
Laboratoire d’automatique, EPFL

OpenBuild: Instructions

Tomasz Gorecki, Faran Qureshi

April 21, 2015

1 Introduction

2 Installation

This section summarizes software that need to be installed on your machine to be able to
use OpenBuild.

• OpenBuild 2.0 has been tested on Mac OS X 10.8 Mountain Lion, OS X 10.9
Mavericks, OS X 10.10 Yosemite, and Windows 7 32 bits and 64 bits.

• OpenBuild works in close integration with the building simulation software EnergyPlus.
EnergyPlus is an open-source program available on every platform. OpenBuild 2.0
has been tested with EnergyPlus v.8.0. We believe the toolbox should work with
more recent versions of EnergyPlus but tests are required. Due to syntax changes in
EnergyPlus, Openbuild 2.0 does not work with EnergyPlus 7.2 and older. It should
work with more recent versions of EnergyPlus. We recommend the use of EnergyPlus
8.0 since examples are provided for this version. Visit http://apps1.eere.energy.
gov/buildings/energyplus/ to install EnergyPlus and find more information on
EnergyPlus.

• Ruby : using OpenBuild requires a Ruby interpreter. It exists by default on recent Mac
OS X installations. Ruby scripts of Openbuild are not compatible with Ruby 2.0 and
subsequent. In OS X 10.9, the system version of Ruby has been changed from 1.8 to
2.0 so the user needs to provide the path to the binaries of Ruby 1.8 manually. In OS X

1

http://apps1.eere.energy.gov/buildings/energyplus/
http://apps1.eere.energy.gov/buildings/energyplus/


10.9, ruby 1.8 is still available as part of the system install. From OS X10.10 onwards,
it is not the case anymore, and it needs to be installed. Openbuild 2.0 has been tested
with Ruby 1.8.7. We recommend installing. Visit https://www.ruby-lang.org/ for
information and downloads.

• Java : Co-simulation requires Java. Openbuild 2.0 has been tested with Java JRE 7
but should work with different versions of Java. You have to make sure on Mac that
Java is the Mac supported version of the JRE. For OS X 10.10 users, refer to https:
//support.apple.com/kb/DL1572?viewlocale=en_US&locale=en_US in case of
malfunction of the default Oracle JRE.

• To be able to read SQL files produced by EnergyPlus with Matlab, the toolbox mksqlite
has been used. Visit http://sourceforge.net/projects/mksqlite/ and follow
installation instructions there. Precompiled MEX files are provided with recent installs
of mksqlite but you might need to recompile it for your platform. Openbuild 2.0 has
been tested with mksqlite 1.14 and may not be compatible with too old versions of
mksqlite due to inconsistent syntax.

• The file installOpenBuild.m in the root of the project needs to be run once. Open
this script and give the path to the EnergyPlus, Ruby and Java executables. Some
default are indicated depending on the OS. If you do not save the path after executing
this file, then you will need to run it everytime you want to use OpenBuild.

3 Tutorial for MPC design

As an introduction to the cosimulation environment, a tutorial example is proposed to guide
the user through the main steps of creating a state-space model for a building, and run
cosimulations for a particular building. All the material necessary for the tutorial is found in
the subfolder Tutorial in the examples. After installation, you should readily able to run
the tutorial.m file.
The first section of the tutorial introduces the process of creating a model for a building.

All information about a building is regrouped in the class building, which has two attributes,
an instance of the class buildingData and one of the class buildingModel.
The first step is to create an empty building object.

b = building(’tutorial’);

Next we will need to import all data required to create the model. This includes one
EnergyPlus .idf file and one weather file .epw. At this point, some things have to be
noticed.

• One of the first step of the data gathering is to do one run of EnergyPlus with the files
provided to collect the data processed by EnergyPlus. Therefore, the .idf file has
to work in the sense that it can be run in EnergyPlus without modification. You can
verify this by running the commands runenergyplus filename.idf weather.epw.

2

https://www.ruby-lang.org/
https://support.apple.com/kb/DL1572?viewlocale=en_US&locale=en_US
https://support.apple.com/kb/DL1572?viewlocale=en_US&locale=en_US
http://sourceforge.net/projects/mksqlite/


• For the purpose of modeling, the choice of the weather file is not crucial but will have
an influence since data from simulation is used to produce the model (especially figure
out which convection coefficients should be used). Therefore it is advised to use the
same weather file for the modeling and the simulation itself.

