
Frequency-Domain
Robust Controller Design

A Toolbox for MATLAB

User Manual

Version 1.0

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Automatic Control Laboratory
EPFL, Switzerland

May 2012

Contents

1 Introduction 2
1.1 Class of models and controllers 3

1.1.1 Models . 3
1.1.2 Linearly Parameterize Controllers 3
1.1.3 Smith Predictor Controllers 4

1.2 GPhC controller . 6
1.3 Loop shaping controller . 8
1.4 H∞ controller . 9
1.5 MIMO controller . 12
1.6 Gain-scheduled controller . 13

2 Toolbox commands 14
2.1 Determining controller structure 14

2.1.1 Example 1 . 15
2.1.2 Example 2 . 16
2.1.3 Example 3 . 16
2.1.4 Example 4 . 17
2.1.5 Example 5 . 17
2.1.6 Example 6 . 18

2.2 Determining control performance 18
2.2.1 Examples . 19

2.3 Controller Design . 21
2.3.1 Examples . 23

2.4 Controller design options . 26
2.4.1 Examples . 28

1

Chapter 1

Introduction

The Frequency-Domain Robust Controller Design Toolbox is a tool for de-
signing robust linearly parameterized controllers in the Nyquist diagram. It
can be used to design linearly parameterized controllers of any order for
parametric models or nonparametric models obtained for example by the
identification toolbox of MATLAB. The robust controllers are designed in
terms of H∞ performance or classical robustness margins such as the gain
and phase margin, for single/multi-model, SISO/MIMO systems. The tool-
box also supports designing gain-scheduled controllers.

In all of design cases, linear or convex optimization problems are solved.
For linear and quadratic optimization the well-known linprog or quadprog
(depending on the problem) commands of the Optimization toolbox of MAT-
LAB are used. While convex optimization problems are formulated with
YALMIP and can be solved with all available solvers (e.g. sdpt3 is used as
a default solver) . Many commands of the Control toolbox of MATLAB are
used as well.

In this manual as well as describing theoretical bases of the optimization
problems in a terse manner, our main attempt is to provide a quite compre-
hensive set of examples to exhibit wide functionality, yet user-friendliness of
this tool. The theoretical bases used in this toolbox have been published in
[4, 5, 3, 2]. The development of the toolbox was started by the works of Vini-
cius de Oliveira and continued by Mehdi Sadeghpoor during an internship in
Automatic Control Laboratory [6].

In this chapter, the theoretical bases of the design methods used in the
toolbox are presented. The description of the optimization problems that
are solved in the toolbox for different desired control performance (GPhC,
loop shaping, and H∞), is the main subject of this section. The extension
of these methods to MIMO systems and gain-scheduled controller design, is
described. In the sequel, first the class of controllers and models are presented

2

and then different control performances that can be considered by the toolbox
are given.

1.1 Class of models and controllers

1.1.1 Models

Models can be parametric or nonparametric. The design method, in fact,
needs the frequency response of the plant model in a finite number of frequen-
cies which can be obtained directly from data by spectral analysis (for exam-
ple by the identification toolbox of Matlab) or computed from a parametric
model. Therefore, high order models with pure time delay and non minimum
phase zeros can be considered with no approximation. Thus, we define the
set of models: M = {Gi(jω), i = 1, . . . ,m} where Gi(jω) can be a scalar or
a matrix function representing the frequency response of a SISO or MIMO
model, respectively, over a vector of frequency points ωi = [ωi1 , ωi2 , . . . , ωiNi].
Ni is large enough to give a good approximation of the frequency response
of the system Gi. The methods are described on a SISO system. It will also
be explained how these methods can be applied in designing multivariable
decoupling controllers for MIMO systems.

1.1.2 Linearly Parameterize Controllers

The toolbox designs linearly parameterized controllers. A linearly parame-
terized controller has the following form:

ρTφ(s) = [ρ1 ρ2 . . . ρn]× [φ1(s) φ2(s) . . . φn(s)]T (1.1)

where ρ1, ρ2, . . ., ρn are controller parameters and φ1(s), φ2(s), . . ., φn(s) are
basis transfer functions. These transfer functions must be stable, i.e. with
no right half plane poles.

PID, PI, PD:

The proportional-integral-derivative (PID) controller is a familiar case of
these types of controllers with 3 parameters [ρ1 ρ2 ρ3] = [kp ki kd] and the
vector of basis transfer functions:

φ(s) = [1
1

s

s

1 + τs
]T (1.2)

for continuous-time systems and:

φ(z) = [1
z

z − 1

z − 1

z
]T (1.3)

3

for discrete-time systems, where τ is the time constant of the derivative
part in the continuous-time one. PI and PD are special cases of the above
equations. Besides these common linearly parameterized controllers, this
toolbox supports the following higher order types, too:

Laguerre basis functions:

φ1(s) = 1, φi(s) =

√
2ξ(s− ξ)i−2

(s+ ξ)i−1
i = 2, 3, . . . , n+ 1 (1.4)

for continuous-systems and:

φ1(z) = 1, φi(z) =

√
1− a2
z − a

(
1− az
z − a

)i−2
i = 2, 3, . . . , n+ 1 (1.5)

for discrete-time systems, where n is the order of the controller, ξ > 0, and
−1 < a < 1.

Generalized orthonormal basis functions:

φ1(s) = 1, φi(s) =

√
2Re(ξi−1)

s+ ξi−1

i−2∏
k=1

s− ξ̄k
s+ ξk

i = 2, 3, . . . , n+ 1 (1.6)

for continuous-time systems and

φ1(z) = 1, φi(z) =

√
1− |ξi−1|2
z − ξi−1

i−2∏
k=1

1− ξ̄kz
z − ξk

i = 2, 3, . . . , n+ 1 (1.7)

for discrete-time systems, where ξ1, . . . , ξn are complex numbers, Re denotes
the real part of a complex number, and ξ̄k is the complex conjugate of ξk.

As stated earlier, one can define one’s own vector of basis functions, φ,
of any desired order as well as the above listed types.

