High-Speed High-Performance Model Predictive Control of Power Electronics Systems

S. Mariéthoz, S. Almér, A. Domahidi, C. Fischer, M. Herceg, S. Richter, O. Schultes, M. Morari

Automatic Control Laboratory, ETH Zurich

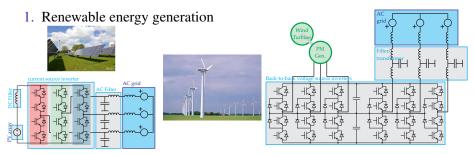
HTTP://WWW.CONTROL.EE.ETHZ.CH mariethoz@control ee ethz ch

Swiss Federal Institute of Technology Zurich

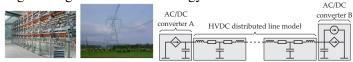
Outline

Introduction

Power Electronics Systems' Application Areas Control challenges


Modelling power electronics system dynamics

Linear Explicit MPC based on model averaging


Hybrid approach: objective/ status/ future challenges

Conclusions

Application Areas

- ► Components: electric drives, frequency/level power converters
- 2. High-voltage DC electrical energy transmission

Components: frequency/level power converters

Application Area summary

- 1. Renewable energy generation, Transmission, Electrical energy storage
- 2. Transportation, Industry/robotics, Consumer electronics

► Components: electric drives, frequency/level power converters

Power electronics systems

- Broad range of applications
- System made of different types of
 - Electric drives
 - Frequency/level power converters
- Improving performance of these two types of components
- ⇒ large impact

Control challenges

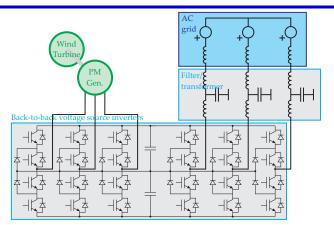
- 1. Dynamic performance and constraint satisfaction
- 2. Systematic control approach
 - MPC
- 3. Very fast dynamic modes
 - ⇒ Fast switching/sampling frequencies (100Hz-1MHz)
 - ► Fast MPC
- 4. Semiconductor switches \Rightarrow power losses and operating limitations
 - Constrained power losses and operating frequency
- 5. Energy conversion \Rightarrow desired high energy efficiency
- 6. Grid applications \Rightarrow desired high power quality
- 7. Low-power applications ⇒ desired low size and consumption of control system
 - System design and control optimization

Control challenges

- 1. Dynamic performance and constraint satisfaction
- 2. Systematic control approach
 - MPC
- 3. Very fast dynamic modes
 - ⇒ Fast switching/sampling frequencies (100Hz-1MHz)
 - Fast MPC
- 4. Semiconductor switches \Rightarrow power losses and operating limitations
 - Constrained power losses and operating frequency
- 5. Energy conversion \Rightarrow desired high energy efficiency
- 6. Grid applications \Rightarrow desired high power quality
- 7. Low-power applications ⇒ desired low size and consumption of control system
 - System design and control optimization

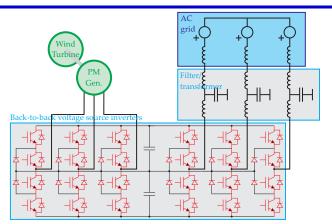
Outline

Introduction

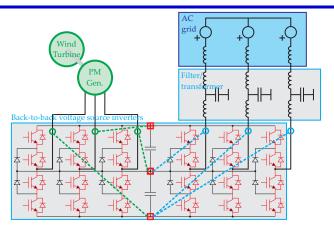

Power Electronics Systems' Application Areas Control challenges

Modelling power electronics system dynamics

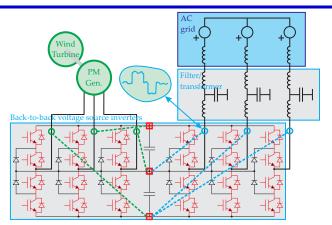
Linear Explicit MPC based on model averaging