• the weather file has to be in the weatherfile folder of the EnergyPlus installation.

idfFile = [pwd ’/OfficeBuilding.idf’];
epwFile = ’USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.epw’;
b.loadData(idfFile,epwFile);

Next, the command createModel, will construct the model of the building. For details of
all the steps, please refer to the comments in the code. Here is a rough list of the steps
taken to create the model:

• Modify the .idf file to add a range of outputs required in the sequel. In particular,
the creation of some particular reports and the .sql simulation report are required.

• Run the .idf file once.

• Collect the .sql and .eio report files from the simulation and import the all the data
required there into MATLAB. This includes thermal characteristics of the material,
zones, surfaces, constructions, simulation data (timestep, duration,...), and data
about internal gains specified in the .idf

• This step consists in describing the building as a set of thermal nodes with thermal
capacities, connected to some thermal resistances. Each layer of each surface will
form one node and each zone also is described by one node. Outside is also represented
by a couple nodes. (Sky, outside air, ground)

– identify all "links", i.e.which zones are connected to which zones through which
surfaces

– Starting from the set of nodes representing the zones, successively add the nodes
representing each link and accordingly augment the connectivity matrix of the
graph.

– Connect the surfaces which interact through longwave radiation by appropriately
modifying the connectivity matrix of the graph.

• Identify the effect of all disturbances on the nodes (internal gains and solar gains)

• At this point it is easy to derive the differential equations describing the building from
the connectivity matrix. The only difficulty is that some of the nodes, namely the
windows, have no thermal capacities and therefore have to be eliminated. A simple
substitution procedure is applied to do so.

All of these steps are performed when the following command is called:

3



b.createModel;

Now the building model is almost ready. To allow flexible HVAC modeling in MATLAB
and overcome the limitations of the EnergyPlus external interface. For this purpose, custom
objects are added to the idf file, which allow to control gains in the rooms in a flexible way.

b.addCustomInputs;

This commands modifies the .idf file to add one schedulable gain object in each room of
the building and adds the external interface object allowing to control this object in Matlab.
In addition, it modifies the model of the building to add these new inputs.

ssM = b.buildingModel.thermalModel.getStateSpaceModel();

Finally, this command creates the continuous-time state-space model of the building.
This model takes the form

ẋ = Ax + Buu + Bdd

y = Cx
(1)

where x is the state of the building which represents temperatures at the different nodes
of the building. u is the control input to the building. In this case it is the desired gain
in each room in watts. d is the vector of disturbance including outside temperature, sky
temperature, solar gains on inside and outside surfaces, and internal gains due to occupants,
lights, equipment. The matrices can be found under the fields ssM.A, ssM.Bu,ssM.Bd,ssM.C.
Next, the following part of the tutorial looks at simulating the building in cosimulation

with EnergyPlus. The process of setting up a simulation and running up is dealt with in
the simulationEngine object. It simply takes as argument the building object of the
building to simulate.

sE = simulationEngine(b);

Inside the simulationEngine, each of the component of the simulation loop will be
simulated and communication between these components will be handled. Each component
is encapsulated in a simulator object and respects the same scheme: it has two main
attributes: one is a structure IO recapitulating the different group of inputs and outputs
that the simulator takes and gives out. The second is a structure data which contains any
data required during the simulation for this component. In addition, it takes 3 handles of
functions as attributes: the first is the initialization of the simulator, which will create the
IO and data fields; the second iterates the simulator and will be called at each timestep
to produce the next outputs. The third one is optional and is called at the end of the
simulation to complete task such as communication closing,... The central piece of the
simulation is of course the building itself.

sE.addSimulatorEnergyPlus;

4



This function sets up the communication between MATLAB and EnergyPlus based on
scripts derived from the MLE+ toolbox. it uses directly all the data stored in the building
object to start the simulator.
Then, a second simulator object takes care of the controller.

sE.addControllerPI;

In this simple case, it sets up a separate PI controller in each room. The parameters of
the controller are manually provided in the initialization function. The iteration function
reads the temperature in each room and compares it with the setpoint to form the error
and compute the next control action.

sE.runSimulation;

