Optimal Control Lectures 25-27: Maximum Principles

Benoît Chachuat <benoit@mcmaster.ca>

Department of Chemical Engineering

Spring 2009

Variational Approach: Summary

$$egin{aligned} \min_{(\mathbf{u},t_{\mathsf{f}})\in\mathcal{C}[t_0,\mathcal{T}]^{n_u} imes\mathbb{R}} & \int_{t_0}^{t_{\mathsf{f}}}\ell(t,\mathbf{x}(t),\mathbf{u}(t))\;\mathsf{d}t + \phi(t_{\mathsf{f}},\mathbf{x}(t_{\mathsf{f}})) \ & ext{s.t.} & \dot{\mathbf{x}}(t) = \mathbf{f}(t,\mathbf{x}(t),\mathbf{u}(t)); \quad \mathbf{x}(t_0) = \mathbf{x}_0 \ & \psi_k(t_{\mathsf{f}},\mathbf{x}(t_{\mathsf{f}})) = 0, \quad k = 1,\dots,n_\psi \end{aligned}$$

Necessary Conditions for $(\mathbf{u}^*, t_f^*, \mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ to be Optimal

• Euler-Lagrange Equations $(\mathcal{H} \stackrel{\Delta}{=} \ell + \lambda^{\mathsf{T}} \mathbf{f})$:

$$\dot{\mathbf{x}} = \mathcal{H}_{oldsymbol{\lambda}}, \qquad \dot{oldsymbol{\lambda}} = - \, \mathcal{H}_{\mathbf{x}}, \qquad \mathbf{0} = \mathcal{H}_{\mathbf{u}}, \qquad t_0 \leq t \leq t_{\mathsf{f}}$$

• Legendre-Clebsch Condition:

 $\mathcal{H}_{\mathbf{u}\mathbf{u}}$ semi-definite positive, $t_0 \leq t \leq t_f$

Transversal Conditions:

$$\begin{bmatrix} \mathbf{x} - \mathbf{x}_0 \end{bmatrix}_{t_0} = \mathbf{0}, \qquad \begin{bmatrix} \boldsymbol{\lambda} - \phi_{\mathbf{x}} + \boldsymbol{\nu}^\mathsf{T} \boldsymbol{\psi}_{\mathbf{x}} \end{bmatrix}_{t_f} = \mathbf{0}$$

 $\begin{bmatrix} \mathcal{H} + \phi_t + \boldsymbol{\nu}^\mathsf{T} \boldsymbol{\psi}_t \end{bmatrix}_{t_f} = \mathbf{0}, \text{ if } t_f \text{ is free}$

 $[\psi]_{t_{\epsilon}}=0,$ and ψ satisfy a regularity condition

Benoît Chachuat (McMaster University)

Pontryagin Maximum Principle

Motivations:

- Encompass optimal control problems with path constraints in the control and/or state variables
- 2 Tighten the necessary conditions for optimality obtained with the variational approach

Base Problem Formulation:

minimize: $\int_{t_0}^{t_0} \ell(\mathbf{x}(t), \mathbf{u}(t)) dt$

subject to: $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$; $\mathbf{x}(t_0) = \mathbf{x}_0$, $\mathbf{x}(t_f) = \mathbf{x}_f$ $\mathbf{u} \in \mathcal{U}[t_0, T] \stackrel{\Delta}{=} \{\mathbf{u} \in \hat{\mathcal{C}}[t_0, T]^{n_u} : \mathbf{u}(t) \in \mathcal{U}, t_0 < t < t_{\mathfrak{f}}\}$

- Prescribed final state x_f and free final time t_f
- Control region U same at all times
- Autonomous problem: no explicit dependence of ℓ and f in t

Pontryagin Maximum Principle: Statement

Theorem. Suppose that $(\mathbf{u}^*, t_{\mathsf{f}}^*) \in \hat{\mathcal{C}}[t_0, T]^{n_u} \times [t_0, T)$ is optimal, with corresponding response $\mathbf{x}^* \in \hat{\mathcal{C}}^1[t_0, T]^{n_x}$. Then, there exist $(\lambda_0^*, \boldsymbol{\lambda}^*) \in \hat{\mathcal{C}}^1[t_0, T]^{n_x+1}$ such that:

- ② $\dot{\lambda}_0(t) = 0$, $\dot{\lambda}(t) = -\mathcal{H}_{\mathbf{x}}(\mathbf{x}^*(t), \mathbf{u}^*(t), \lambda_0^*(t), \lambda^*(t))$, a.e. in $[t_0, t_f^*]$, with: $\mathcal{H}(\mathbf{x}, \mathbf{u}, \lambda_0, \boldsymbol{\lambda}) \stackrel{\Delta}{=} \lambda_0 \ell(\mathbf{x}, \mathbf{u}) + \boldsymbol{\lambda}^\mathsf{T} \mathbf{f}(\mathbf{x}, \mathbf{u})$
- $\exists \mathcal{H}(\mathbf{x}^*(t), \mathbf{u}^*(t), \lambda_0^*(t), \lambda^*(t)) \leq \mathcal{H}(\mathbf{x}^*(t), \mathbf{v}, \lambda_0^*(t), \lambda^*(t)), \ \forall \mathbf{v} \in U,$ a.e. in $[t_0, t_s^*]$
- $\lambda_0^*(t) = \text{constant} \geq 0, \quad \mathcal{H}(\mathbf{x}^*(t), \mathbf{u}^*(t), \lambda_0^*(t), \lambda^*(t)) = \text{constant}$ $(= 0 \text{ if } t_f \text{ is free})$