Hybrid approach: objective/ status/ future challenges

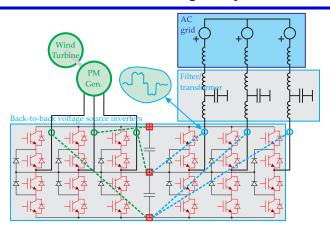
Conclusions


Power electronics systems

► Controllable semiconductor switches


Power electronics systems

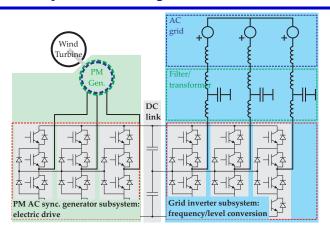
► Controllable semiconductor switches


Power electronics systems

- ► Controllable semiconductor switches
- ▶ interconnect different points of circuits

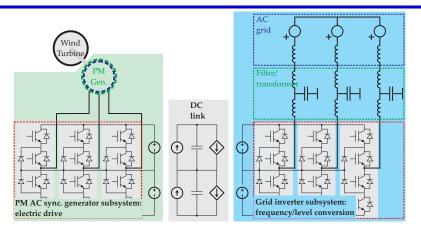
Power electronics systems

- ► Controllable semiconductor switches
- ▶ interconnect different points of circuits ⇒ switched waveforms



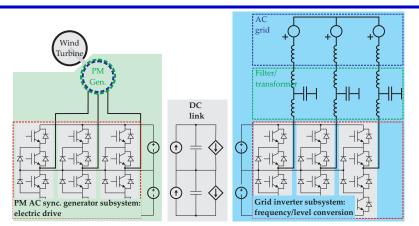
Power electronics systems

► Dynamics ⇒ Complex hybrid systems


$$\dot{\mathbf{x}} = \sum_{i} \mathbf{s}_{i} \left(\mathbf{F}_{i} \mathbf{x} + \mathbf{G}_{vi} \mathbf{v} \right) \quad \mathbf{s}_{i} \in \{0, 1\} \quad \sum_{i} \mathbf{s}_{i} = 1$$

Subsystem decomposition

Structured system: modes and objectives


Subsystem decomposition

Structured system: modes and objectives

Linear subsystems with binary inputs \Rightarrow Much simpler hybrid dynamics $\dot{x} = Fx + G_u u + G_w w$ $u = \sum_i s_i v_i$ $s_i \in \{0, 1\}$ $\sum_i s_i = 0$

Subsystem decomposition

Structured system: modes and objectives

- ightharpoonup Linear subsystems with binary inputs \Rightarrow Much simpler hybrid dynamics $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}_{\mathbf{u}}\mathbf{u} + \mathbf{G}_{\mathbf{w}}\mathbf{w} \quad \mathbf{u} = \sum_{i} s_{i} \mathbf{v}_{i} \quad s_{i} \in \{0, 1\} \quad \sum_{i} s_{i} = 0$
- \Rightarrow 2 modelling and control approaches

Modelling approaches

- 1. Hybrid system approach
 - Linear subsystems with binary input $\dot{x} = Fx + F_u u + F_w w$ $u = \sum_i s_i v_i$ $\sum_i s_i = 1$ $s_i \in \{0, 1\}$
- 2. Model averaging approach \Rightarrow relaxed binary constraints
 - Linear subsystems with linearly constrained continuous input $\dot{x} = Fx + G_u u + G_w w$ $u = \sum_i d_i v_i$ $\sum_i d_i = 1$ $d_i \in [0, 1]$

Modelling approaches

- 1. Hybrid system approach
 - Linear subsystems with binary input $\dot{x} = Fx + F_u u + F_w w$ $u = \sum_i s_i v_i$ $\sum_i s_i = 1$ $s_i \in \{0, 1\}$
 - ightharpoonup Accurate model \Rightarrow loss or distortion minimization
- 2. Model averaging approach \Rightarrow relaxed binary constraints
 - Linear subsystems with linearly constrained continuous input $\dot{x} = Fx + G_u u + G_w w$ $u = \sum_i d_i v_i$ $\sum_i d_i = 1$ $d_i \in [0, 1]$
 - ► Model sufficient for control ⇒ MPC of averaged dynamics