This last function finally takes care of running the simulation and the communication between
the different components. finally, it also saves the data at the end of the simulation.
Important Notice: In the current state, the toolbox does not recognize the presence of
existing HVAC system in the .idf file, which means that if there exist any, they will be
run in parallel to external control, without the model being able to predict their behaviour.
Therefore, to have predictions conform with the actual building behaviour, the heating
system needs to be removed from the .idf file. This has to be done manually and has
been done in all files in the examples. Future developments will allow to perform this task
automatically by conserving only EnergyPlus objects supported by OpenBuild. Nevertheless,
it is not required to do this if OpenBuild is only used to get a model of the building.
At this point, the simplest possible simulation has been performed. Let us now go through

a more sophisticated simulation with an MPC controller, which actually uses the model of
the building. The following formulation is used for the MPC. Still assuming that we can
directly control the heat fluxes to each room our aim is to minimize the total energy use.
Therefore, the cost function of our controller will be

J(x,u) =

N−1∑
t=0

‖ut‖1 (2)

with N the horizon length of our controller and x and u the predicted state and input
trajectories.
The MPC problem comes out as:

minimize J(x,u)

subject to

∀t ∈ [1, N]
xt = Axt−1 + Buut−1 + Bddt−1

yt = Cxt

ut ∈ U
yt ∈ Xt

(3)

5



where U the input constraints (in this case box constraints), Xt the time-varying con-
straints on the temperature in the buildings (we constraint the temperature more tightly
during the day). To create this second simulation, the procedure is very similar.

sE = simulationEngine(b);
sE.addSimulatorEnergyPlus;

Next we need to prepare the state-space model we want to feed the controller. We already
have a continuous-time state-space model ssM. We have to discretize it. For simplicity, we
will run the controller at the same sampling rate as the simulation is run.

%discretize the state-space model
ssMd = discretizeModel(ssM,b.buildingData.simulationData.timestep);

This command discretizes the system to the appropriate timestep.
An MPC controller requires full-state information, which in practice is often not available.
This is the case in EnergyPlus. Indeed, EnergyPlus can output the temperature of the zones,
and the temperatures of the surfaces, but not the internal nodes temperatures. Moerover,
due to modeling differences, the surfaces temperatures in EnergyPlus and in the state-space
model can be slightly different. Therefore, most of the time, we only consider that the zone
temperature are available, which also correspond to the most realistic case. The state-space
model extracted from the building does just assume full-state measurement (i.e.ssM.C is
the identity matrix by default). Therefore, we have to specify which measurements are
available to our controller to set up the estimator accordingly.

measurement =
regexpcmp(ssMd.outputLabels.getLabel(1:ssMd.outputLabels.length),’Zone
Mean Air Temperature’,’ignorecase’);

ssMd.C = ssMd.C(find(measurement),:);
ssMd.outputLabels.removeLabels(find(~measurement));

These command manually specify we want to consider only the room temperature as
available measurements.
Next, in most MPC implementation, in order to correct for disturbance prediction errors,

as well as modeling mismatches, we consider offset-free formulation, which virtually will
add integrating behaviour to the estimator. The disturbance model has to be specified. We
generally considered output disturbances:

% Augment the model with output disturbance model
nMeas = sum(measurement);
ssMd.A = blkdiag(ssMd.A,eye(nMeas));
ssMd.Bu = [ssMd.Bu; zeros(nMeas,size(ssMd.Bu,2))];
ssMd.Bd = [ssMd.Bd; zeros(nMeas,size(ssMd.Bd,2))];
ssMd.C = [ssMd.C eye(nMeas)];
outputs = strcat(’Disturbance on

’,ssMd.output.labels.getLabel(1:ssMd.output.labels.length));

6



ssMd.state.labels.addLabels(outputs);
ssMd.state.units.addLabels(ssMd.output.units.getLabel(1:ssMd.output.labels.length));

This few lines augment the model of the building with constant output disturbances. We
can now set up the estimator:

sE.addEstimator(ssMd);

This sets up the estimator based on the augmented model: it will take as inputs the
measurement, previous values of inputs and disturbances and output an estimate of the
state of the building and the output disturbance.
Finally, we specify the MPC controller with this model

sE.addControllerMPC(ssMd);