1.1.3 Smith Predictor Controllers

A Smith Predictor controller has the form shown in Fig. 1.1, where Pi(s)
is the plant model, Pn(s) is the nominal plant model, Gn(s) is the nominal,
delay-free plant model and C(s) is the controller. The open-loop transfer
function Li(s) = [Pi(s) +H(s)]C(s), where H(s) = Gn(s) − Pn(s). C(s) is
a linearly parameterized controller, as described above.

The Smith Predictor structure can be used for stable SISO and MIMO
systems with time delays. For unstable SISO systems, H(s) should be mod-
ified such that it is stable in order to compute a stabilizing controller.

4

C(s) Pi(s)

Pn(s)

Gn(s)

+

+

+

+

+

+

+

-

X(s) U(s)

D(s)

Y(s)

Yp(s)

Figure 1.1: Smith Predictor structure

d

-1
q Re

Im

c

p
a

b

e

Figure 1.2: GPhC specifications converted to linear constraints in Nyquist
diagram

5

1.2 GPhC controller

Gain margin, phase margin and crossover frequency (GPhC) are typical per-
formance specifications for PID controller design in industry. We use these
specifications for SISO stable systems if the number of integrators in the
open-loop transfer function is less than or equal to 2. Specifying the gain
and phase margin defines a straight line in the Nyquist diagram (see d1 in
Fig. 1.2). Now, if the Nyquist curve of the open loop system lies in the
right side of d1 the desired values for the gain margin gm and phase margin
φm will be assured. This can be represented by a set of linear constraints
thanks to the linear parameterization of the controller. Now, consider an-
other straight line d2 which is tangent to the middle of the unit circle in the
sector created by d1 and the imaginary axis. If we call ωx the frequency at
which the Nyquist curve intersects d2, a crossover frequency greater than or
equal to ωx can be achieved by satisfying a set of linear constraints. In fact,
for frequencies greater than ωx the Nyquist curve should lie below d1 and
above d2 while for frequencies less than ωx it should lie below d2.

Let us define the set of all points in the complex plane on the line d by
f(x+ iy, d) = 0. Assume that f(x+ iy, d) < 0 represents the half plane that
excludes the critical point. Then, to find optimal controller parameters, an
optimization problem like the following is used:

6

max
ρ
g

subject to:

f(ρTφ(jωik)Gi(jωik), d1) < 0 for ωik > ωx,

f(ρTφ(jωik)Gi(jωik), d2) > 0 for ωik > ωx, (1.8)

f(ρTφ(jωik)Gi(jωik), d2) < 0 for ωik 6 ωx,

for k = 1, . . . , Ni and i = 1, . . . ,m.

where, the objective function for minimization, g, can be one of the two
following cases:

• When one wants the open-loop of the system to be close to a desired
open-loop, Ld. In this case, g would be the quadratic criterion below:

g =
m∑
i=1

Ni∑
k=1

|Li(jωik, ρ)− Ld(jωik)|2 (1.9)

where Li(jωik) = ρTφ(jωik)Gi(jωik).

• When the control objective is to optimize the load disturbance rejection
of the closed-loop. This is, in general, achieved by maximizing the
controller gain at low frequencies. For example, for a PID controller
it corresponds to maximizing the coefficient of the integral part, i.e.
g = ki.

It should be noted that for all controller types including self-defined ones,
one can specify an Ld to minimize the criterion (1.9). But, optimizing load
disturbance rejection is considered only in PID, PI, PD, and Laguerre con-
trollers.

In many control problems a constraint on the controller gain at high
frequencies can help reducing the large pick values of the control input. This
can be achieved by considering a bound on the real and the imaginary part
of the controller, ρTφ(jωi), at frequencies greater than ωh:

−Ku < Re(ρTφ(jωik)) < Ku for ωik > ωh

−Ku < Im(ρTφ(jωik)) < Ku for ωik > ωh (1.10)

where Re and Im denote, respectively, real and imaginary parts of a complex
value. These linear constraints will be included in the optimization problem
(1.8) if specified by user.

7

M

L-1

A

B
K

E

Figure 1.3: Loop shaping in Nyquist diagram by quadratic programming

1.3 Loop shaping controller

The performance specification can be defined by a desired open loop transfer
function (or nonparametric frequency response data), Ld(jω). It can be
computed if a desired reference model M is available: Ld = M/1 − M .
Typically for stable systems Ld(s) = ωc/s would work well. Then a controller
can be designed by minimizing the quadratic criterion of (1.9).

The modulus margin, the shortest distance between the Nyquist curve
and the critical point, which is a better robustness indicator than the clas-
sical gain and phase margins, is considered in the loop shaping controller
design method. For example, a modulus margin Mm of 0.5 is met if the
Nyquist curve does not intersect a circle of radius 0.5 centered at the critical
point. This can be achieved if the Nyquist diagram is at the side of d, a
straight line tangent to the modulus margin circle, that excludes the critical
point. This constraint is linear but conservative. The conservatism can be
reduced if the slop of this line changes with frequency. A good choice is a line
d(Mm, Ld(jωk)) orthogonal to the line that connects the critical point and
Ld(jωk) and tangent to the modulus margin circle (see Fig. 1.3). Thus the
controller is designed solving the following quadratic optimization problem:

min
ρ

m∑
i=1

Ni∑
k=1

|Li(jωik, ρ)− Ld(jωik)|2

8

M

L-1

A

B

K

N

E

Figure 1.4: Expression of the robust performance condition as linear or con-
vex constraints

subject to:

f(ρTφ(jωik)Gi(jωik), d(Mm, Ld(jωik))) < 0 (1.11)

for k = 1, . . . , Ni and i = 1, . . . ,m.

This approach can be applied to unstable systems if Ld contains the same
number of unstable poles as well as the poles on the imaginary axis of Li(s)
(see [3] for details). The toolbox will give a warning if Ld does not contain
the same number of unstable poles or the poles on the imaginary axis of
Li(s), though the calculation is susceptible to rounding errors and should be
verified manually.