Benoît Chachuat (McMaster University)

3 / 29

Benoît Chachuat (McMaster University)

Optimal Control

Pontryagin Maximum Principle: Remarks

Conditions 1-4. Complete set of conditions to determine $(\mathbf{u}^*, \mathbf{x}^*, \lambda_0^*, \boldsymbol{\lambda}^*)$, along with t_f^* (if free)

Condition 4. Either one of 2 situations:

- Normal case: $\lambda_0(t) > 0$
 - $\lambda_0, \lambda_1, \dots, \lambda_{n_x}$ defined up to a constant only
 - ▶ Need to fix λ_0 , e.g., $\lambda_0(t) = 1, \forall t$
- Abnormal case: $\lambda_0(t) = 0$
 - $\lambda_0, \lambda_1, \dots, \lambda_{n_x}$ uniquely defined, but NCO become independent of $\ell!$
 - ▶ Abnormal problems are those for which the terminal conditions $\mathbf{x}(t_{\rm f}) = \mathbf{x}_{\rm f}$ fail to satisfy a regularity condition
- Case of a maximize problem:
 - Replace by $\lambda_0(t) \leq 0$
 - Do not change inequality sign in condition 3!

Optimal Control

Conditions 3. Extremely powerful result!

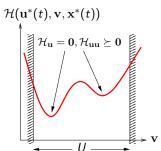
• Can be rewritten in the form:

$$\mathbf{u}^*(t) \in \arg\min_{\mathbf{v}} \left\{ \mathcal{H}(\mathbf{x}^*(t), \mathbf{v}, \lambda_0^*(t), \boldsymbol{\lambda}^*(t)) : \mathbf{v} \in \mathit{U} \right\}$$

► Yields a minimum condition – Originally, formulated as a maximum condition (Pontryagin)

Pontryagin Maximum Principle: Remarks (cont'd)

► Handles Control bounds in a very natural way: Solve an NLP problem at each time along $[t_0, t_t^*]!$



- On interior arcs, $\mathbf{u}^*(t) \in \text{int}(U)$,
 - $\qquad \qquad \mathcal{H}_{\mathbf{u}}(\mathbf{x}^*(t),\mathbf{u}^*(t),\lambda_0^*(t),\boldsymbol{\lambda}^*(t)) = \mathbf{0}$
 - $\vdash \mathcal{H}_{uu}(\mathbf{x}^*(t), \mathbf{u}^*(t), \lambda_0^*(t), \lambda^*(t)) \succ \mathbf{0}$

PMP implies the Euler-Lagrange and Legendre-Clebsch conditions!

Case Study: Linear Time-Optimal Control

minimize:
$$\mathcal{J}(\mathbf{u}, t_{\mathrm{f}}) \stackrel{\Delta}{=} \int_{t_0}^{t_{\mathrm{f}}} \mathrm{d}t = t_{\mathrm{f}} - t_0$$

subject to: $\dot{\mathbf{x}}(t) = \mathbf{F}(t) \mathbf{x}(t) + \mathbf{G}(t) \mathbf{u}(t); \quad \mathbf{x}(t_0) = \mathbf{x}_0, \quad \mathbf{x}(t_{\mathrm{f}}) = \mathbf{0}$
 $\mathbf{u}^L \leq \mathbf{u}(t) \leq \mathbf{u}^U, \quad t_0 \leq t \leq t_{\mathrm{f}}$

- If $(\mathbf{u}^*, t_{\rm f}^*, \mathbf{x}^*, \boldsymbol{\lambda}^*, \lambda_{\rm O}^* \equiv 1)$ is an optimal solution, then $\mathbf{u}^*(t) \in \mathop{\mathsf{arg\,min}}\limits_{\mathbf{v}} \left\{ 1 + oldsymbol{\lambda}^*(t)^\mathsf{T} \left(\mathbf{F}(t) \, \mathbf{x}^*(t) + \mathbf{G}(t) \, \mathbf{v}
 ight) : \mathbf{u}^\mathsf{L} \leq \mathbf{v} \leq \mathbf{u}^U
 ight\}$
- If $\lambda^*(t)^T \mathbf{G}(t)$ vanishes only at isolated times,

$$u_i^*(t) = \begin{cases} u_i^U & \text{if } \boldsymbol{\lambda}^*(t)^\mathsf{T} \mathbf{G}_i(t) < 0 \\ u_i^L & \text{if } \boldsymbol{\lambda}^*(t)^\mathsf{T} \mathbf{G}_i(t) > 0 \end{cases}$$

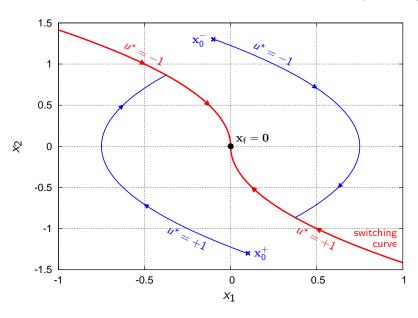
- The optimal control is said to be of bang-bang type:
 - $u_i^*(t)$ switches instantaneously as $\lambda^*(t)^T \mathbf{G}_i(t)$ changes sign
 - $\lambda^*(t)^{\mathsf{T}}\mathbf{G}_i(t)$ is called the switching function

