Optimal Control Lectures 17-18: Problem Formulation

Benoît Chachuat <benoit@mcmaster.ca>

Department of Chemical Engineering

Spring 2009

Benoît Chachuat (McMaster University)

Optimal Control Problem Formulation

Objective

"Determine the control signals that will cause a controlled system to satisfy the physical constraints and, at the same time, minimize (or maximize) some performance criterion"

Main Steps of Problem Formulation:

- Specification/modeling of the controlled system
 - Admissible controls
 - Response and dynamical model
- Specification of a performance criterion
 - ► Lagrange, Mayer and Bolza forms

to the control $\mathbf{u}(\cdot)$ for the initial conditions \mathbf{x}_0 at t_0

- Specification of physical constraints to be satisfied
 - Path and terminal constraints.

Benoît Chachuat (McMaster University)

Controlled System

Important Questions:

• Is this response unique?

System Response:

A solution $\mathbf{x}(t; t_0, \mathbf{x}_0, \mathbf{u}(\cdot))$ to the differential equations is called a response

• Does a response exist for a given control and initial conditions?

Optimal Control

Controlled System

A controlled system is characterized by:

- State variables $\mathbf{x} = [x_1 \cdots x_{n_x}]^T$, $n_x \ge 1$, describing its internal behavior — phase space
 - e.g., coordinates, velocities, concentrations, flow rates, etc.
- Control variables $\mathbf{u} = [u_1 \cdots u_{n_u}]^T$, $n_u \geq 1$, describing the controller positions — control space
 - e.g., force, voltage, temperature, etc.

Model Development Objective:

- Develop the simplest model that accurately predicts the system behavior to all foreseeable control decisions"
- Typically, in the form of Ordinary Differential Equations (ODEs),

$$\dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)),$$

with specified initial conditions,

$$\mathbf{x}(t_0) = \mathbf{x_0}$$

Optimal Control

Benoît Chachuat (McMaster University)

Optimal Control

Admissible Controls

- Restriction to a certain control region, $\mathbf{u}(t) \in U \subset \mathbb{R}^{n_u}$
 - ▶ E.g., $U \stackrel{\Delta}{=} \{ \mathbf{u} \in \mathbb{R}^{n_u} : |u_i| < 1, \forall j \}, \quad U \stackrel{\Delta}{=} \{ \mathbf{u} \in \mathbb{R}^{n_u} : \phi(\mathbf{u}) = 0 \}$
- Which class for the time-varying controls?
 - lacktriangle Continuous controls: $\mathbf{u} \in \mathcal{C}[t_0,t_{\mathsf{f}}]^{n_u}$ may not be a large enough class
 - More generally, piecewise continuous control: $\mathbf{u} \in \hat{\mathcal{C}}[t_0, t_{\mathsf{f}}]^{n_u}$

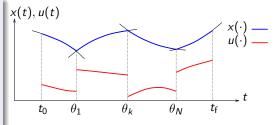
Finite partition:

$$t_0 = \theta_0 < \dots < \theta_N < \theta_{N+1} = t_f$$

and

$$\mathbf{u}|_{[\theta_k,\theta_{k+1}]} \in \mathcal{C}[\theta_k,\theta_{k+1}]^{n_u}$$

for each k = 0, ..., N



- Allow instantaneous control jumps
 - Underlying assumption: inertia-less controllers

Benoît Chachuat (McMaster University) Introduction & Formulation

Admissible Controls

• Restriction to a certain control region, $\mathbf{u}(t) \in U \subset \mathbb{R}^{n_u}$

► E.g.,
$$U \stackrel{\Delta}{=} \{ \mathbf{u} \in \mathbb{R}^{n_u} : |u_j| \le 1, \forall j \}, \quad U \stackrel{\Delta}{=} \{ \mathbf{u} \in \mathbb{R}^{n_u} : \phi(\mathbf{u}) = 0 \}$$