1.4 H∞ controller

Consider a SISO plant model with multiplicative unstructured uncertainty:

G̃(jω) = G(jω)[1 +W2(jω)∆]

where G(jω) is the plant nominal frequency function, W2(jω) is the uncer-
tainty weighting frequency function, and ∆ is a stable transfer function with
‖∆‖∞ < 1. In the Nyquist diagram the open loop frequency function will
belong to a disk centered at L(jω, ρ) with a radius of |W2(jω)L(jω, ρ)|. This

9

disk can be approximated by a circumscribed polygon with nq > 2 vertices,
such that Lx(jω, ρ) = K(jω, ρ)Gx(jω) for x = 1, . . . , nq, where

Gx(jω) = G(jω)

[
1 +

|W2(jω)|
cos (π/nq)

ej2πx/nq
]

(1.12)

Suppose that the nominal performance is defined as ‖W1S‖∞ < 1, where
S = (1+KG)−1 is the sensitivity function and W1 is the performance weight-
ing filter. This condition is satisfied if the Nyquist curve of the nominal model
does not intersect the performance disk, a disk centered at the critical point
with a radius of |W1(jω)|. Therefore, the robust performance is achieved
if there is no intersection between the uncertainty and performance disks
[1] (see Fig. 1.4). This constraint can be linearized using a straight line
d(W1(jω), Ld(jω)) which is tangent to the performance disk and orthogonal
to the line connecting the critical point and Ld(jω) [3]. The robust perfor-
mance is met if Lx(jω, ρ) is at the side of d(W1(jω), Ld(jω)) that excludes
the critical point for all ω. This can be represented by the following set of
linear constraints:

f(ρTφ(jωk)Gx(jωk), d(W1(jωk), Ld(jωk))) < 0 (1.13)

for k = 1, . . . , N and x = 1, . . . , X.

Then, in (1.13), if we let W2 = 0, it will be equivalent to the nominal
performance condition:

‖W1S‖∞ < 1 (1.14)

and if we let W1 = 0, the robust stability condition:

‖W2T‖∞ < 1 (1.15)

will be obtained where T is the complementary sensitivity function. Other
than these two constraints, constraints on the weighted infinity norm of other
closed loop sensitivity functions, after being linearized in a similar manner,
can also be included in the optimization problem (see more details in [3]):

‖W3KS‖∞ < 1 and ‖W4GS‖∞ < 1 (1.16)

where W3 and W4 are corresponding weighting filters.
As for a loop shaping controller, Ld should be defined such that it satisfies

the Nyquist criterion and contains the poles of Li(s) on the imaginary axis.
The toolbox will give a warning if Ld does not contain the same number
of unstable poles or the poles on the imaginary axis of Li(s), though the
calculation is susceptible to rounding errors and should be verified manually.

As a result, two different optimization problems are considered in H∞
controller design method:

10

1. Defining a desired open-loop Ld and minimizing the criterion (1.9) in
the following optimization problem:

min
ρ

m∑
i=1

Ni∑
k=1

|Li(jωik, ρ)− Ld(jωik)|2

subject to:

‖W1S‖∞ < 1 , ‖W2T‖∞ < 1 , ‖W3KS‖∞ < 1 , ‖W4GS‖∞ < 1

2. Solving the following optimization problem:

min γ

subject to:

‖λ1|W1S|+ λ2|W2T |+ λ3|W3KS|+ λ4|W4GS|‖∞ < γ

(1.17)

where λ = [λ1, λ2, λ3, λ4] is a vector of positive coefficients determining
the importance of each constraint. If λi = 0 and Wi is defined, then the
constraint corresponding to Wi will also be considered. For example if
λ = [1 0 1 0] and W1, W2 and W3 are defined the following optimization
problem is solved:

min γ

subject to:
‖|W1S|+ |W3KS|‖∞ < γ

‖W2T‖∞ < 1

If λ = [0 0 0 0] an upper bound on all weighted sensitivity function will
be minimize:

min γ

subject to:

‖W1S‖∞ < γ , ‖W2T‖∞ < γ , ‖W3KS‖∞ < γ , ‖W4GS‖∞ < γ

As stated before, all these constraints are used in their linearized form
and γ is minimized by a bisection algorithm to reach the best perfor-
mance possible in terms of the above constraints.

11

1.5 MIMO controller

The performance specifications for SISO systems can also be used for design-
ing MIMO controllers if the open loop system is decoupled. The main idea
is to design a MIMO decoupling controller such that the open-loop transfer
matrix L(jω) becomes diagonally dominant. For this reason a diagonal de-
sired open loop transfer matrix Ld is considered and the following quadratic
criterion is minimized:

J(ρ) =
m∑
i=1

Ni∑
k=1

‖Li(jωik, ρ)− Ld(jωik)‖F (1.18)

where F stands for the Frobenius norm.
MIMO controllers presented by a matrix of transfer functions are consid-

ered where each element Kij of the matrix should be linearly parameterized,
i.e., Kij = ρTijφij. The controller parameters are obtained by minimizing J(ρ)
under some constraints to meet the SISO specifications for each diagonal el-
ement.

In MIMO systems, besides the performance constraints, there are other
constraints implying the stability of MIMO systems that should be consid-
ered. In fact, because the closed-loop system will not be completely diagonal,
the stability of dominant loops will not guarantee the stability of the MIMO
system. However, a stability condition can be obtained based on Gershgorin
bands (see [2]):

rq(ωk, ρ)
∣∣[1 + Ldq(jωk)]

∣∣−Re([1 + Ldq(−jωk)][1 + Lqq(jωk, ρ)]
)
< 0

for q = 1, . . . , no and k = 1, . . . , N (1.19)

where

rq(ω, ρ) =
no∑

p=1,p 6=q

|Lpq(jω, ρ)|,

no is the number of the outputs of the system, and Ldq is the qth diagonal
element of Ld. This constraint is written for one model. It will be considered
for all models when tackling multi-model systems.

In summary, in MIMO systems, since the method is based on decoupling,
always the criterion (1.18) is minimized. Hence, for every diagonal element
of the open loop matrix (L = GK), an Ld should be specified. (Ld is a diag-
onal matrix with these Ld’s as its diagonal elements.) Also all the previously
explained performance conditions (GPhC, loop shaping, and H∞) will be ap-
plied on the diagonal elements of the open loop transfer matrix. The stability
conditions of (1.19) will be added to the other performance constraints.