Solving Linear Time-Optimal Control Problems

Class Exercise: Characterize the optimal solutions to the problem:

$$\begin{aligned} \min_{u,t_f} \quad & \mathcal{J}(u,t_f) \stackrel{\Delta}{=} \int_0^{t_f} \mathrm{d}t = t_f \\ \text{s.t.} \quad & \dot{x}_1(t) = x_2(t), \quad \dot{x}_2(t) = u(t) \\ & \mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}(t_f) = \mathbf{0} \\ & -1 \le u(t) \le 1, \quad \forall t. \end{aligned}$$

Solving Linear Time-Optimal Control Problems (cont'd)



Renoît Chachuat (McMaster University)

Maximum Principles

Optimal Control

9 / 29

Pontryagin Maximum Principle: Extensions

Non-Autonomous Control Problems:

minimize: $\int_{t_0}^{t_f} \ell(t, \mathbf{x}(t), \mathbf{u}(t)) dt$ subject to: $\dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)); \quad \mathbf{x}(t_0) = \mathbf{x}_0, \quad \mathbf{x}(t_f) = \mathbf{x}_f$ $\mathbf{u} \in \mathcal{U}[t_0, T] \stackrel{\Delta}{=} \{ \mathbf{u} \in \hat{\mathcal{C}}[t_0, T]^{n_u} : \mathbf{u}(t) \in \mathcal{U}, t_0 < t < t_f \}$

Trick:

① Define the extra state variable x_{n_x+1} as follows:

$$\dot{x}_{n_x+1}(t) = 1;$$
 $x_{n_x+1}(t_0) = t_0$

Replace:

$$\ell(t,\mathbf{x}(t),\mathbf{u}(t))
ightarrow \ell(\mathsf{x}_{\mathsf{n}_{\mathsf{x}}+1}(t),\mathbf{x}(t),\mathbf{u}(t)), \ \mathbf{f}(t,\mathbf{x}(t),\mathbf{u}(t))
ightarrow \mathbf{f}(\mathsf{x}_{\mathsf{n}_{\mathsf{x}}+1}(t),\mathbf{x}(t),\mathbf{u}(t))$$

Apply the PMP for autonomous systems!

Benoît Chachuat (McMaster University)

Maximum Principles

Optimal Control

10 / 20

Pontryagin Maximum Principle: Extensions (cont'd)

General Terminal Constraints: $\mathbf{x}(t_f) \in X_f \subset \mathbb{R}^{n_x}$

- Suppose that X_f has dimension n_f locally at $\mathbf{x}^*(t_f^*)$
 - ▶ n_f transversal conditions are given by: $\mathbf{x}(t_f) \in X_f$
 - the complementary $n_x n_f$ conditions read:

$$oldsymbol{\lambda}^*(t_{\mathsf{f}}^*)^\mathsf{T}\mathbf{d} = 0, \quad orall \mathbf{d} \in \mathscr{T}_{\mathsf{X}_{\mathsf{f}}}(\mathbf{x}^*(t_{\mathsf{f}}^*))$$

Application: $X_f \stackrel{\Delta}{=} \{ \mathbf{x} \in \mathbb{R}^{n_x} : \Psi_1(\mathbf{x}) = \dots = \Psi_{n_{\Psi}}(\mathbf{x}) = 0 \}$

ullet If the n_Ψ terminal constraints are regular, rank $(\Psi_{\mathbf{x}}(\mathbf{x}^*(t_{\mathrm{f}}^*))) = n_\Psi$,

$$\mathscr{T}_{\mathsf{X}_\mathsf{f}}(\mathbf{x}^*(t_\mathsf{f}^*)) = \{\mathbf{d} \in \mathbb{R}^{n_\mathsf{X}} : \mathbf{\Psi}_{\mathbf{x}}(\mathbf{x}^*(t_\mathsf{f}^*)) \, \mathbf{d} = \mathbf{0}\}$$

• There exist (unique) Lagrange multipliers $\nu^* \in \mathbb{R}^{n_{\Psi}}$ such that:

$$oldsymbol{\lambda}^*(t_\mathsf{f}^*) = oldsymbol{
u}^{*\mathsf{T}} oldsymbol{\Psi}_\mathbf{x}(\mathbf{x}^*(t_\mathsf{f}^*))$$

Case Study: Affine-Control Problems

Class Exercise: Discuss the possible values that can be taken by an optimal solution $\mathbf{u}^*(t)$ to to the affine-control problem:

$$\min_{u,t_f} \quad \mathcal{J}(u,t_f) \stackrel{\Delta}{=} \int_{t_0}^{t_f} \ell^0(t,\mathbf{x}(t)) + u(t) \ell^1(t,\mathbf{x}(t)) dt$$
s.t.
$$\dot{\mathbf{x}}(t) = \mathbf{f}^0(t,\mathbf{x}(t)) + u(t)\mathbf{f}^1(t,\mathbf{x}(t)); \quad \mathbf{x}(0) = \mathbf{x}_0; \quad \mathbf{x}(t_f) = \mathbf{x}_f$$