- Which class for the time-varying controls?
 - lacktriangle Continuous controls: $\mathbf{u} \in \mathcal{C}[t_0,t_{\mathsf{f}}]^{n_u}$ may not be a large enough class
 - More generally, piecewise continuous control: $\mathbf{u} \in \hat{\mathcal{C}}[t_0, t_{\mathsf{f}}]^{n_u}$

Class of Admissible Controls $\mathcal{U}[t_0, t_f]$

A piecewise continuous control $\mathbf{u}(\cdot)$, defined on some time interval $t_0 \le t \le t_f$, with range in the control region U,

$$\mathbf{u}(t) \in U, \quad \forall t \in [t_0, t_f],$$

is said to be an admissible control

- Every admissible control is bounded
 - Do you see why?

Performance Criterion

- A functional used for quantitative evaluation of a system's performance
 - ► Can depend on both the control and state variables
 - Can depend on the initial and/or terminal times too (if not fixed)

Functional Forms

- Lagrange form: $\mathcal{J}(\mathbf{u}) \stackrel{\Delta}{=} \int_{t_0}^{t_f} \ell(t, \mathbf{x}(t), \mathbf{u}(t)) dt$
- Mayer form: $\mathcal{J}(\mathbf{u}) \stackrel{\Delta}{=} \varphi(t_0, \mathbf{x}(t_0), t_f, \mathbf{x}(t_f))$
- Bolza form: $\mathcal{J}(\mathbf{u}) \stackrel{\Delta}{=} \varphi(t_0, \mathbf{x}(t_0), t_f, \mathbf{x}(t_f)) + \int_t^{t_f} \ell(t, \mathbf{x}(t), \mathbf{u}(t)) dt$
- Lagrange, Mayer and Bolza functional forms are equivalent!

Physical Constraints

 Functional equalities/inequalities restricting the range of values that can be assumed by control and/or state variables

Types of Constraints

- Point constraints: $\psi^{i}(\overline{t}, \mathbf{x}(\overline{t})) \leq 0$, $\psi^{e}(\overline{t}, \mathbf{x}(\overline{t})) = 0$, $\overline{t} \in [t_0, t_f]$
 - E.g., terminal state constraint $x_k(t_f) < x_k^{U,f}$
- Isoperimetric (integral) constraints:

$$\int_{t_0}^{t_\mathrm{f}} \kappa^\mathrm{i}(t, \mathbf{x}(t), \mathbf{u}(t)) \; \mathrm{d}t \leq 0, \quad \int_{t_0}^{t_\mathrm{f}} \kappa^\mathrm{e}(t, \mathbf{x}(t), \mathbf{u}(t)) \; \mathrm{d}t = 0$$

- Can always be reformulated as a point constraints! (easier to handle)
- Path constraints:

$$\kappa^{\mathrm{i}}(t, \mathbf{x}(t), \mathbf{u}(t)) \leq 0, \quad \kappa^{\mathrm{e}}(t, \mathbf{x}(t), \mathbf{u}(t)) = 0, \quad \forall t \in [t_0, t_{\mathrm{f}}]$$

E.g., input path constraints $\mathbf{u}^L \leq \mathbf{u}(t) \leq \mathbf{u}^U$, $\forall t \in [t_0, t_f]$; (pure) state path constraints $x_k(t) \le x_k^U$, $\forall t \in [t_0, t_f]$

A Quite General Optimal Control Formulation

Optimal Control Problem

Determine $\mathbf{u} \in \hat{\mathcal{C}}^1[t_0, t_{\mathrm{f}}]^{n_u}$ that

minimize:
$$\mathcal{J}(\mathbf{u}) \stackrel{\Delta}{=} \phi(\mathbf{x}(t_{\mathsf{f}})) + \int_{t_0}^{t_{\mathsf{f}}} \ell(t, \mathbf{x}(t), \mathbf{u}(t)) dt$$

subject to:
$$\dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)); \quad \mathbf{x}(t_0) = \mathbf{x_0}$$

$$\psi_j^{\mathrm{i}}(\mathbf{x}(t_{\mathsf{f}})) \leq 0, \quad j = 1, \dots, n_{\psi}^{\mathrm{i}}$$