12

1.6 Gain-scheduled controller

All presented robust controller design methods for systems with multimodel
uncertainty can be extended to designing gain-scheduled controllers. Suppose
that each model Gi is associated to a value of a scheduling parameter vector θ,
which is measured in real time. The controller parameters can be polynomial
functions of θ and be computed by the optimization algorithm. Then, in all
the previous constraints, we would place:

ρ = Mθ̄l

where

M =

(ρ1,np)

T · · · (ρ1,1)
T (ρ1,0)

T

...
. . .

...
...

(ρnρ,np)
T · · · (ρnρ,1)

T (ρnρ,0)
T

 (1.20)

and θ̄l = [θ
np
l . . . θl

−→
1]T .

where np is the order of polynomials describing controller parameters and nρ
is the dimension of ρ which is the same as the dimension of the vector of the
basis functions φ.

For instance, for a PID controller (nρ = 3) with a scalar scheduling pa-
rameter and the vector ρ as a second order polynomial of θ (np = 2) we will
have a parametrization like this:

ρ(θ) =

kp2 kp1 kp0

ki2 ki1 ki0

kd2 kd1 kd0

θ2

θ

1

 (1.21)

For more details about the gain-scheduled controller design see [5].

13

Chapter 2

Toolbox commands

The procedure of design comprises three steps. First the type (or structure)
of the controller should be determined. Then the desired performance char-
acteristics are specified, and finally a controller with the desired type and
performance is designed. In the following comes a description of these three
steps with corresponding commands.

2.1 Determining controller structure

The first step of design is determining the desired controller type. By defining
the controller type in fact the vector of basis transfer functions φ is specified.
In the following command the controller type and subsequently the vector φ
are specified by the user.

phi = conphi (ConType , ConPar , CorD , F, ConStruc, ConOpt)

ConType is a string representing the desired controller type. It is not case
sensitive when being defined. it can be:

‘PID’ For PID controller
‘PD’ For PD controller
‘PI’ For PI controller
‘Laguerre’ For Laguerre basis function
‘Generalized’ For Generalized basis function
‘UD’ For user defined structure

ConPar is a scalar or a vector of parameters for the chosen controller type.
For continuous-time PID or PD controller ConPar can be the time
constant of the derivative part (if it is not specified a default value

14

equal to 1.2/ωmax will be computed, where ωmax is the maximum value
of the vector ω).

For discrete time PI, PD and PID controllers, ConPar specifies the
sampling period.

For continuous-time Laguerre basis function, ConPar is [ξ n] where ξ
defines the parameter of Laguerre basis and n is its order. For discrete-
time Laguerre basis function, ConPar is [Ts a n] where Ts is the
sampling period, a the parameter of Laguerre basis and n its order.

For continuous-time generalized basis function, ConPar is ξ, a n-th
dimensional vector containing the parameters of the generalized ba-
sis function. For discrete-time generalized basis function, ConPar is
[Ts ξ].

For user defined structure, ConPar is a column vector of stable transfer
functions.

CorD is either ‘s’ or ‘z’ showing, respectively, that the controller is in
continuous- or discrete-time. If not mentioned, the continuous-time
case will be considered.

F is a transfer function by which the vector φ is multiplied. For example
one can multiply a factor of integral 1

s
to PID basis functions to get:

φ = 1
s
× [1 1

s
s

1+τs
]T .

ConStruc is either ’LP’ for a linearly parameterized controller (default) or
’SP’ for a Smith Predictor controller.

ConOpt for a Smith Predictor controller gives H(s) = Gn(s)− Pn(s).

2.1.1 Example 1

A continuous-time PID controller with τ = 0.1:

phi = conphi ('PID' , 0.1)

phi.phi

Transfer function from input to output...
#1: 1

1
#2: −

s

15

s
#3: −−−−−−−−−

0.1 s + 1

2.1.2 Example 2

A discrete-time PI controller with sampling time of 0.05 seconds:

phi = conphi ('PI' , 0.05 , 'z')

phi.phi

Transfer function from input to output...
#1: 1

z
#2: −−−−−

z − 1

Sampling time: 0.05

2.1.3 Example 3

A continuous-time PID controller with τ = 0.1 multiplied by an integrator:

s=tf('s'); F=1/s;
phi = conphi ('PID' , 0.1 , 's' , F)

phi.phi

Transfer function from input to output...
1

#1: −
s

1
#2: −−−

sˆ2

s
#3: −−−−−−−−−−−

0.1 sˆ2 + s

16

2.1.4 Example 4

A continuous-time 3rd-order Laguerre basis with ξ = 1:

phi = conphi ('Laguerre',[1,3])

phi.phi

Transfer function from input to output...
#1: 1

1.414
#2: −−−−−

s + 1

1.414 s − 1.414
#3: −−−−−−−−−−−−−−−

sˆ2 + 2 s + 1

1.414 sˆ2 − 2.828 s + 1.414
#4: −−−−−−−−−−−−−−−−−−−−−−−−−−−

sˆ3 + 3 sˆ2 + 3 s + 1

2.1.5 Example 5

A continuous-time, user defined vector of basis functions:

s = tf ('s');
phi = conphi('ud',[1 ; 1/s ; s/(sˆ2+2*s+1)]);

phi.phi

Transfer function from input to output...
#1: 1

1
#2: −

s

s
#3: −−−−−−−−−−−−−

sˆ2 + 2 s + 1

17

2.1.6 Example 6

A Smith Predictor, PID controller structure

s = tf('s');
G = 1/((5*s+1)*(10*s+1));
P{1} = G*exp(−5*s);

H = G − P{1};

phi = conphi('PID',0.01,'s',[],'SP',H);

After defining our desired controller structure, we shall proceed to the
next step: specifying performance characteristics.

2.2 Determining control performance

The desired control performance attributes of the system are determined by
the following command:

per = conper (PerType , par , Ld)

PerType is a string specifying the desired performance of the system. It can
be ‘GPhC’, ‘LS’ or ‘Hinf’.

‘GPhC’ stands for the case when one wants to determine desired values
for gain margin, phase margin, and crossover frequency.