Outline

Introduction

Power Electronics Systems' Application Areas Control challenges

Modelling power electronics system dynamics

Linear Explicit MPC based on model averaging

Hybrid approach: objective/ status/ future challenges

Conclusions

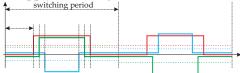
Linear Explicit MPC based on model averaging

- ▶ Discretization of averaged dynamics with sampling period T_s $\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}_u \mathbf{u}_k + \mathbf{B}_w \mathbf{w}_k$ $\mathbf{u}_k = \sum_i d_{ki} \mathbf{v}_{ki} \sum_i d_{ki} = 1 \ d_{ki} \in [0, 1]$
- ► Formulation of tracking linear MPC problem

$$\min_{u_k} \sum_{l=k}^{k+N} \|x_l - x_l^{\text{e}}\|_{Q} + \|u_l - u_l^{\text{e}}\|_{R} \text{ track equilibrium point}$$

s.t.
$$x_{l+1} = Ax_l + B_u u_l + B_w w_l$$

$$u_l = \sum_i d_{li} v_{li} \sum_i d_{li} = 1 \ d_{li} \in [0, 1]$$

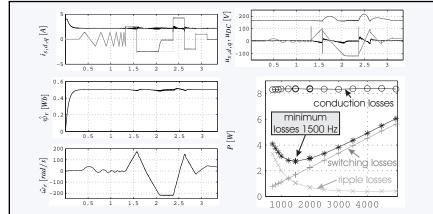

linear input and state constraints

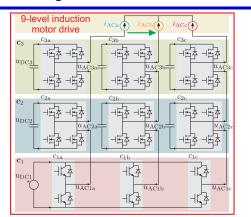
- ► Can be solved parametrically:
 - 1. Exactly if shape and orientation of input set does not change
 - 2. Limitation: length of horizon and dimension of parameter
 - 3. Yields relaxed variables $d_{ki} \Rightarrow$ need feasible binary solution

Obtain feasible binary solution

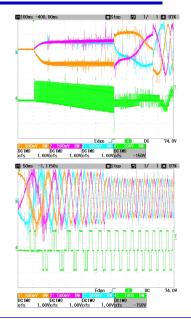
- ▶ Duty cycle interpretation of d_{ki}
- Apply input vectors v_{ki} with duty cycles d_{ki} over T_s using pulse-width-modulation (PWM)

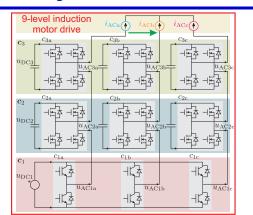
 \Rightarrow apply v_{ki} during time interval $d_{ki} T_s$

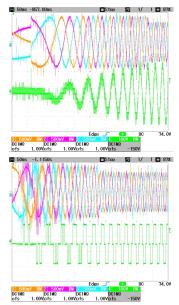


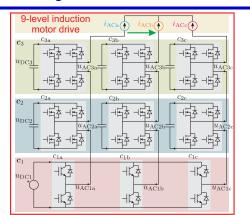

- ► Approach:
 - Very good dynamic performance
 - Losses and distortion depend on PWM scheme

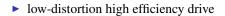
1. Objective: track torque (currents) and flux

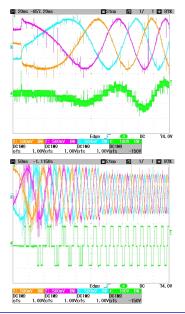

- 1. Objective: track torque (currents) and flux
- 2. State-of-the-art scheme requires 5 kHz for good tracking performance
- 3. EMPC gives better performance at 1.5 kHz
- 4. EMPC run-time on low-cost DSP $10\mu s$ (total $30\mu s$)

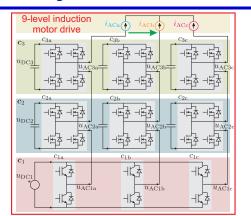

- 1. Objective: track torque (currents) and flux
- 2. State-of-the-art scheme requires 5 kHz for good tracking performance
- 3. EMPC gives better performance at 1.5 kHz
- 4. EMPC run-time on low-cost DSP $10\mu s$ (total $30\mu s$)
- 5. EMPC \Rightarrow better energy efficiency and dynamic performance