$$u^L \leq u(t) \leq u^U, \quad \forall t.$$

Singular Optimal Control: Definition

minimize:
$$\int_{t_0}^{t_{\rm f}} \ell(t,\mathbf{x}(t),\mathbf{u}(t)) \; \mathrm{d}t$$
 subject to:
$$\dot{\mathbf{x}}(t) = \mathbf{f}(t,\mathbf{x}(t),\mathbf{u}(t)); \quad \mathbf{x}(t_0) = \mathbf{x}_0, \quad \mathbf{x}(t_{\rm f}) = \mathbf{x}_{\rm f}$$

$$\mathbf{u} \in \mathcal{U}[t_0,T] \stackrel{\Delta}{=} \{\mathbf{u} \in \hat{\mathcal{C}}[t_0,T]^{n_u} : \mathbf{u}(t) \in \mathcal{U}, t_0 \leq t \leq t_{\rm f}\}$$

$$\bigvee \begin{array}{c} \mathsf{Optimal\ Solution:} \\ \mathbf{u}^*, t_\mathsf{f}^* \mathbf{x}^*, \boldsymbol{\lambda}^*, \lambda_0^* \end{array}$$

Singular control problems are obtained when the Hessian matrix $\mathcal{H}_{\mathbf{u}\mathbf{u}}(t,\mathbf{x}^*(t),\cdot,\boldsymbol{\lambda}^*(t),\lambda_0^*(t))$ is singular on the control region U

• In singular scalar problems, the stationarity condition:

$$\mathcal{H}_{u}(t,\mathbf{x}^{*}(t),u,\boldsymbol{\lambda}^{*}(t))=0,$$

is trivially satisfied for any value of $u \in [u^L, u^U]$, over some finite time interval $(\theta_1, \theta_2) \in [t_0, t_f]$

Benoît Chachuat (McMaster University)

Maximum Principles

Optimal Contro

13 / 29

Singular Optimal Control: Optimality Conditions

Consider a Singular Arc (θ_1, θ_2) ,

$$\mathcal{H}_{u}(t, \mathbf{x}^{*}(t), u, \boldsymbol{\lambda}^{*}(t), \lambda_{0}^{*}(t)) = 0, \quad \forall u \in U, \quad \forall t \in (\theta_{1}, \theta_{2})$$

• Successive Time Differentiation:

$$\frac{\mathsf{d}^q}{\mathsf{d}t^q}\mathcal{H}_u(t,\mathbf{x}^*(t),u,\boldsymbol{\lambda}^*(t),\lambda_0^*(t))=0,\quad\forall t\in(\theta_1,\theta_2),\quad\forall q\geq0$$

• The smallest positive integer σ (if any) such that:

$$rac{\partial}{\partial u}\left[rac{\mathsf{d}^{\sigma}}{\mathsf{d}t^{\sigma}}\mathcal{H}_{u}(t,\mathbf{x}^{*}(t),u,\boldsymbol{\lambda}^{*}(t),\lambda_{0}^{*}(t))
ight]
eq0,$$

is called the order of singularity

- If σ exists, it is even
- Generalized Legendre-Clebsch Condition:

$$(-1)^{rac{\sigma}{2}}rac{\partial}{\partial u}\left[rac{\mathsf{d}^{\sigma}}{\mathsf{d}t^{\sigma}}\mathcal{H}_{u}(t,\mathbf{x}^{*}(t),u,oldsymbol{\lambda}^{*}(t),\lambda_{0}^{*}(t))
ight]\geq0$$

Benoît Chachuat (McMaster University)

Maximum Principles

Ontimal Control

14 / 20

Solving Singular Control Problems

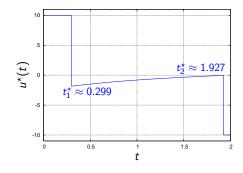
Class Exercise: Characterize the optimal solutions to the problem:

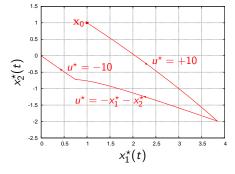
$$\begin{split} \text{minimize:} \quad & \mathcal{J}(u) \stackrel{\Delta}{=} \int_0^2 \frac{1}{2} [x(t)]^2 \ \mathrm{d}t \\ \text{subject to:} \quad & \dot{x}_1(t) = x_2(t) + u(t); \quad x_1(0) = 1; \quad x_1(2) = 0 \\ & \dot{x}_2(t) = -u(t); \quad x_2(0) = 1; \quad x_2(2) = 0 \\ & -10 \leq u(t) \leq 10, \quad \forall t \in [0,2]. \end{split}$$

Solving Singular Control Problems (cont'd)

Optimal Solution Structure:

- Set of active terminal constraints
- Sequence of interior/boundary arcs in the optimal control

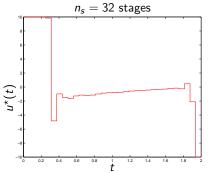


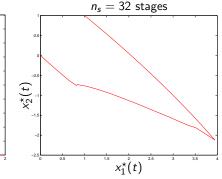


Solving Singular Control Problems (cont'd)

Characterizing the optimal solution structure is a very difficult task:

- Even simple problems can have an infinite number of arcs!
- Use direct numerical methods to guess the structure





Optimal Control with State Path Constraints

- State inequality constraints arise frequently in practical applications
 - Notoriously hard to solve
 - Various forms of the NCOs Sometimes ambiguous theory!
- Types of inequality path constraints:

Mixed State-Control Constraints:

$$g(t, \mathbf{x}(t), \mathbf{u}(t)) \leq 0, \quad \forall t$$

• Explicit dependence in u:

$$g_{\mathbf{u}}(t,\mathbf{x},\mathbf{u}) \neq \mathbf{0}$$

Pure State Constraints:

$$h(t, \mathbf{x}(t)) \leq 0, \quad \forall t$$

• Implicit dependence in u via the differential system:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t));$$

 $\mathbf{x}(t_0) = \mathbf{x}_0$

Mixed Control-State Constrained Problems

Base Problem Formulation:

minimize:
$$\begin{split} & \int_{t_0}^{t_{\rm f}} \ell(\mathbf{x}(t),\mathbf{u}(t)) \; \mathrm{d}t \\ \text{subject to:} & & \dot{\mathbf{x}}(t) = \mathbf{f}(t,\mathbf{x}(t),\mathbf{u}(t)); \quad \mathbf{x}(t_0) = \mathbf{x}_0, \quad \mathbf{x}(t_{\rm f}) = \mathbf{x}_{\rm f} \\ & & g_k(t,\mathbf{x}(t),\mathbf{u}(t)) \leq 0, \quad k = 1,\dots,n_g \end{split}$$

• Encompasses the PMP formulation:

$$\mathbf{u} \in \mathcal{U}[t_0, T] \stackrel{\Delta}{=} {\mathbf{u} \in \hat{\mathcal{C}}[t_0, T]^{n_u} : \mathbf{u}(t) \in U, t_0 \le t \le t_f}$$

• Idea: Form a Lagrangian function,

$$\mathcal{L}(t, \mathbf{x}, \mathbf{u}, \lambda_0, \boldsymbol{\lambda}, \boldsymbol{\mu}) \stackrel{\Delta}{=} \mathcal{H}(t, \mathbf{x}, \mathbf{u}, \lambda_0, \boldsymbol{\lambda}) + \boldsymbol{\mu}^\mathsf{T} \mathbf{g}(t, \mathbf{x}, \mathbf{u})$$

with:

- $\mathcal{H}(t, \mathbf{x}, \mathbf{u}, \lambda_0, \boldsymbol{\lambda}) \stackrel{\Delta}{=} \lambda_0 \ell(t, \mathbf{x}, \mathbf{u}) + \boldsymbol{\lambda}^\mathsf{T} \mathbf{f}(t, \mathbf{x}, \mathbf{u})$
- $\mu \in \hat{C}[t_0, t_f]^{n_g}$ Lagrange multiplier vector function

Mixed Control-State Constrained Problems (cont'd)

- Let $(\mathbf{u}^*, t_{\mathsf{f}}^*) \in \hat{\mathcal{C}}[t_0, T]^{n_u} \times [t_0, T)$ be an optimal solution
- Let $\mathbf{x}^* \in \hat{\mathcal{C}}^1[t_0, T]^{n_x}$ be the optimal response
- Suppose the constraint qualification: rank $[\mathbf{g}_{\mathbf{u}} \ \text{diag}(\mathbf{g})] = n_{\mathbf{g}}$, holds along $(t, \mathbf{x}^*, \mathbf{u}^*)$, $t_0 < t < t_{\epsilon}^*$

Necessary Conditions for Optimality:

There exist $(\lambda_0^*, \lambda^*) \in \hat{\mathcal{C}}^1[t_0, T]^{n_x+1}$ and $\mu^* \in \hat{\mathcal{C}}[t_0, T]^{n_g}$ such that:

- $(\lambda_0^*(t), \lambda^*(t), \mu^*(t)) \neq 0, \quad \lambda_0^*(t) = \text{constant} > 0$
- $\mathbf{2} \ \mathbf{u}^*(t) \in \arg\min_{\mathbf{v} \in \mathbf{P}^{n_y}} \{\mathcal{H}(t,\mathbf{x}^*(t),\mathbf{v},\lambda_0^*(t),\boldsymbol{\lambda}^*(t)) : \mathbf{g}(t,\mathbf{x}^*(t),\mathbf{v}) \leq \mathbf{0}\}$

$$\begin{cases} \dot{\mathbf{x}}^*(t) &= \mathcal{L}_{\boldsymbol{\lambda}}(t,\mathbf{x}^*(t),\mathbf{u}^*(t),\lambda_0^*(t),\boldsymbol{\lambda}^*(t),\boldsymbol{\mu}^*(t)) \\ \dot{\boldsymbol{\lambda}}^*(t) &= -\mathcal{L}_{\mathbf{x}}(t,\mathbf{x}^*(t),\mathbf{u}^*(t),\lambda_0^*(t),\boldsymbol{\lambda}^*(t),\boldsymbol{\mu}^*(t)) \\ 0 &= \mathcal{L}_{\mathbf{u}}(t,\mathbf{x}^*(t),\mathbf{u}^*(t),\lambda_0^*(t),\boldsymbol{\lambda}^*(t),\boldsymbol{\mu}^*(t)) \end{cases}$$

- $\mathbf{Q} \ \mu^*(t)^{\mathsf{T}} \mathbf{g}(t, \mathbf{x}^*(t), \mathbf{u}^*(t)) = 0; \quad \mu^*(t) > 0$
- **3** $\mathcal{H}(t_f^*, \mathbf{x}^*(t_f^*), \mathbf{u}^*(t_f^*), \lambda_0^*(t_f^*), \lambda^*(t_f^*)) = 0$, if t_f is free

Solving Mixed Control-State Constrained Problems

Class Exercise: Consider the optimal control problem:

minimize:
$$\mathcal{J}(u) \stackrel{\Delta}{=} \int_0^1 u(t) dt$$

subject to: $\dot{x}(t) = -u(t); \quad x(0) = -1$
 $u(t) \leq 0, \quad x(t) - u(t) \leq 0, \quad 0 \leq t \leq 1$

• Is u(t) = x(t), $0 \le t \le 1$, a candidate optimal control?