The details of the MPC implementation can be found in the corresponding files (MPC_setback_data.m
and MPC_setback_update.m). The augmentation of the model does not result in any mod-
ification in (3) except that now , we have that yt = Cxt + f where f is the current estimate
of the output error. It is implemented with soft constraints so that feasibility is always
guaranteed. In the examples provided here, the MPC problem have been formulated with the
toolbox YALMIP and the solver CPLEX has been used to solve the problems. Because we use
the beta functionality decribed in http://users.isy.liu.se/johanl/yalmip/pmwiki.
php?n=Blog.Beta-version-of-a-more-general-optimizer, the user needs to specify
a solver in any case. Unfortunately, for this problem the quadprog solver from energyPlus
fails to solve the problem...

sE.runSimulation;

This finally runs the simulation and saves the data.
Next,we display some of the result of the simulation. When a simulation is run, results are

saved automatically. By default, data is saved in a subfolder of the project folder, named
simulation_saves. The path of the saved data is temporarily in the simulationEngine
object under the field parameters.savePath.

s = load(sE2.parameters.savePath);
saveData = s.saveData;

These lines load the data of the MPC simulation. The data is saved in a structure which has
2 fields. The field labels contains the list of all labels of the data saved. Since EnergyPlus
mainly identifies the data through string labels, we use the same system and attach to each
signal in the simulation a unique identifier. If the data comes from EnergyPlus, then the
label is conserved in OpenBuild. The field data contains the data itself in an array.

% Find the temperatures in the rooms based on the labels
zoneTempId =

regexpcmp(saveData.labels.getLabel(1:saveData.labels.length),’Zone Mean

7

http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Blog.Beta-version-of-a-more-general-optimizer
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Blog.Beta-version-of-a-more-general-optimizer


Air Temperature’,’ignorecase’) &
~regexpcmp(saveData.labels.getLabel(1:saveData.labels.length),’Estimate’,’ignorecase’);

zoneTempId = find(zoneTempId);
runTime = size(saveData.data,2);
zoneTemp = saveData.data(zoneTempId,:);

The previous commands gathers the temperature in the zones by looking into the label
identifiers.

% constraints on temperature used in the MPC scheme
constraintsMin = sE2.controller.data.Tmin -

sE2.controller.data.setback(1:runTime);
constraintsMax = sE2.controller.data.Tmax +

sE2.controller.data.setback(1:runTime);

There, we look back into the data of the controller to retrieve the constraints to the zone
temperatures used.

% Plot the result of the simulation
clf;
figure(1);
hold on;
xlabel(’Timesteps’); ylabel(’Temperatures’);
plot(constraintMin,’r--’);
plot(constraintMax,’r--’);
plot(zoneTemp,’b’);

This finally plots the temperature in the first zone and the constraints in the MPC problem,
the outside temperature and the power input in the first zone in a second plot.
We can observe how the MPC follows the constraints. At the beginning of the simulation,
since the weather is not so cold, only internal gains are enough to maintain temperature in
the room. the system even has to resort to cooling for a short period to avoid overheating
in the room because of the sun radiative gains. Then in the next few days, we see how the
setbacks are exploited by the MPC controller.
To check and plot manually the data, a small GUI has been included in the toolbox and

can be found under Classes/visualisationTool.

4 Some advice to modify existing examples

For the user to create its own simulation, we advice that the user starts from the existing
examples and modifies them to his preference. We gather here some advice to do so.

8



4.1 Modifying characteristics of the simulation

In the current state of the software, the simulation period and timestep depend on the idf
file used. To modify those, we therefore advice to directly modify the RunPeriod object in
the .idf file. The fields of interest are Begin Month, Begin Day of Month, End Month,
End Day of Month, Day of Week for Start Day .
The object Timestep is used to set up the number of timesteps per hour and can take
values 1,2,3,4,6,12,60. If the HVAC system is slow enough, 2 time steps per hour was
deemed generally sufficient.

4.2 Use own .idf files

OpenBuild should be able to support a most .idf provided they comply with some rules. In
order to generate a model in MATLAB, the file has to be run as such with EnergyPlus, so
it has to respect all requirements to do so. The modeling procedure detects objects in the
simulation regardless of the rest of the file, so it can extract a thermodynamic model of the
building independently of the HVAC system specified in the file. To run cosimulations, the
requirements are however more stringent: in the current state of the software, for the model
to fit the behavior of the building in simulation, the heating must be inexistent or inactive.
Cosimulations do not support sizing periods so make sure that the obejct RunControl in
the .idf file is set to No for the four first fields.

9


	Introduction
	Installation
	Tutorial for MPC design
	Some advice to modify existing examples
	Modifying characteristics of the simulation
	Use own .idf files