$$\psi_{j}^{\mathrm{e}}(\mathbf{x}(t_{\mathrm{f}}))=0, \quad j=1,\ldots,n_{\psi}^{\mathrm{e}}$$

$$\kappa_j^{\mathrm{i}}(t,\mathbf{x}(t),\mathbf{u}(t)) \leq 0, \quad j=1,\ldots,n_\kappa^{\mathrm{i}}$$

$$\kappa_j^{\mathrm{e}}(t,\mathbf{x}(t),\mathbf{u}(t))=0, \quad j=1,\ldots,n_\kappa^{\mathrm{e}}$$

$$\mathbf{u}(t) \in [\mathbf{u}^L, \mathbf{u}^U]$$

Open-Loop vs. Closed Loop Optimal Control

Open-Loop Optimal Control

An optimal control law of the form

$$\mathbf{u}^*(t) = \boldsymbol{\omega}(t; t_0, \mathbf{x_0}), \quad \mathbf{t} \in [\mathbf{t_0}, \mathbf{t_f}],$$

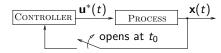
determined for a particular initial state value $\mathbf{x}(t_0) = \mathbf{x_0}$

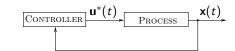
Closed-Loop Optimal Control

A feedback control law of the form

$$\mathbf{u}^*(t) = \boldsymbol{\omega}(t, \mathbf{x}(t)), \quad t \in [t_0, t_{\mathrm{f}}],$$

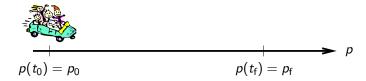
i.e., calculating the optimal control actions $\mathbf{u}^*(t)$ corresponding to the current state $\mathbf{x}(t)$





Pros and Cons?

Class Exercise: Car Control Problem

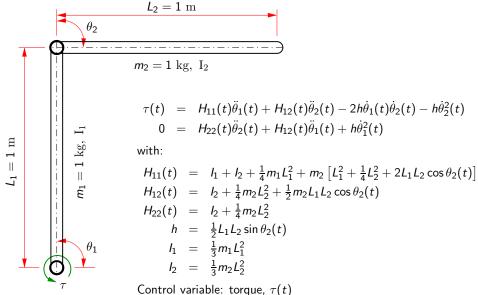


Optimal Control Formulation:

"Drive a car, initially parked at position p_0 , to its final destination p_f (parking), in minimum time"

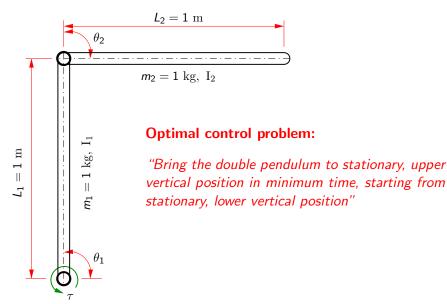
- State, p(t), $\dot{p}(t)$: position and speed
- Control, u(t): force due to acceleration (≥ 0) or deceleration (≤ 0)

Class Exercise: Double Pendulum



Control variable: torque, $\tau(t)$

Class Exercise: Double Pendulum



Benoît Chachuat (McMaster University

Introduction & Formulation

Optimal Control

rol

Feasibility and (Global) Optimality

Feasible Control

A control $\mathbf{u} \in \mathcal{U}[t_0, t_f]$ is said to be feasible if:

- **①** $\mathbf{x}(t; x_0, \mathbf{u}(\cdot))$ is defined for each $t \in [t_0, t_f]$
- ② u and x satisfy all of the physical constraints

The set of feasible controls, $\Omega[t_0, t_f]$, is defined as:

$$\Omega[t_0, t_{\mathsf{f}}] \stackrel{\Delta}{=} \{\mathbf{u} \in \mathcal{U}[t_0, t_{\mathsf{f}}] : \mathbf{u} \text{ is feasible}\}$$

(Globally) Optimal Control (Minimize Case)