Report Chachuat (McMaster University)

Maximum Principles

Ontimal Contro

21 / 29

Pure State Constrained Problems

minimize:
$$\int_{t_0}^{t_f} \ell(\mathbf{x}(t), \mathbf{u}(t)) \, dt$$
 subject to:
$$\dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)); \quad \mathbf{x}(t_0) = \mathbf{x}_0, \quad \mathbf{x}(t_f) = \mathbf{x}_f$$

$$h_k(t, \mathbf{x}(t)) \leq 0, \quad k = 1, \dots, n_h$$

- No explicit dependence of h_k in the control ${\bf u}$
- Idea: Apply similar concepts as with singular control problems

Differentiate each h_k w.r.t. t as many times as needed:

$$h_k^0(t,\mathbf{x}) \stackrel{\triangle}{=} h_j(t,\mathbf{x})$$

$$\vdots$$

$$h_k^{i+1}(t,\mathbf{x}) \stackrel{\triangle}{=} \frac{d}{dt} h_k^i(t,\mathbf{x}) = (h_k^i)_{\mathbf{x}}(t,\mathbf{x}) \mathbf{f}(t,\mathbf{x},\mathbf{u}) + (h_k^i)_t(t,\mathbf{x})$$

$$\vdots$$

Benoît Chachuat (McMaster University

Maximum Principles

Ontimal Control 22

Pure State Constrained Problems

minimize:
$$\int_{t_0}^{t_{\rm f}} \ell(\mathbf{x}(t),\mathbf{u}(t)) \; \mathrm{d}t$$
 subject to:
$$\dot{\mathbf{x}}(t) = \mathbf{f}(t,\mathbf{x}(t),\mathbf{u}(t)); \quad \mathbf{x}(t_0) = \mathbf{x}_0, \quad \mathbf{x}(t_{\rm f}) = \mathbf{x}_{\rm f}$$

$$h_k(t,\mathbf{x}(t)) \leq 0, \quad k = 1,\ldots,n_h$$

- No explicit dependence of h_k in the control ${\bf u}$
- Idea: Apply similar concepts as with singular control problems

until the controls \mathbf{u} appear explicitly:

$$(h_k^i)_{\mathbf{u}} = \mathbf{0}, \quad 0 \le i \le \sigma_k - 1; \qquad (h_k^{\sigma_k})_{\mathbf{u}} \ne \mathbf{0},$$

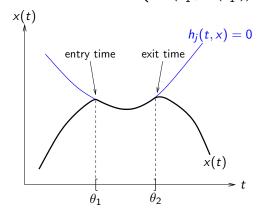
 σ_k is said to be the **degree** (or **order**) of the state constraint h_k

Class Exercise: What is the degree σ of the state constraint $x_2(t) \le x_2^{\max}$, subject to the differential system $\dot{x}_1(t) = u(t)$, $\dot{x}_2(t) = x_1(t)$?

1st-Order State Constraints: Indirect Adjoining Approach

• Let $[\theta_1, \theta_2]$ be a boundary arc for h_k in $(\mathbf{u}^*, \mathbf{x}^*)$,

$$h_k(t,\mathbf{x}^*(t)) = 0 \quad \Rightarrow \quad \left\{ egin{array}{l} h_k^1(t,\mathbf{x}^*(t),\mathbf{u}^*(t)) \leq 0 \ h_k(heta_1^-,\mathbf{x}^*(heta_1^-)) < 0 \ h_k(heta_1^+,\mathbf{x}^*(heta_1^+)) = 0 \end{array}
ight.$$



1st-Order State Constraints: Indirect Adjoining Approach

• Let $[\theta_1, \theta_2]$ be a boundary arc for h_k in $(\mathbf{u}^*, \mathbf{x}^*)$,

$$h_k(t,\mathbf{x}^*(t)) = 0 \quad \Rightarrow \quad \left\{ egin{array}{l} h_k^1(t,\mathbf{x}^*(t),\mathbf{u}^*(t)) \leq 0 \\ h_k(heta_1^-,\mathbf{x}^*(heta_1^-)) < 0 \\ h_k(heta_1^+,\mathbf{x}^*(heta_1^+)) = 0 \end{array}
ight.$$

• Activation represented by means of a multiplier function $\eta_k(t)$,

$$\eta_k(t)h_k(t, \mathbf{x}^*(t)) = 0; \quad \eta_k(t) \ge 0; \quad \eta_k(t)h_k^1(t, \mathbf{x}^*(t), \mathbf{u}^*(t)) \le 0$$

