Figure 3.4: 1: Options of action. 2: Case of action. 3: Output linear position. 4: Output angular
position. 5: Boolean value.It is true when the action is finished. 6: State of the action. It is
advised to code the VI of the action as state machine.

3.3.2 Implement new action

In this section, the author explains how to implement a new action if the action can not be
write as an option of previous implemented action or when there is no option spot available.

To keep the coding interface useful, it is necessary to keep it updated. It makes future work
easier. So open the VI Strat David.vi.

step 1 Go to to the tab New step and do a right click on the tab control Setup and add a new tab
after. Rename the tab according to your action.

step 2 Do a right click on each enum on the left of the tab control and choose edit item. Add your
action in last place.

step 3 If you have options. Create a cluster in your action’s tab where you will put your controller.
If you do not, go to step 5

step 4 Open WriteAction.vi and readAction.vi. Copy/past your cluester convert it to a string in
WriteAction and then convert this string into an array in readAction. Check that, everything
that is write in WriteAction, is readable in readAction.

step 5 Connect your cluster to WriteAction.vi in Strat David.vi (case 3 in the case structure).
step 6 Open Action.vi and add a case to the case structure for your action.

step 7 create your action VI and it’s good to go.

10



Projet d’ingénierie simultanée : Baby-foot

4 Condition testing

Condition are the base of this work proposition. But the author can not guaranty that condition
are perfectly implemented. Therefore, here is proposed a way to debug condition if a problem is
suspected. Be aware that the problem may come from measurements and not from the condition.

Condii
Equality Veloity | Position | | Cond
Condition initial  Velacity r! :) 1l
Sim cond
AND
ou
Tab Contrl
Clear
== Manual
Simulation pan
777 not
Measurement cluster —
Oppenant positon Player's linear pos
Oppenant ¥ pos Goalkeeper linear pos
f= '
0 0
Openant theta pos Defenders linear pos
S; 0 5; 0 stop
Speed Midfielders linear pos
o y‘ 0 STOP
o ,\Fulwaldels linear pos
w b
.
2
Bal position Current Row
newX 5 0
A :
0
newY R
A 5
- -

Figure 4.1: Interface Test cond.vi

If you come across a situation were you think you do not get what you were suppose to have,
open the VI Test cond.vi in the TestVIs folder. You will get a simulator to check if there is really
a problem in the condition handling system or if it’s somewhere else. Write your condition and fill
the cluster measurement as much as needed for your situation. The button "777 not" simulate a
normal condition(IC or SC) when off and an Abort condition when on.

5 Important SubVI

5.1 Virtual vision

The centralisation of the information with the cluster measurement and the VI constante.vi
made the previous virtual vision not compatible. So everything needed an update to use be used
effectively. All added features of previous year have been kept and an option of recording have been
implemented. The principle of utilisation is quite simple. We store in a table the measurement
information and the row of each pass in the vison loop, from the moment the "recording" setting
was put. And then we used them when the "lecture" setting is put.

11



Projet d’ingénierie simultanée : Baby-foot

Animation display Loop

Zoom Factor
EO_I 0 |@ 4| False 't

anim

Homer picture m

Balle.Prediction

Avancernent
| 132§

Vision set up
[}

"Lecture”

option

A Current Row? Measurments

Current Row

*
#hleasurments =il -

; ALOOP ENDH --1

Figure 5.1: Virtual vision handling

Row considered

option ===———={VErar £
o i num
Balle.Prediction - ; z )
: h~ Picture out
Terrain -
Measurmentss

Figure 5.2: Vision 2021. Draw the situation described by the measurement cluster
Be aware that the table will rest every time the mode "streaming" is on.

5.2 Journal

To be able to see what happens in the code, a Journal have been implemented in a previous

year. A VI version of it is now available. The VI reporter.vi will take a string and will put every
thing in a txt file.

Activer journal :
M ews wmnnnmemnl s |gurnal out
lournal inrdl lournal 2
Archive in E & epror out
Errorin

Figure 5.3: Reporter.vi

5.3 Constant

This VI is a major improvement in the functioning of the Babyfoot. This VI localises all
constant of the Babyfoot and shall be used as much as possible for values which can be used at

12




Projet d’ingénierie simultanée : Baby-foot

multiple place. With that, if a value need to be changed, we change it once and it is updated for
the all code.

Joueur  Juggling

Figure 5.4: constante.vi

Juggling

Em:;;:eur
et LSh:mt

E Max reaching distance
Error

Mazx plausible velocity [mm,/s]
Hurnan

Total ¥-Pos

Robot

Figure 5.5: Constant

13



Projet d’ingénierie simultanée : Baby-foot

6 Conclusion

This semester project shows a new ways to deal with the strategies implementations and has
great properties for future work. With this new way of programming, strategy can be changed just
by changing the strategy path. Which mean that an infinite configuration can be stored without
altering the code. Future work can be now done with the same main code for execution ! No need
to copy past the project. For example, if we want to improve the pass command, we can just make
a strategy with only the pass and work on the VI pass. Same with everything else. Since everything
is now separated, multiple action can be improved in the same time without interference. And this
is the strength of this project.

Objectives of this work has been mostly achieved. The main code seems to work quite well.
Some adjustment of how the actions should occur still need to be done but from current testing,
most problem come from imprecision in player positioning and ball velocity. Some work must be
done to improve that. This work also revealed a problem in player shifting (for example when the
forward right player shift with the forward middle player). The current configuration makes weak
spot where the ball can easily go past the defense.

14



Projet d’ingénierie simultanée : Baby-foot

A  Annex

Not in the range of [valuel; value2]

In the range of |valuel; value2|

Less or equal to valuel

Greater or equal to valuel

Not equal to valuel

TN NIAAIAN RO RR S

QY | W —=O

Equal to valuel

Table 5: Inequalities indexes

15



	Introduction
	Definition architecture project
	Old way
	New architecture of control of the Babyfoot

	Inner working
	Structure of the strat file
	Syntax
	Strategy generator

	VI Strategy.vi
	VI Action.vi
	Principle
	Implement new action


	Condition testing
	Important SubVI
	Virtual vision
	Journal
	Constant

	Conclusion
	Annex