‘LS’ stands for Loop Shaping controller. In this method the distance
between L = GK (open-loop transfer function) and Ld (the de-
sired one) in one thousand frequencies linearly spaced between
ωmin and ωmax is minimized. A lower bound on the Modulus mar-
gin (the inverse of the infinity norm of the sensitivity function) is
also guaranteed.

‘Hinf’ In this method the distance between L = GK and Ld is min-
imized under some H∞ constraints on the weighted closed-loop
sensitivity functions.

par is a structure that contains all the data specified by the user in this
command.

For the ‘GPhC’ method par is a vector containing the lower bounds of
gain margin gm, phase margin ϕm, crossover frequency ωc, and an upper

18

bound for the controller gain Ku which may be applied at frequencies
higher than ωh. The crossover frequency ωc, Ku and ωh are optional
values. If they are not assigned, no lower bound for the crossover fre-
quency and no upper bound for the controller gain in high frequencies is
considered. If Ld is specified, the quadratic criterion (1.9) will be min-
imized; otherwise, the controller gain at low frequencies will be maxi-
mized. It should, however, be noted that maximizing controller gain at
low frequencies will be done in PID, PI, PD, and Laguerre controllers.
In ‘generalized’ type and in ‘user defined’ basis functions, an
Ld should be specified unless no optimization is performed and only a
feasible solution is given.

For the ‘LS’ method, par is a vector containing modulus margin Mm,
and (if desired) Ku and ωh. In loop shaping, the objective is to force
open loop to act like a desired open loop function. So a desired open
loop function (Ld) should always be specified by the user.

For the ‘Hinf’ method, par is a cell, W, containing up to four weight-
ing filters W1,W2,W3 and W4. The following constraints are applied:

‖W1S‖∞ < 1 , ‖W2T‖∞ < 1 , ‖W3KS‖∞ < 1 , ‖W4GS‖∞ < 1

where S = (1 +GK)−1 and T = 1− S are respectively sensitivity and
complementary sensitivity functions. Wi can be any LTI type model
or frequency domain model (e.g. ‘frd’ model). The distance between
L = GK and Ld is minimized.

Ld is a desired open loop which can be a parametric transfer function or a
nonparametric frd object containing frequency response data over a
frequency vector. It should contain the poles on the stability bound-
ary of the plant model and the controller. It should also satisfies the
Nyquist stability criterion.

2.2.1 Examples

GPhC : A lower bound of 2 for gain margin and 60 degree for phase margin
is considered in the following command:

performance=conper('GPhC', [2 , 60]);

For PID controllers as well as Laguerre basis functions the low fre-
quency gain of the controller will be maximized by the linear program-
ming approach. A lower bound of 3 rad/s for the crossover frequency
can be added by:

19

performance=conper('GPhC', [2 , 60, 3]);

The hard constraint on the crossover frequency can be replaced by
defining Ld=3/s and minimizing F(L-Ld) by the quadratic program-
ming approach as follows:

performance=conper('GPhC', [2 , 60], 3/s);

(F will be defined later on). If the controller gain at high frequencies
is too large, say greater than 20 such that the control input becomes
saturated, it can be limited to, say 10, for frequencies greater than 30
rad/s by the following command:

performance=conper('GPhC', [2 , 60, 0, 10, 30], 3/s);

Suppose that a robust controller should be designed that guarantees
a gain margin of 2 and a phase margin of 45 for two models G1 and
G2. Assume also that the lower bound of the crossover frequency for
the first model is 1 rad/s and for the second model is 5 rad/s. The
performances can be defined as follows:

MMper{1}=conper('GPhC', [2 , 45, 1]);
MMper{2}=conper('GPhC', [2 , 45, 5]);

LS : A modulus margin of 0.6 and a desired open-loop transfer function
of Ld=10/s can be defined as control performance by the following
command:

LSperformance=conper('LS', 0.6, 10/s);

An upper bound of 30 for frequencies greater than 100 rad /s can be
considered by:

LSperformance=conper('LS', [0.6 , 30 , 100], 10/s);

Hinf : Consider performance weighting filtersW1, multiplicative uncertainty
filter W2 and input sensitivity weighting filter W3 in an H∞ controller
design problem then the following commands can be used:

W{1}=W1;W{2}=W2;W{3}=W3;

20

Ld=W{1}−1;
HinfPer=conper('Hinf', W, Ld);

Note that if we consider that the desired sensitivity function Sd is
close to the inverse of W1, a good choice for Ld is W1 − 1 (because
S−1d = 1 + Ld).

2.3 Controller Design

After gathering the required data from user, the controller is designed by the
following command:

K = condes (G , phi , per , options)

G is a cell, i. e., G{1}, G{2}, . . . , G{m} represent SISO or MIMO models G1,
G2, . . ., Gm. In case there is just one model, define it as G{1} or simply
G. Nonparametric models should be defined as an frd or idfrd object
(type doc frd to see details about creating or converting your model
to an frd object).

phi is the output of the first command. The command condes designs a
controller of the specified type to meet the performance criteria implied
by per. For MIMO systems phi is an ni × no cell where ni is the
number of inputs and no is the number of outputs of the system. For
example phi{p,q} is the vector of basis functions φpq for the element
of row p and column q of the controller matrix K. So each element
of the controller matrix may have a different vector of basis functions,
or different structure. They should be defined separately by the first
command, for example in a loop. Should you specify one controller type
or structure for all the elements of the controller matrix, just simply
enter one phi (not a cell) in the condes command.