• Interior-point constraint induce jumps in λ^* and \mathcal{H} at θ_1 ,

$$\lambda^*(\theta_1^-) = \lambda^*(\theta_1^+) + \pi_k(h_k)_{\mathbf{x}}(\theta_1, \mathbf{x}^*(\theta_1))$$
$$\mathcal{H}[\theta_1^-] = \mathcal{H}[\theta_1^+] - \pi_k(h_k)_t(\theta_1, \mathbf{x}^*(\theta_1))$$

with Lagrange multiplier π_k satisfying

$$\pi_k h_k(\theta_1, \mathbf{x}^*(\theta_1)) = 0; \quad \pi_k \ge \eta_k(\theta_1^+)$$

Apply the NCOs for mixed control-state constrained problems, with:

$$\mathcal{L}(t,\mathbf{x},\mathbf{u},\lambda_0,\boldsymbol{\lambda},\boldsymbol{\eta}) \stackrel{\Delta}{=} \mathcal{H}(t,\mathbf{x},\mathbf{u},\lambda_0,\boldsymbol{\lambda}) + \boldsymbol{\eta}^\mathsf{T}\mathbf{h}^1(t,\mathbf{x},\mathbf{u})$$

Benoît Chachuat (McMaster University)

Maximum Principles

Optimal Control

23 / 29

First-Order Pure State Constrained Problems (cont'd)

- Let $(\mathbf{u}^*, t_{\mathsf{f}}^*) \in \hat{\mathcal{C}}[t_0, T]^{n_u} \times [t_0, T)$ be an optimal solution
- Let $\mathbf{x}^* \in \hat{\mathcal{C}}^1[t_0, T]^{n_x}$ be the optimal response
- Suppose the constraint qualification: rank $[\mathbf{h}_{\mathbf{u}}^1 \ \text{diag}(\mathbf{h})] = n_h$, holds along $(t, \mathbf{x}^*, \mathbf{u}^*)$, $t_0 \leq t \leq t_f^*$

Necessary Conditions for Optimality:

There exist $(\lambda_0^*, \boldsymbol{\lambda}^*) \in \hat{\mathcal{C}}^1[t_0, T]^{n_x+1}$, $\boldsymbol{\eta}^* \in \hat{\mathcal{C}}^1[t_0, T]^{n_h}$, $\boldsymbol{\pi}^* \in \mathbb{R}^{n_h}$ s.t.

- $\mathbf{2} \ \mathbf{u}^*(t) \in \arg\min_{\mathbf{v} \in \mathbb{R}^{n_u}} \{\mathcal{H}(t,\mathbf{x}^*(t),\mathbf{v},\lambda_0^*(t),\boldsymbol{\lambda}^*(t)) : \boldsymbol{\eta}^*(t)^\mathsf{T} \mathbf{h}^1(t,\mathbf{x}^*(t),\mathbf{v}) \leq \mathbf{0}\}$

$$\begin{cases} \dot{\mathbf{x}}^*(t) &= \mathcal{L}_{\boldsymbol{\lambda}}(t,\mathbf{x}^*(t),\mathbf{u}^*(t),\lambda_0^*(t),\boldsymbol{\lambda}^*(t),\boldsymbol{\eta}^*(t)) \\ \dot{\boldsymbol{\lambda}}^*(t) &= -\mathcal{L}_{\mathbf{x}}(t,\mathbf{x}^*(t),\mathbf{u}^*(t),\lambda_0^*(t),\boldsymbol{\lambda}^*(t),\boldsymbol{\eta}^*(t)) \\ \mathbf{0} &= \mathcal{L}_{\mathbf{u}}(t,\mathbf{x}^*(t),\mathbf{u}^*(t),\lambda_0^*(t),\boldsymbol{\lambda}^*(t),\boldsymbol{\eta}^*(t)) \end{cases}$$

Benoît Chachuat (McMaster University

Maximum Principles

Ontimal Control

24 / 20

First-Order Pure State Constrained Problems (cont'd)

3 At each entry time θ_1 ,

$$\boldsymbol{\lambda}^*(\theta_1^-) = \boldsymbol{\lambda}^*(\theta_1^+) + \boldsymbol{\pi}_k^{*\mathsf{T}} \mathbf{h}_{\mathbf{x}}(\theta_1, \mathbf{x}^*(\theta_1))$$
$$\mathcal{H}[\theta_1^-] = \mathcal{H}[\theta_1^+] - \boldsymbol{\pi}_k^{*\mathsf{T}} \mathbf{h}_t(\theta_1, \mathbf{x}^*(\theta_1))$$
$$\boldsymbol{\pi}_k^* \boldsymbol{h}_k(\theta_1, \mathbf{x}^*(\theta_1)) = 0; \quad \boldsymbol{\pi}_k^* \ge \boldsymbol{\eta}_k^*(\theta_1^+)$$

3 $\mathcal{H}(t_f^*, \mathbf{x}^*(t_f^*), \mathbf{u}^*(t_f^*), \lambda_0^*(t_f^*), \lambda^*(t_f^*)) = 0$, if t_f is free

Combined (1st-Order) Pure and Mixed State Inequality Constraints:

• Mix the previous sets of optimality conditions, with

$$\mathcal{L}(t, \mathbf{x}, \mathbf{u}, \lambda_0, \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\eta}) \stackrel{\Delta}{=} \mathcal{H}(t, \mathbf{x}, \mathbf{u}, \lambda_0, \boldsymbol{\lambda}) + \boldsymbol{\mu}^\mathsf{T} \mathbf{g}(t, \mathbf{x}, \mathbf{u}) + \boldsymbol{\eta}^\mathsf{T} \mathbf{h}^1(t, \mathbf{x}, \mathbf{u})$$

• Strengthened C.Q.: rank $\begin{bmatrix} \mathbf{g_u} & \mathsf{diag}(\mathbf{g}) & \mathbf{0} \\ \mathbf{h_u^1} & \mathbf{0} & \mathsf{diag}(\mathbf{h}) \end{bmatrix} = n_g + n_h$

Caution: A general theorem proving the foregoing NCOs is still lacking!