A control $\mathbf{u}^* \in \mathcal{U}[t_0, t_f]$ is said to be optimal if:

$$\partial(\mathbf{u}^*) \leq \partial(\mathbf{u}), \quad \forall \mathbf{u} \in \Omega[t_0, t_f]$$

• This optimality condition is global in nature, i.e. it does not require consideration of a norm

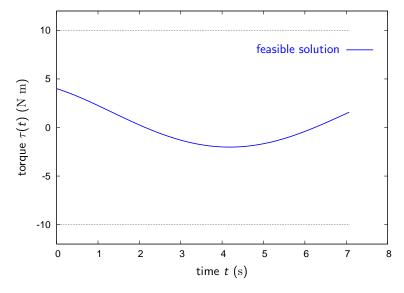
Benoît Chachuat (McMaster University)

Introduction & Formulation

Ontimal Control

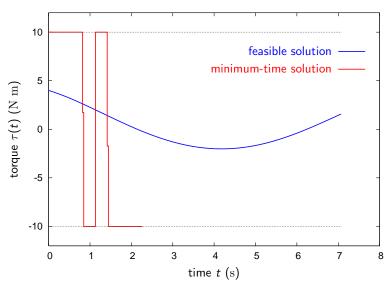
Class Exercise: Double Pendulum (cont'd)

A feasible solution:



Class Exercise: Double Pendulum (cont'd)

The optimal solution:



Local Optimality

Locally Optimal Control (Minimize Case)

A control $\mathbf{u}^* \in \mathcal{U}[t_0, t_f]$ is said to be a local optimum if:

$$\exists \delta > 0 \text{ such that: } \mathcal{J}(\mathbf{u}^*) \leq \mathcal{J}(\mathbf{u}), \quad \forall \mathbf{u} \in \mathcal{B}_{\delta}\left(\mathbf{u}^*\right) \cap \Omega[t_0, t_{\mathrm{f}}]$$

Specification of a Norm/Distance on $\mathcal{U}[t_0, t_f]$:

Weak Minima:

$$\mathcal{B}^{1,\infty}_{\delta}\left(\mathbf{u}^*
ight) \stackrel{\Delta}{=} \left\{\mathbf{u} \in \mathcal{U}[t_0,t_{\mathrm{f}}]: \sup_{t \in igcup_{k=0}^N(heta_k, heta_{k+1})} \|\mathbf{x}(t) - \mathbf{x}^*(t)\| + \|\mathbf{u}(t) - \mathbf{u}^*(t)\| < \delta
ight\}$$

- ► Similar considerations as with Euler's equation leads to the Euler-Lagrange equations
- Strong Minima:

$$\mathcal{B}^{\infty}_{\delta}\left(\mathbf{u}^{*}
ight) riangleq \left\{\mathbf{u} \in \mathcal{U}[t_{0},t_{\mathrm{f}}]: \sup_{t \in igcup_{k=0}^{\mathcal{N}}(heta_{k}, heta_{k+1})} \|\mathbf{x}(t) - \mathbf{x}^{*}(t)\| < \delta
ight\}$$

► Similar considerations as with Weierstrass' condition — leads to the Pontryagin Maximum Principle

Benoît Chachuat (McMaster University)

Introduction & Formulation

Optimal Control

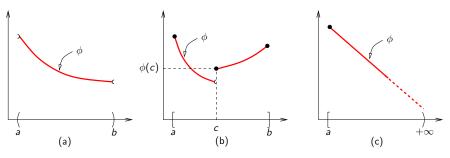
14 / 15

Existence of an Optimal Solution

Recalls: Weierstrass' Theorem

Let $P \subset \mathbb{R}^n$ be a nonempty, compact set, and let $\phi: P \to \mathbb{R}$ be continuous on P. Then, the problem $\min\{\phi(p): p \in P\}$ attains its minimum, that is, there exists a minimizing solution to this problem.

Why closedness of P? Why continuity of ϕ ? Why boundedness of P?



Benoît Chachuat (McMaster University

ntroduction & Formulatio

Ontimal Cantual

15 / 15