Example : Consider a 2 × 2 MIMO controller where the diagonal ele-
ments are Laguerre basis functions of order 3 with an integral action
and the off diagonal elements are PI controllers, Then the following
commands should be used:

s = tf ('s');
phi{1,1} = conphi('Laguerre',[1 3],'s',1/s);
phi{1,2} = conphi('PI');
phi{2,1} = conphi('PI');
phi{2,2} = conphi('Laguerre',[1 3],'s',1/s);

21

per is a cell. per{1}, per{2}, . . . , per{m} contain the desired performance
characteristics of, respectively, G{1}, G{2}, . . . , G{m}. When you want
to apply one performance criterion for all models, simply just enter
per (you don’t need to define a cell). For MIMO systems, per is a
cell. per{i}{q} (i = 1, . . . ,m and q = 1, . . . , no) contains the perfor-
mance characteristics of the qth diagonal element of the open loop L{i}
(Li = Gi ×K), which should be defined by the command conper. In
MIMO systems the objective function (1.18) will be minimized (the aim
is to design a controller to decouple the system as much as possible).
Hence Ld must be defined in per for every diagonal element of every
open loop system. If your performance characteristics differ for the
different diagonal elements of the open loop matrix, yet are the same
for every model, you can simply define per{1}, per{2}, . . . , per{no}
where per{q} contains the performance characteristics of the qth diag-
onal element of the open loop L{i} for i = 1, . . . ,m. If your desired
performance characteristics are the same for all the diagonal elements
in all of the models, you can simply enter one per (not a cell) in the
condes command to be applied to all of them.

Example : Suppose that a robust 2 × 2 MIMO controller should be
designed for three MIMO models G1, G2 and G3. Assume that the
desired open-loop transfer function for the first output is 2/s and for
the second output 10/s with a modulus margin of 0.5 for all models
then the performance is defined as follows:

MIMOper{1}=conper('LS', 0.5, 2/s);
MIMOper{2}=conper('LS', 0.5, 10/s);

Now suppose that the lower bound on the modulus margin for the first
model is 0.3, for the second model is 0.4 and for the third one is 0.5.
In this case the performance is defined by:

MIMOper{1}{1}=conper('LS', 0.3, 2/s);
MIMOper{1}{2}=conper('LS', 0.3, 10/s);
MIMOper{2}{1}=conper('LS', 0.4, 2/s);
MIMOper{2}{2}=conper('LS', 0.4, 10/s);
MIMOper{3}{1}=conper('LS', 0.5, 2/s);
MIMOper{3}{2}=conper('LS', 0.5, 10/s);

options is a structure whose fields can be set by a specific command that
will be explained in the next subsection.

22

When determining an Ld in per, (which is compulsory in ‘LS’ and ‘Hinf’

cases but optional in ‘GPhC’ case) the objective of design will be minimizing
the difference between the system open loop and the desired open loop Ld

which is a quadratic objective function in terms of controller parameters ρ.
The constraints in all of the three cases are linear in terms of ρ. Hence we
have a quadratic programming problem which can be solved by the solver
quadprog.

In MIMO systems the Gershgorin stability conditions are applied on the
controller design. These constraints are convex in terms of ρ, but can be lin-
earized without conservatism for systems with two outputs. For systems with
more than two outputs a convex optimization solver is required. The users
should instal Yalmip package and a convex optimization solver (e.g. sdpt3).
The use of Yalmip and convex optimization solvers increase the execution
time but can be used if the users do not have the optimization toolbox of
Matlab. However, regarding the fact that the Gershgorin bands constraints
are sometimes conservative, one can skip applying them (see options section
below). In this case, the standard solver quadprog will be used for solving
the resulting quadratic optimization problem.

2.3.1 Examples

Controller design with GPhC performance for a single model system

Design a PID controller for the following first order model with delay:

G =
e−s

(s+ 1)3

The objective is to ensure: Gain margin = 2, Phase margin = 60◦, Crossover
frequency = 0.08 rad/s.

s=tf('s');
G=exp(−s)/(s+1)ˆ3;

phi=conphi('PID');
per=conper('GPhC',[2,60,.08]);

K=condes(G,phi,per)

174.0174 (sˆ2 − 0.09479s + 0.04465)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s (s+83.33)

23

Controller design with GPhC performance for a multi-model system

Consider a system that has three different models in three operating points
as follows:

G1 =
4e−3s

(10s+ 1)
G2 =

e−5s

(s2 + 14s+ 7.5)
G3 =

2e−s

(20s+ 1)

The objective is to design a robust PID controller to ensure a gain margin
of 3, phase margin of 60 for all models with different desired crossover fre-
quencies as follows: ωc1=0.2 rad/s (for model 1), ωc2=0.01 rad/s (for model
2), ωc3=0.07 rad/s (for model 3).

s=tf('s');
G{1}=exp(−3*s)*4/(10*s+1);
G{2}=exp(−5*s)/(sˆ2+14*s+7.5);
G{3}=exp(−s)*2/(20*s+1);

phi=conphi('PID',.05);

per{1}=conper('GPhC',[3,60,.2]);
per{2}=conper('GPhC',[3,60,.01]);
per{3}=conper('GPhC',[3,60,.07]);

K=condes(G,phi,per)

13.9441 (s+0.1735) (s+0.5121)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s (s+20)

Controller design with LS performance for a multivariable system

Consider a MIMO model given by:

G(s) =

[
5e−3s

4s+1
2.5e−5s

15s+1

−4e−6s

20s+1
e−4s

5s+1

]

The objective is to design a MIMO PI controller to achieve a modulus margin
of 0.5 for the diagonal open-loop systems and a desired open-loop transfer
function:

Ld(s) =

[
1

30s
0

0 1
30s

]

24

s=tf('s');
G=[5*exp(−3*s)/(4*s+1) 2.5*exp(−5*s)/(15*s+1); ...
−4*exp(−6*s)/(20*s+1) exp(−4*s)/(5*s+1)];

phi=conphi('PI');

per=conper('LS',0.5,1/(30*s));

K=condes(G,phi,per)

Zero/pole/gain from input 1 to output...
0.029928 (s+0.07842)

#1: −−−−−−−−−−−−−−−−−−−−
s

0.041268 (s+0.1954)
#2: −−−−−−−−−−−−−−−−−−−

s

Zero/pole/gain from input 2 to output...
−0.007108 (s+0.7555)

#1: −−−−−−−−−−−−−−−−−−−−
s

0.15087 (s+0.07343)
#2: −−−−−−−−−−−−−−−−−−−

s

Controller design with Hinf performance

Consider the following system:

G(z) =
z − 0.2

z3 − 1.2z2 + 0.5z − 0.1

with sampling period Ts = 1s. Compute a third-order discrete-time con-
troller with integral action that satisfies ‖W1S‖∞ < 1 and has a bandwidth
of 0.2 rad/s, where