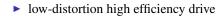


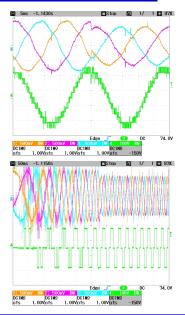

low-distortion high efficiency drive

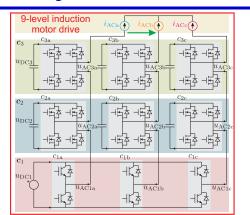


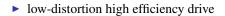

- low-distortion high efficiency drive
- hierarchical approach with linear explicit MPC

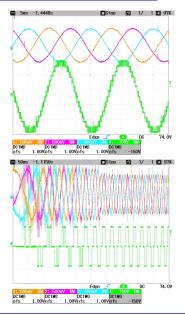





- hierarchical approach with linear explicit MPC
- high-dynamic performance
- unified approach






- hierarchical approach with linear explicit MPC
- high-dynamic performance
- unified approach

- hierarchical approach with linear explicit MPC
- high-dynamic performance
- unified approach

Outline

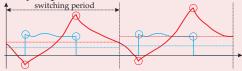
Introduction

Power Electronics Systems' Application Areas Control challenges

Modelling power electronics system dynamics

Linear Explicit MPC based on model averaging

Hybrid approach: objective/ status/ future challenges

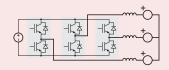

Conclusions

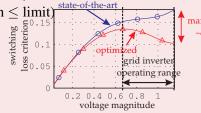
- Averaging approach gives satisfactory dynamic performance
- ⇒ Why bothering about hybrid approach?

- ► Averaging approach gives satisfactory dynamic performance
- ⇒ Why bothering about hybrid approach?

Losses and distortion

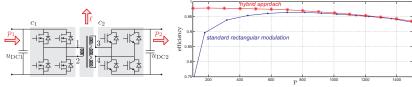
- ► Switching losses in semiconductor devices occur during transitions
- ► They depend on the switched currents and voltages:




- ► Conduction losses depend on high frequency currents $\geq f_{\text{switching}}$
- ▶ Distortion depends on high frequency currents/voltages $\geq f_{\text{switching}}$
- ightharpoonup Averaged model valid only below $f_{\text{switching}}$
- ⇒ High-frequency model of voltages and currents required to evaluate losses and distortion

- ► Averaging approach gives satisfactory dynamic performance
- ⇒ Why bothering about hybrid approach?

Energy efficiency maximization


- ▶ Primary control output defined as an integral over cycle
 - ⇒ infinitely many solutions
- ► Exploit this property to minimize losses such that primary output (e.g. average power) = reference other constraints (e.g. distortion ≤ limit) state-of-th

- ⇒ Hybrid approach can provide significant loss reduction
- ► Computational complexity ⇒ MIP

- ► Fairly systematic modelling approach
- ► Tractable problems
 - too complex for parametric programming
 - too slow for targeted applications
- ► Can implement particular cases using look-up tables and interpolation

- Broader range of applications
- ⇒ Efficient Solvers/Schemes/Control Systems

Outline

Introduction

Power Electronics Systems' Application Areas Control challenges

Modelling power electronics system dynamics

Linear Explicit MPC based on model averaging

Hybrid approach: objective/ status/ future challenges

Conclusions

Conclusions

- Power electronics systems
 - Broad range of applications
 - ▶ Many different types of Level/frequency power converters, electric drives
- Structure and modelling approaches
 - ⇒ determine complexity and performance
- ▶ Linear explicit MPC based on model averaging
 - improved dynamic performance
 - ▶ low complexity compatible with high frequency ≥ MHz
- Hybrid approach
 - improved energy efficiency and power quality
 - already some real-time applications
 - remaining computional challenges for broadening applications