Solving Pure/Mixed Path Constrained Problems

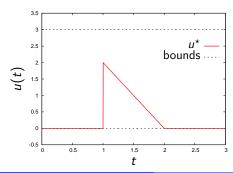
Class Exercise: Consider the optimal control problem:

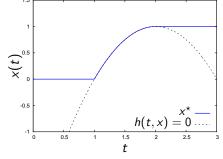
Solving Pure/Mixed Path Constrained Problems

Class Exercise: Consider the optimal control problem:

minimize:
$$\mathcal{J}(u) \stackrel{\Delta}{=} \int_0^3 \mathrm{e}^{-\varrho t} \, u(t) \, \mathrm{d}t$$

subject to: $\dot{x}(t) = u(t); \quad x(0) = 0$
 $1 - x(t) - (t - 2)^2 \le 0, \quad 0 \le t \le 3$
 $0 \le u(t) \le 3, \quad 0 \le t \le 3$





Optimal Control

General Constrained Optimal Control Problems

Extended Problem Formulation:

- ullet Cost functional: $\int_{t}^{t_{\mathsf{f}}} \ell(\mathbf{x}(t),\mathbf{u}(t)) \; \mathsf{d}t + \phi(t_{\mathsf{f}},\mathbf{x}(t_{\mathsf{f}}))$
- Terminal constraints: $\psi_k(t_f, \mathbf{x}(t_f) \leq 0, \quad k = 1, \dots, n_{\psi}$ (instead of $\mathbf{x}(t_f) = \mathbf{x}_f$)
- ullet Suppose the constraint qualification: rank $[\hspace{.1cm} \psi_{\mathbf{x}} \hspace{.1cm} \mathsf{diag}\hspace{.01cm} (\psi)\hspace{.1cm}] = \mathit{n}_{\psi}$, holds at $(t_f^*, \mathbf{x}(t_f^*))$

Modified/Extra Necessary Conditions for Optimality:

There exist Lagrange multipliers $\nu^* \in \mathbb{R}^{n_{\psi}}$ such that:

1
$$\psi(t_f^*, \mathbf{x}^*(t_f^*)) \leq 0$$
; $\nu^*(t)^\mathsf{T} \psi(t_f^*, \mathbf{x}^*(t_f^*)) = 0$; $\nu^*(t) \geq 0$

$$\mathbf{\mathfrak{g}} \ \left[\mathcal{H} + \lambda_0^* \phi_t + \boldsymbol{\nu}^{*\mathsf{T}} \boldsymbol{\psi}_t \right]_{t_{\mathsf{f}}^*} = \mathsf{0}, \ \mathsf{if} \ t_{\mathsf{f}} \ \mathsf{is} \ \mathsf{free}$$

General Constrained Optimal Control Problems (cont'd)

Optimal Solution Structure:

- Sequence of active/inactive path constraints and junction times
- Set of active terminal constraints
- Use direct numerical methods to guess the optimal solution structure

Identifying Candidate Optimal Solutions:

- Postulate an optimal solution structure
- ② Check whether a pair $(\mathbf{u}^*, \mathbf{x}^*)$, final time t_f^* , functions (λ_0^*, λ^*) and multipliers (μ^*, η^*, ν^*) can be found that satisfy all the NCOs
- Go back to step 1

Conditions at a Junction Time, $\theta \in (t_0, t_f^*)$:

$$\mathbf{x}^*(\mathbf{ heta}^-) = \mathbf{x}^*(\mathbf{ heta}^+)$$

$$oldsymbol{\lambda}^*(heta^-) = oldsymbol{\lambda}^*(heta^+)$$

$$\mathcal{H}(\theta,\mathbf{x}^*(\theta),\mathbf{u}^*(\theta^-),\lambda_0^*(\theta),\boldsymbol{\lambda}^*(\theta))=\mathcal{H}(\theta,\mathbf{x}^*(\theta),\mathbf{u}^*(\theta^+),\lambda_0^*(\theta),\boldsymbol{\lambda}^*(\theta))$$

General Constrained Optimal Control Problems (cont'd)

Consider the scalar optimal control problem to

minimize:
$$\Im(u) := \int_0^1 ([x_1(t)]^2 + [x_2(t)]^2) dt$$

subject to:
$$\dot{x}_1(t) = x_2(t); \quad x_1(0) = 0$$

 $\dot{x}_2(t) = -x_2(t) + u(t); \quad x_2(0) = -1$
 $x_2(t) + 0.5 - 8[t - 0.5]^2 \le 0, \forall t$
 $-20 < u(t) < 20, \forall t$