W1(z) =
0.4902(z2 − 1.0432z + 0.3263)

z2 − 1.282z + 0.282

We proceed as follows:

Ts=1;
z=tf('z',Ts);
s=tf('s');

25

G=(z−0.2)/(zˆ3−1.2*zˆ2+0.5*z−0.1);
W{1}=0.4902*(zˆ2−1.0432*z+0.3263)/(zˆ2−1.282*z+0.282);

Ld=0.2/s;

phi=conphi('Laguerre',[Ts 0 3],'z',z/(z−1));

per=conper('Hinf',W,Ld);

K=condes(G,phi,per)

0.15968 (z+0.0614) (zˆ2 − 0.9455z + 0.2318)
−−−

zˆ2 (z−1)

2.4 Controller design options

The controller design options are defined by the following command:

options = condesopt ('param1',value1,'param2',value2,...)

w : In nonparametric models where the class of models are frd, every model
has its own vector of frequency points and we do not need to assign
frequency vectors in options. If you want to specify a frequency grid for
each parametric model, define w as a cell such that w{i} is the vector of
frequency points in which the frequency response Gi(jω) is obtained.
In other words, after you type:

options = condesopt ('w' , w)

options.w will be a cell with options.w{1}, options.w{2}, Should
you use just one frequency vector for all models, simply define w as a
vector (not a cell). If you do not specify w, a default frequency grid for
each model will be created by the bode command.

F : This is a weighting filter for L-Ld. For almost all optimization problems
an approximation of the two norm of F(L-Ld) is minimized. Its value
is 1/(1+Ld) by default. F should be set to 1 if no filter is desired.

nq : is an integer greater than 2 representing the number of vertices of a
polygon of least area that circumscribes the frequency domain model

26

uncertainty circle in the Nyquist plot. If it is empty, the circle will
not be approximated by a polygon and therefore a convex constraint is
defined and an SDP solver with YALMIP is used instead of ‘linprog’
or ‘quadprog’.

gamma : This option is used only for Hinf performance, when γ is mini-
mized in the optimization problem (1.17). Minimizing the infinity norm
is performed by a bisection algorithm. For multimodel case the maxi-
mum of γ(i) is minimized for all models. ‘gamma’ is a vector containing
[gmin, gmax, tol] where gmin and gmax are the minimum and maxi-
mum value of gamma and tol is a small positive number that indicates
the tolerance of optimal γ.

lambda : This option is used together with gamma only for Hinf perfor-
mance. It indicates the sum of which weighted sensitivity functions
should be minimized.

Gbands : is a string that takes two values : ‘on’ or ‘off’. Its default value
is ‘on’ meaning that the Gershgorin stability conditions are considered
in the design of MIMO controller. If this option is turned to ‘off’,
the optimization problem becomes linear (for systems of more than two
outputs) which had less numerical problem and is much faster than the
convex solvers. However, the closed-loop stability should be verified
after optimization. This option can be changed to ‘off’ by typing:

options = condesopt ('Gbands' , 'off')

np : This option is used only for gain scheduled controller design. np is
a vector that indicates the degree of polynomials describing the gain-
scheduled controller parameters. For example np=[2 1] indicates that
we have two scheduling parameters. The first one is described by a
second-order polynomial and the second one is linear. Its default value
is [] which implies that the controller is not gain-scheduled.

gs : This option is used if a gain-scheduled controller should be designed.
gs is a m by n matrix, where n is the number of scheduling parameters
and m the number of operating points. The i-th row of gs contains the
values of n scheduling parameters that corresponds to the i-th model
Gi. The default value of gs is [].

yalmip : is a string that can be set to ‘on’ to activate the YALMIP in-
terface. It should be activated when Gbands=’on’ for multivariable

27

controller design of more than 2 inputs. It will be automatically acti-
vated if YALMIP has already been installed and nq is empty. As the
default solver SDPT3 is used but can be changed by ’solver’ option,
e.g. options=condesopt(’yalmip’,’on’,’solver’,’sedumi’).

Solver options : Besides, the options mentioned above, one can alter ev-
ery option available for different solvers. In this case, one should be
aware of which solver would be used in which optimization problem.
For example, if one wants to design a PID controller for a SISO system
without specifying a desired open loop (where optimization problem
(1.8) is solved by linprog), one can change every option available for
the solver linprog in this command. For example:

options = condesopt ('w', w1, 'MaxIter', 100, 'Display', ...
'iter')

changes the values of MaxIter and Display, which are some of linprog’s
options, to the specified values as well as assigning w1 to w.

2.4.1 Examples

H∞ controller design for an unstable system

Consider the family of plants described by the following multiplicative un-
certainty model:

G̃(s) =
(s+ 1)(s+ 10)

(s+ 2)(s+ 4)(s− 1)
[1 +W2(s)∆(s)]

where

W2(s) = 0.8
1.1337s2 + 6.8857s+ 9

(s+ 1)(s+ 10)

The nominal performance is defined by ‖W1S‖∞ < 1 with :

W1(s) =
2

(20s+ 1)2

Design a PID controller to optimize the robust performance

‖|W1S|+ |W2T |‖∞ < γ

and ‖KS‖∞ < 20. We choose the following Ld(s) that contains the unstable
pole of the plant model and meets the Nyquist stability criterion.

Ld(s) = 2
s+ 1

s(s− 1)

28

and W3 = 0.05. Then we minimize γ under ‖W3KS‖∞ < 1.

s=tf('s');
G=(s+1)*(s+10)/((s+2)*(s+4)*(s−1));
Ld=2*(s+1)/s/(s−1);

W{1}=2/(20*s+1)ˆ2;
W{2}=0.8*(1.1337*sˆ2+6.8857*s+9)/((s+1)*(s+10));
W{3}=tf(0.05);

phi=conphi('PID',0.01);
hinfper=conper('Hinf',W,Ld);
w=logspace(−1,4,500);
opt=condesopt('gamma',[0.01 2 0.001],'lambda',[1 1 0 0],'w',w);

K=condes(G,phi,hinfper,opt)

Optimization terminated.
gamma=0.78151

Zero/pole/gain:
16.9564 (s+2.037) (s+26.19)
−−−−−−−−−−−−−−−−−−−−−−−−−−−

s (s+100)

The same problem can be solved without approximation of the multi-
plicative uncertainty circle by an octagon by setting the following options:

opt.nq=[];
opt.yalmip='on';
K=condes(G,phi,hinfper,opt)

No problems detected
gamma=0.72224

Zero/pole/gain:
19.0488 (s+2.227) (s+21.47)
−−−−−−−−−−−−−−−−−−−−−−−−−−−

s (s+100)

The obtained results are better and have less conservatism but the com-
putation time is much larger.

Smith Predictor controller design with H∞ performance

Consider the family of plants:

29

Pi(s) =
e−τis

(5s+ 1)(10s+ 1)

where τi belongs to the set {4.5, 5, 5.5}.

Gain-scheduled controller design for a domestic condensing boiler

G1(s) to G6(s) are six first order identified models concerning a domestic
condensing boiler in different water flow rates θ = [8; 7; 6; 5; 4; 3] lit./min.
The objective is to compute a gain-scheduled PI controller with a gain margin
of 2, phase margin of 60◦.

s=tf('s');
G{1}= exp(−6.2*s) * 0.00932/(31.84*s + 1);
G{2}= exp(−6.02*s) * 0.01032/(34.08*s + 1);
G{3}= exp(−6.69*s) * 0.01169/(34.76*s + 1);
G{4}= exp(−9.76*s) * 0.01391/(37.62*s + 1);
G{5}= exp(−12*s) * 0.01700/(57.42*s + 1);
G{6}= exp(−15.2*s) * 0.0216/(62.17*s + 1);

phi=conphi('PI');
per=conper('GPhC',[2,60]);

theta=[8;7;6;5;4;3];

opt=condesopt('np',2,'gs',theta);

K=condes(G,phi,per,opt)

K{1}+theta K{2}+thetaˆ2 K{3}

Optimization terminated.
K{1}=

Zero/pole/gain:
149.8348 (s−0.01179)
−−−−−−−−−−−−−−−−−−−−

s

K{2}=

Zero/pole/gain:
−24.775 (s−0.02971)
−−−−−−−−−−−−−−−−−−−

s

30

K{3}=

Zero/pole/gain:
5.3054 (s+0.01414)
−−−−−−−−−−−−−−−−−−

s

Simultaneous stabilization (example from Robust Control Toolbox
of Matlab)

A set of seven unstable models are given:

p{1} = tf(2,[1 −2]);
p{2} = p{1}*tf(1,[.06 1]); % extra lag
p{3} = p{1}*tf([−.02 1],[.02 1]); % time delay
p{4} = p{1}*tf(50ˆ2,[1 2*.1*50 50ˆ2]); % HF resonance
p{5} = p{1}*tf(70ˆ2,[1 2*.2*70 70ˆ2]); % HF resonance
p{6} = tf(2.4,[1 −2.2]); % pole/gain migration
p{7} = tf(1.6,[1 −1.8]);

A bandwidth of 4.5 rad/s is desired leading to the following weighting filter :

desBW = 4.5; W{1}= makeweight(500,desBW,0.33);

A noise filter is also defined as :

NF = (10*desBW)/20; % numerator corner frequency
DF = (10*desBW)*50; % denominator corner frequency
Wnoise = tf([1/NFˆ2 2*0.707/NF 1],[1/DFˆ2 2*0.707/DF 1]);
W{2} = Wnoise/abs(freqresp(Wnoise,10*desBW));

An (n+1)-th order controller with integral action is designed using a gener-
alized basis function:

phi=conphi('Generalized',logspace(−2,2,n),'s',1/s);

The poles of the controller are logarithmically spaced between 0.01 and 100.
In the first step one initial controller is designed for P1(s):

s=zpk('s');

Ld0=10*(s+2)/s/(s−2);

n=5;

31

phi=conphi('Generalized',logspace(−2,2,n),'s',1/s);

per0=conper('Hinf',W,Ld0);

w=logspace(−2,3,1000);
opt=condesopt('w',w);

K0=condes(p{1},phi,per0,opt);

and then is used to compute Ld(s) for all models:

for j=1:7,
Ld1{j}=K0*p{j};
per{j}=conper('Hinf',W,Ld1{j});

end

Then an H∞ controller can be designed using the following commands:

opt.gamma=[0.1,5,0.01];
K=condes(p,phi,per,opt);

K =
385.9471(s+ 12.46)(s+ 1.679)(s+ 0.8785)(s+ 0.14)(s+ 0.009792)

s(s+ 0.01)(s+ 0.1)(s+ 1)(s+ 10)(s+ 100)

It is interesting to see that the same code can be used for computing a
second order controller (n = 1) that gives also satisfactory results (robust
control toolbox of Matlab ends up with a sixth order controller). For n = 1
we obtain:

K =
325.3633(s+ 2.154)

s(s+ 100)

The disturbance response of the closed-loop system is given for the second-
order controller and 6-th order controller for the sake of comparison with the
results of robust control toolbox of Matlab.

32

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Disturbance response of the 2nd order controller

0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Disturbance response of the 6-th order controller

33

Bibliography

[1] C. J. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback Control
Theory. Mc Millan, New York, 1992.

[2] G. Galdos, A. Karimi, and R. Longchamp. H∞ controller design for spec-
tral MIMO models by convex optimization. Journal of Process Control,
20(10):1175 – 1182, 2010.

[3] A. Karimi and G. Galdos. Fixed-order H∞ controller design for nonpara-
metric models by convex optimization. Automatica, 46(8):1388–1394,
2010.

[4] A. Karimi, M. Kunze, and R. Longchamp. Robust controller design by
linear programming with application to a double-axis positioning system.
Control Engineering Practice, 15(2):197–208, February 2007.

[5] M. Kunze, A. Karimi, and R. Longchamp. Gain-scheduled controller
design by linear programming. In European Control Conference, pages
5432–5438, July 2007.

[6] M. Sadeghpour, V. de Oliveira, and A. Karimi. A toolbox for robust
PID controller tuning using convex optimization. In IFAC Conference in
Advances in PID Control, Brescia, Italy, 2012.

34

